CaDENCE: Conditional Density Estimation Network Construction and Evaluation

Parameters of a user-specified probability distribution are modelled by a multi-layer perceptron artificial neural network. This framework can be used to implement probabilistic nonlinear models including mixture density networks, heteroscedastic regression models, zero-inflated models, etc. following Cannon (2012) <doi:10.1016/j.cageo.2011.08.023>.

Version: 1.2.5
Depends: pso
Suggests: boot
Published: 2017-12-05
Author: Alex J. Cannon
Maintainer: Alex J. Cannon <alex.cannon at canada.ca>
License: GPL-2
NeedsCompilation: no
Citation: CaDENCE citation info
In views: Distributions
CRAN checks: CaDENCE results

Documentation:

Reference manual: CaDENCE.pdf

Downloads:

Package source: CaDENCE_1.2.5.tar.gz
Windows binaries: r-devel: CaDENCE_1.2.5.zip, r-release: CaDENCE_1.2.5.zip, r-oldrel: CaDENCE_1.2.5.zip
macOS binaries: r-release (arm64): CaDENCE_1.2.5.tgz, r-oldrel (arm64): CaDENCE_1.2.5.tgz, r-release (x86_64): CaDENCE_1.2.5.tgz, r-oldrel (x86_64): CaDENCE_1.2.5.tgz
Old sources: CaDENCE archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=CaDENCE to link to this page.