
Package ‘DDIwR’
June 21, 2022

Version 0.12

Date 2022-06-21

Title DDI with R

Depends R (>= 3.5.0)

Imports admisc (> 0.28), declared (> 0.16), tools, xml2, haven,
readxl, writexl

Description
Useful functions for various DDI (Data Documentation Initiative) related inputs and outputs.
Converts data files to and from SPSS, Stata, SAS, R and Excel, including user declared miss-
ing values.

License GPL (>= 3)

URL https://github.com/dusadrian/DDIwR

BugReports https://github.com/dusadrian/DDIwR/issues

NeedsCompilation no

Author Adrian Dusa [aut, cre, cph] (<https://orcid.org/0000-0002-3525-9253>)

Maintainer Adrian Dusa <dusa.adrian@unibuc.ro>

Repository CRAN

Date/Publication 2022-06-21 12:40:02 UTC

R topics documented:
About the DDIwR package . 2
convert . 2
exportDDI . 5
getMetadata . 8
recodeCharcat . 10
recodeValues . 10
setupfile . 13

Index 16

1

https://github.com/dusadrian/DDIwR
https://github.com/dusadrian/DDIwR/issues
https://orcid.org/0000-0002-3525-9253

2 convert

About the DDIwR package

Useful functions for various DDI (Data Documentation Initiative) re-
lated outputs.

Description

This package provides various functions to read DDI based metadata documentation, and write
dedicated setup files for R, SPSS, Stata and SAS to read an associated .csv file containing the raw
data, apply labels for variables and values and also deal with the treatment of missing values.

It can also generate a DDI metadata file out of an R information object, which can be used to export
directly to the standard statistical packages files (such as SPSS, Stata and SAS, or even Excel), using
the versatile package haven. For R, the default object to store data and metadata is a data.frame,
and labelled data are automatically coerced to class declared.

The research leading to the initial functions in this package has received funding from the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262608
(DwB - Data without Boundaries)

Details

Package: DDIwR
Type: Package
Version: 0.12
Date: 2022-06-21
License: GPL (>= 2)

Author(s)

Authors:
Adrian Dusa
Department of Sociology
University of Bucharest
<dusa.adrian@unibuc.ro>

Maintainer:
Adrian Dusa

convert Convert a dataset from one statistical software to another

convert 3

Description

This function converts (or transfers) between R, Stata, SPSS, SAS, Excel and DDI XML files.
Unlike the regular import / export functions from packages haven or rio, this function uses the DDI
standard as an exchange platform and facilitates a consistent conversion of the missing values.

Usage

convert(from, to = NULL, declared = TRUE, chartonum = FALSE, recode = TRUE,
encoding = "UTF-8", csv = NULL, ...)

Arguments

from A path to a file, or a data.frame object

to Character, the name of a software package or a path to a specific file

declared Logical, return the resulting dataset as a declared object

chartonum Logical, recode character categorical variables to numerical categorical vari-
ables

recode Logical, recode missing values

encoding The character encoding used to read a file

csv Path to the CSV file, if not embedded in XML file containing the DDI Codebook.

... Additional parameters passed to exporting functions, see the Details section

Details

When the argument to specifies a certain statistical package ("R", "Stata", "SPSS", "SAS", "XPT")
or "Excel", the name of the destination file will be idential to the one in the argument from, with
an automatically added software specific extension.

SPSS portable file (with the extension ".por") can only be read, and SAS Transport files (with the
extension ".xpt") can be both read and written.

Alternatively, the argument to can be specified as a path to a specific file, in which case the software
package is determined from its file extension. The following extentions are currently recognized:
.xml for DDI, .rds for R, .dta for Stata, .sav for SPSS, .sas7bdat for SAS, and .xlsx for Excel.

Additional parameters can be specified via the three dots argument ..., that are passed to the
respective functions from packages haven and readxl. For instance the function write_dta() has
an additional argument called version when writing a Stata file.

