CRTConjoint: Conditional Randomization Testing (CRT) Approach for Conjoint
Analysis
Computes p-value according to the CRT using the HierNet test statistic. For more details, see Ham, Imai, Janson (2022) "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" <arXiv:2201.08343>.
Version: |
0.1.0 |
Depends: |
R (≥ 2.10) |
Imports: |
utils, methods, doSNOW, foreach, Rcpp, snow |
LinkingTo: |
Rcpp |
Suggests: |
knitr, rmarkdown |
Published: |
2022-06-09 |
Author: |
Dae Woong Ham [aut, cre],
Kosuke Imai [aut],
Lucas Janson [aut],
Jacob Bien [ctb, cph] |
Maintainer: |
Dae Woong Ham <daewoongham at g.harvard.edu> |
BugReports: |
https://github.com/daewoongham97/CRTConjoint/issues |
License: |
GPL (≥ 3) |
Copyright: |
(c) 2022 Dae Woong Ham. Code in helper_hierNet.R, hierNet.c,
and hierNet_init.c are taken (with explicit permission) from
(c) 2020 Jacob Bien. |
URL: |
https://github.com/daewoongham97/CRTConjoint |
NeedsCompilation: |
yes |
Materials: |
README NEWS |
CRAN checks: |
CRTConjoint results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=CRTConjoint
to link to this page.