A collection of functions for structure learning of causal networks and estimation of joint causal effects from observational Gaussian data. Main algorithm consists of a Markov chain Monte Carlo scheme for posterior inference of causal structures, parameters and causal effects between variables. References: F. Castelletti and A. Mascaro (2021) <doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <arXiv:2201.12003>.
Version: | 1.0.0 |
Depends: | R (≥ 2.10) |
Imports: | graphics, gRbase, grDevices, lattice, methods, mvtnorm, stats, utils |
Suggests: | rmarkdown, knitr, testthat (≥ 3.0.0) |
Published: | 2022-03-15 |
Author: | Federico Castelletti [aut], Alessandro Mascaro [aut, cre] |
Maintainer: | Alessandro Mascaro <a.mascaro3 at campus.unimib.it> |
License: | MIT + file LICENSE |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | BCDAG results |
Package source: | BCDAG_1.0.0.tar.gz |
Windows binaries: | r-devel: BCDAG_1.0.0.zip, r-release: BCDAG_1.0.0.zip, r-oldrel: BCDAG_1.0.0.zip |
macOS binaries: | r-release (arm64): BCDAG_1.0.0.tgz, r-oldrel (arm64): BCDAG_1.0.0.tgz, r-release (x86_64): BCDAG_1.0.0.tgz, r-oldrel (x86_64): BCDAG_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=BCDAG to link to this page.