The most important argument to consider is called user_na, part of the function read_sav().
Although it is defaulted to FALSE in package haven, in package DDIwR it is used as having the
value of TRUE. Users who really want to deactivate it should explicitly specify use_na = FALSE in
function convert().
The same three dots argument is used to pass additional parameters to other functions in this pack-
age, for instance exportDDI() when converting to a DDI file. Its argument embed (activated by
default) can be used to control embedding the data in the XML file. Deactivating it will create a
CSV file in the same directory, using the same file name as the XML file.

When converting from DDI, if the dataset is not embedded in the XML file, the CSV file is expected
to be found in the same directory as the DDI Codebook, and it should have the same file name as the

4 convert

XML file. Alternatively, the path to the CSV file can be provided via the csv argument. Additional
formal parameters of the function read.csv() can be passed via the same three dots ... argument.

The argument chartonum signals recoding character categorical variables, and employs the function
recodeCharcat(). This only makes sense when recoding to Stata, which does not allow allocating
labels for anything but integer variables.

If the argument to is left to NULL, the data is (invisibly) returned to the R enviroment. Conversion
to R, either in the working space or as a data file, will result (by default) in a data frame containing
declared labelled variables, as defined in package declared.

The current version reads and creates DDI Codebook version 2.5, with future versions to extend the
functionality for DDI Lifecycle versions 3.x and link to the future package DDI4R for the UML
model based version 4. It extends the standard DDI Codebook by offering the possibility to embed
a CSV version of the raw data into the XML file containing the Codebook, into a notes child of the
fileDscr component. This type of codebook is unique to this package and automatically detected
when converting to another statistical software.

Converting the missing values to SAS is not tested, but it relies on the same package haven using
the ReadStat C library. Should it not work, it is also possible to use a setup file produced by function
setupfile() and run the commands manually.

The argument recode controls how missing values are treated. If the input file has SPSS like
numeric codes, they will be recoded to extended (a-z) missing types when converting to Stata or
SAS. If the input has Stata like extended codes, they will be recoded to SPSS like numeric codes.

The character encoding is usually passed to the corresponding functions from package haven. It
can be set to NULL to reset at the default in that package.

Author(s)

Adrian Dusa

References

DDI - Data Documentation Initiative, see https://ddialliance.org/

See Also

setupfile, getMetadata, declared, labelled

Examples

Not run:
Assuming an SPSS file called test.sav is located in the working directory
the following command will extract the metadata in a DDI Codebook and
produce a test.xml file in the same directory
convert("test.sav", to = "DDI")

It is possible to include the data in the XML file, using:
convert("test.sav", to = "DDI", embed = TRUE)

To produce a Stata file:
convert("test.sav", to = "Stata")

https://ddialliance.org/

exportDDI 5

To produce an R file:
convert("test.sav", to = "R")

To produce an Excel file:
convert("test.sav", to = "Excel")

End(Not run)

exportDDI Export to a DDI metadata file

Description

This function creates a DDI Codebook version 2.5, XML file structure.

Usage

exportDDI(
codebook, file = "", embed = TRUE, OS = "", indent = 4,
monolang = FALSE, xmlang = "en", xmlns = "", ...

)

Arguments

codebook A list object containing the metadata, or a path to a directory where these objects
are located, for batch processing

file either a character string naming a file or a connection open for writing. "" indi-
cates output to the console

embed Embed the CSV datafile in the XML file, if present

OS The target operating system, for the eol - end of line character(s)

indent Indent width, in number of spaces

monolang Logical, monolang or multilingual document

xmlang ISO two letter code for the language used in the DDI elements

xmlns Character, namespace for the XML file (ignored if already present in the code-
book object)

... Other arguments, mainly for internal use

Details

The information object is essentially a list having two main list components:

- fileDscr, if the data is provided in a subcomponent named datafile

- dataDscr, having as many components as the number of variables in the (meta)data. For each
variable, there should a mandatory subcomponent called label (that contains the variable’s label)
and, if the variable is of a categorical type, another subcomponent called values.

