BayesPPD: Bayesian Power Prior Design

Bayesian power/type I error calculation and model fitting using the power prior and the normalized power prior for generalized linear models. Detailed examples of applying the package are available at <arXiv:2112.14616>. The Bayesian clinical trial design methodology is described in Chen et al. (2011) <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) <doi:10.1093/biostatistics/kxy009>. The normalized power prior is described in Duan et al. (2006) <doi:10.1002/env.752> and Ibrahim et al. (2015) <doi:10.1002/sim.6728>.

Version: 1.0.7
Depends: R (≥ 3.5.0)
Imports: Rcpp, RcppNumerical
LinkingTo: Rcpp, RcppArmadillo, RcppEigen, RcppNumerical
Published: 2022-08-12
Author: Yueqi Shen [aut, cre], Matthew A. Psioda [aut], Joseph G. Ibrahim [aut]
Maintainer: Yueqi Shen <ys137 at live.unc.edu>
License: GPL (≥ 3)
NeedsCompilation: yes
CRAN checks: BayesPPD results

Documentation:

Reference manual: BayesPPD.pdf

Downloads:

Package source: BayesPPD_1.0.7.tar.gz
Windows binaries: r-devel: BayesPPD_1.0.7.zip, r-release: BayesPPD_1.0.7.zip, r-oldrel: BayesPPD_1.0.7.zip
macOS binaries: r-release (arm64): BayesPPD_1.0.7.tgz, r-oldrel (arm64): BayesPPD_1.0.7.tgz, r-release (x86_64): BayesPPD_1.0.7.tgz, r-oldrel (x86_64): BayesPPD_1.0.7.tgz
Old sources: BayesPPD archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=BayesPPD to link to this page.