The goal of this R package is to partition a bipartite network into non-overlapping biclusters by maximizing bipartite modularity defined in Barber (2007) using the bipartite version of the algorithm described in Treviño (2015).
The package contains C/C++ code that needs compilation.
PATH
by the follwing command:Mac users can install Xcode from the Mac AppStore.
Linux users can install a compiler and various development libraries (details vary across different flavors of Linux).
More details can be found in documents of RStudio or R.
Use the following command to install the released version of the package from CRAN, where pre-compiled “binary packages” might be available.
Once you set up the compiler, you can install the latest version of the package from GitHub with:
install.packages("remotes")
remotes::install_github("DIVA-Lab-UTMB/BipartiteModularityMaximization")
This is a basic example which shows you how to use the main function bipmod
(short for bipartite modularity) to partition the example bipartite network (represented as an incidence matrix of 798 rows and 8 columns):
## basic example code
library(BipartiteModularityMaximization)
data(example_data)
str(example_data)
#> 'data.frame': 798 obs. of 8 variables:
#> $ Symptom_1: int 1 1 0 1 1 1 0 1 0 0 ...
#> $ Symptom_2: int 1 1 0 1 1 1 0 1 1 0 ...
#> $ Symptom_3: int 1 1 0 1 0 0 0 0 1 0 ...
#> $ Symptom_4: int 1 1 0 1 1 1 1 1 1 0 ...
#> $ Symptom_5: int 1 1 1 1 0 1 0 1 1 1 ...
#> $ Symptom_6: int 0 1 0 1 1 1 0 1 1 0 ...
#> $ Symptom_7: int 1 1 0 0 1 1 1 1 1 0 ...
#> $ Symptom_8: int 1 0 1 1 1 1 0 1 1 0 ...
Q_part=bipmod(example_data)
str(Q_part)
#> List of 2
#> $ MODULARITY: num 0.262
#> $ ASSIGN : int [1:806] 2 2 2 4 4 2 3 2 4 2 ...
Please read the documentation using ?bipmod
or ?example_data
for more details.
The biclusters can be visualized using ExplodeLayout epl described in Bhavnani (2017).