6 exportDDI

Additional informations about the variables can be specified as further subcomponents, combining
DDI specific data but also other information that might not be covered by DDI:

- measurement is the equivalent of the specific DDI attribute nature of the var element, and it
accepts these values: "nominal", "ordinal", "interval", "ratio", "percent", and "other".

- type is useful for multiple reasons. A first one, if the variable is numerical, is to differentiate
between discrete and contin values of the attribute intrvl from the same DDI element var. An-
other reason is to help identifying pure string variables (containing text), when the subcomponent
type is equal to "char". It is also used for the subelement varFormat of the element var. Finally,
another reason is to differentiate between pure categorical ("cat") and pure numerical ("num")
variables, as well as mixed ones, among which "numcat" referring to a numerical variable with
very few values (such as the number of children), for which it is possible to also produce a table of
frequencies along the numerical summaries. There are also categorical variables that can be inter-
preted as numeric ("catnum"), such as a Likert type response scale with 7 values, where numerical
summaries are also routinely performed along with the usual table of frequencies.

- missing is an important subcomponent, indicating which of the values in the variable are going
to be treated as missing values, and it is going to be exported as the attribute missing of the DDI
subelement catgry.

There are many more possible attributes and DDI elements to be added in the information object,
future versions of this function will likely expand.

For the moment, only DDI codebook version 2.5 is exported, and DDI Lifecycle is planned for
future releases.

Argument xmlang expects a two letter ISO country coding, for instance "en" to indicate English,
or "ro" to indicate Romanian etc.

If the document is monolang, this argument is placed a single time for the entire document, in the
attributes of the codeBook element. For multilingual documents, it is placed in the attributes of
various other (sub)elements, for instance abstract as an obvious one, or the study title, name of
the distributing institution, variable labels etc.

The argument OS can be either:
"windows" (default), or "Windows", "Win", "win",
"MacOS", "Darwin", "Apple", "Mac", "mac",
"Linux", "linux".

The end of line separator changes only when the target OS is different from the running OS.

The argument indent controls how many spaces will be used in the XML file, to indent the different
subelements.

A small number of required DDI specific elements and attributes have generic default values but
they may be specified using the three dots ... argument. For the current version, these are: IDNo,
titl, agency, URI (for the holdings element), distrbtr, abstract and level (for the otherMat
element).

Value

An XML file containing a DDI version 2.5 metadata.

exportDDI 7

See Also

https://ddialliance.org/Specification/DDI-Codebook/2.5/XMLSchema/field_level_documentation.
html

Examples

codeBook <- list(dataDscr = list(
ID = list(

label = "Questionnaire ID",
type = "num",
measurement = "interval"

),
V1 = list(

label = "Label for the first variable",
labels = c(

"No" = 0,
"Yes" = 1,
"Not applicable" = -97,
"Not answered" = -99),

na_values = c(-99, -97),
type = "cat",
measurement = "nominal"

),
V2 = list(

label = "Label for the second variable",
labels = c(

"Very little" = 1,
"Little" = 2,
"So, so" = 3,
"Much" = 4,
"Very much" = 5,
"Don't know" = -98),

na_values = c(-98),
type = "cat",
measurement = "ordinal"

),
V3 = list(

label = "Label for the third variable",
labels = c(

"First answer" = "A",
"Second answer" = "B",
"Don't know" = -98),

na_values = c(-98),
type = "cat",
measurement = "nominal"

),
V4 = list(

label = "Number of children",
labels = c(

"Don't know" = -98,
"Not answered" = -99),

na_values = c(-99, -98),

https://ddialliance.org/Specification/DDI-Codebook/2.5/XMLSchema/field_level_documentation.html
https://ddialliance.org/Specification/DDI-Codebook/2.5/XMLSchema/field_level_documentation.html

8 getMetadata

type = "numcat",
measurement = "ratio"

),
V5 = list(

label = "Political party reference",
type = "char",
txt = "When the respondent indicated his political party reference, his/her

open response was recoded on a scale of 1-99 with parties with a
left-wing orientation coded on the low end of the scale and parties with
a right-wing orientation coded on the high end of the scale. Categories
90-99 were reserved miscellaneous responses."

