How to install

The release version on CRAN:

install.packages("CondCopulas")

From GitHub, using the devtools package:

# install.packages("devtools")
devtools::install_github("AlexisDerumigny/CondCopulas")

Conditional copulas

With pointwise conditioning

Tests of the simplifying assumption

Estimation of conditional copulas (using kernel smoothing)

Estimation of conditional Kendall’s tau (CKT)

A general wrapper function:

Kernel-based estimation of conditional Kendall’s tau

Kendall’s regression

Classification-based estimation of conditional Kendall’s tau

Advanced functions for manual hyperparameter choices

With discrete conditioning by Borel sets

Test of the assumption that the conditioning Borel subset has no influence on the conditional copula

Estimation

References

Derumigny, A., & Fermanian, J. D. (2017). About tests of the “simplifying” assumption for conditional copulas. Dependence Modeling, 5(1), 154-197.

Derumigny, A., & Fermanian, J. D. (2019). A classification point-of-view about conditional Kendall’s tau. Computational Statistics & Data Analysis, 135, 70-94.

Derumigny, A., & Fermanian, J. D. (2019). On kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and asymptotic behavior. Dependence Modeling, 7(1), 292-321.

Derumigny, A., & Fermanian, J. D. (2020). On Kendall’s regression. Journal of Multivariate Analysis, 178, 104610.