The release version on CRAN:
From GitHub, using the devtools
package:
simpA.NP
: in a purely nonparametric framework
simpA.param
: assuming that the conditional copula belongs to a parametric family of copulas for all values of the conditioning variable
simpA.kendallReg
: test of the simplifying assumption based on the constancy of the conditional Kendall’s tau assuming that it satisfies a regression-like equation
estimateNPCondCopula
: nonparametric estimation of conditional copulas
estimateParCondCopula
: parametric estimation of conditional copulas
estimateParCondCopula_ZIJ
: parametric estimation of conditional copulas using (already computed) conditional pseudo-observations
A general wrapper function:
CKT.estimate
: that can be used for any method of estimating conditional Kendall’s tau. Each of these methods is detailed below and has its own function.CKT.kernel
: for any number of variable and with possible choice of the bandwidthCKT.kendallReg.fit
: fit Kendall’s regression, a regression-like method for the estimation of conditional Kendall’s tau
CKT.kendallReg.predict
: for prediction of the new conditional Kendall’s tau (given new covariates)
CKT.fit.tree
: for fitting a tree-based model for the conditional Kendall’s tauCKT.predict.tree
: for prediction of new conditional Kendall’s tausCKT.fit.randomForest
: for fitting a random forest-based model for the conditional Kendall’s tauCKT.predict.randomForest
: for prediction of new conditional Kendall’s tausCKT.predict.kNN
: for several numbers of nearest neighborsCKT.fit.nNets
: for fitting a neural networks-based model for the conditional Kendall’s tauCKT.predict.nNets
: for prediction of new conditional Kendall’s tausCKT.fit.GLM
: for fitting a GLM-like model for the conditional Kendall’s tauCKT.predict.GLM
: for prediction of new conditional Kendall’s tausCKT.hCV.Kfolds
: for K-fold cross-validation choice of the bandwidth for kernel smoothing
CKT.hCV.l1out
: for leave-one-out cross-validation choice of the bandwidth for kernel smoothing
CKT.KendallReg.LambdaCV
: cross-validated choice of the penalization parameter lambda
CKT.adaptkNN
: for a (local) aggregation of the number of nearest neighbors based on Lepski’s method
bCond.simpA.param
: assuming that the copula belongs to a parametric familybCond.pobs
: computation of the conditional pseudo-observations \(F_{1|A(i)}(X_{i,1} | A(i))\) and \(F_{2|A(i)}(X_{i,2} | A(i))\) for every \(i=1, \dots, n\).
bCond.estParamCopula
: estimation of a conditional parametric copula, i.e. for every set \(A\), a conditional parameter \(\theta(A)\) is estimated.
Derumigny, A., & Fermanian, J. D. (2017). About tests of the “simplifying” assumption for conditional copulas. Dependence Modeling, 5(1), 154-197.
Derumigny, A., & Fermanian, J. D. (2019). A classification point-of-view about conditional Kendall’s tau. Computational Statistics & Data Analysis, 135, 70-94.
Derumigny, A., & Fermanian, J. D. (2019). On kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and asymptotic behavior. Dependence Modeling, 7(1), 292-321.
Derumigny, A., & Fermanian, J. D. (2020). On Kendall’s regression. Journal of Multivariate Analysis, 178, 104610.