ATAforecasting

CRAN Downloads Licence

Synopsis

Automatic Time Series Analysis and Forecasting using Ata Method with Box-Cox Power Transformations Family and Seasonal Decomposition Techniques.

Description

The Ata Method is a new alternative forecasting method. This method is alternative to two major forecasting approaches: Exponential Smoothing and ARIMA. The Ata method based on the modified simple exponential smoothing as described in Yapar, G. (2016) doi:10.15672/HJMS.201614320580, Yapar G., Capar, S., Selamlar, H. T., Yavuz, I. (2017) doi:10.15672/HJMS.2017.493 and Yapar G., Selamlar, H. T., Capar, S., Yavuz, I. (2019) doi:10.15672/hujms.461032 is a new univariate time series forecasting method which provides innovative solutions to issues faced during the initialization and optimization stages of existing methods.

Forecasting performance of the Ata method is superior to existing methods both in terms of easy implementation and accurate forecasting. It can be applied to non-seasonal or seasonal time series which can be decomposed into four components (remainder, level, trend and seasonal). This methodology performed well on the M3 and M4-competition dat

Installation

You can install the stable version from CRAN:

install.packages("ATAforecasting")

Development version with latest features:

devtools::install_github("alsabtay/ATAforecasting")

Fable Modelling Wrappers for ATAforecasting Package

devtools::install_github("alsabtay/fable.ata")

Example

USAccDeaths: Accidental Deaths in the US 1973–1978

library(ATAforecasting)
ATA(USAccDeaths, h = 18, model.type = "A", seasonal.type = "A", seasonal.model = "stl")

Github page

Github.io page

Project team website

Github - Fable Modelling Wrappers for ATAforecasting Package

Github.io - Fable Modelling Wrappers for ATAforecasting Package

License

This package is free and open source software, licensed under GPL-3.