)))

Not run:
exportDDI(codeBook, file = "codebook.xml")

using a namespace
exportDDI(codeBook, file = "codebook.xml", xmlns = "ddi")

End(Not run)

getMetadata Extract metadata information

Description

Extract a list containing the variable labels, value labels and any available information about missing
values.

Usage

getMetadata(x, save = FALSE, declared = TRUE, OS = "Windows", encoding = "UTF-8", ...)

Arguments

x A path to a file, or a data frame object
save Boolean, save an .R file in the same directory
declared Logical, embed the data as a declared object
OS The target operating system, for the eol - end of line separator, if saving the file
encoding The character encoding used to read a file
... Additional arguments for this function (internal uses only)

Details

This function reads an XML file containing a DDI codebook version 2.5, or an SPSS or Stata file
and returns a list containing the variable labels, value labels, plus some other useful information.

It additionally attempts to automatically detect a type for each variable:

getMetadata 9

cat: categorical variable using numeric values
catchar: categorical variable using character values
catnum: categorical variable for which numerical summaries

can be calculated (ex. a 0...10 Likert response scale)
num: numerical

numcat: numerical variable with very few values (ex. number of children)
for which a table of frequencies is possible in addition to frequencies

By default, this function extracts the metadata into an R list object, but when the argument save is
activated, the argument OS (case insensitive) can be either:
"Windows" (default), or "Win",
"MacOS", "Darwin", "Apple", "Mac",
"Linux".

The end of line separator changes only when the target OS is different from the running OS.

For the moment, only DDI version 2.5 (Codebook) is supported, but DDI Lifecycle is planned to be
implemented.

Value

An R list roughly equivalent to a DDI codebook, containing all variables, their corresponding vari-
able labels and value labels, and (if applicable) missing values if imported and found.

Author(s)

Adrian Dusa

Examples

x <- data.frame(
A = declared(

c(1:5, -92),
labels = c(Good = 1, Bad = 5, NR = -92),
na_values = -92

),
C = declared(

c(1, -91, 3:5, -92),
labels = c(DK = -91, NR = -92),
na_values = c(-91, -92)

)
)

getMetadata(x)$dataDscr

10 recodeValues

recodeCharcat Recode character categorical variables

Description

Recodes a character categorical variables to a numerical categorical variable.

Usage

recodeCharcat(x, ...)

Arguments

x A character categorical variable

... Other internal arguments.

Details

For this function, a categorical variable is something else than a base factor. It should be an object
of class "declared", or an object of class "haven_labelled_spss", with a specific attribute called
"labels" that stores the value labels.

Value

A numeric categorical variable of the same class as the input.

Examples

x <- declared(
c(letters[1:5], -91),
labels = c(Good = "a", Bad = "e", NR = -91),
na_values = -91

)

recodeCharcat(x)

recodeValues Recode missing values

Description

A function to recode all missing values to either SPSS or Stata types, uniformly (re)using the same
codes across all variables.

recodeValues 11

Usage

recodeValues(dataset, to = c("SPSS", "Stata"), dictionary = NULL, ...)

Arguments

dataset A data frame

to Software to recode missing values for

dictionary A named vector, with corresponding SPSS values and Stata codes.

... Other internal arguments.

Details

When a dictionary is not provided, it is automatically constructed from the available data and meta-
data, using negative numbers starting from -91 and up to 27 letters starting with "a".

If the dataset contains mixed variables with SPSS and Stata style missing values, unless otherwise
specified in a dictionary it uses other codes than the existing ones.

For the SPSS type of missing values, the resulting variables are coerced to a declared labelled
format.

Unlike SPSS, Stata does not allow labels for character values. Both cannot be transported from
SPSS to Stata, it is either one or another. If labels are more important to preserve than original
values (especially the information about the missing values), the argument chartonum replaces all
character values with suitable, non-overlapping numbers and adjusts the labels accordingly.

If no labels are found in the metadata, the original values are preserved.

Value

A data frame with all missing values recoded consistently.

Examples

x <- data.frame(
A = declared(

c(1:5, -92),
labels = c(Good = 1, Bad = 5, NR = -92),
na_values = -92

),
B = labelled(

c(1:5, tagged_na('a')),
labels = c(DK = tagged_na('a'))

),
C = declared(

c(1, -91, 3:5, -92),
labels = c(DK = -91, NR = -92),
na_values = c(-91, -92)

)
)

A B C

12 recodeValues

1 1 1 1
2 2 2 NA(-91)
3 3 3 3
4 4 4 4
5 5 5 5
6 NA(-92) NA(a) NA(-92)

xrec <- recodeValues(x, to = "Stata")

A B C
1 1 1 1
2 2 2 NA(b)
3 3 3 3
4 4 4 4
5 5 5 5
6 NA(c) NA(a) NA(c)

attr(xrec, "dictionary")
b c
-91 -92

recodeValues(x, to = "Stata", dictionary = c(a = -91, b = -92))
A B C
1 1 1 1
2 2 2 NA(a)
3 3 3 3
4 4 4 4
5 5 5 5
6 NA(b) NA(a) NA(b)

recodeValues(x, to = "SPSS")
A B C
1 1 1 1
2 2 2 NA(-91)
3 3 3 3
4 4 4 4
5 5 5 5
6 NA(-92) NA(-93) NA(-92)

recodeValues(x, to = "SPSS", dictionary = c(a = -91))
A B C
1 1 1 1
2 2 2 NA(-91)
3 3 3 3
4 4 4 4
5 5 5 5
6 NA(-92) NA(-91) NA(-92)

setupfile 13

setupfile Create setup files for SPSS, Stata, SAS and R

Description

This function creates a setup file, based on a list of variable and value labels.

Usage

setupfile(codeBook, file = "", type = "all", csv = "", recode = TRUE, OS = "", ...)

Arguments

codeBook A list object containing the metadata, or a path to a directory where these objects
are located, for batch processing

file Character, the (path to the) setup file to be created

type The type of setup file, can be: "SPSS", "Stata", "SAS", "R", or "all" (default)

csv The original dataset, used to create the setup file commands, or a path to the
directory where the .csv files are located, for batch processing

recode Logical, recode missing values to extended .a-.z range

OS The target operating system, for the eol - end of line character(s)

... Other arguments, see Details below

Details

When the a path to a metadata directory is specified for the argument codebook, then next argument
file is silently ignored and all created setup files are saved in a directory called "Setup Files" that
(if not already found) is created in the working directory.

The argument file expects the name of the final setup file being saved on the disk. If not specified,
the name of the object provided for the codebook argument will be used as a filename.

If file is specified, the argument type is automatically determined from the file’s extension, oth-
erwise when type = "all", the function produces one setup file for each supported type.

If batch processing multiple files, the function will inspect all files in the provided directory, and
retain only those with the extension .R or .r or DDI versions with the extension .xml or .XML (it
will subsequently generate an error if the .R files do not contain an object list, or if the .xml files do
not contain a DDI structured metadata file).

If the metadata directory contains a subdirectory called "data" or "Data", it will match the name
of the metadata file with the name of the .csv file (their names have to be *exactly* the same,
regardless of their extension).

The csv argument can provide a data frame object produced by reading the .csv file, or a path
to the directory where the .csv files are located. If the user doesn’t provide something for this
argument, the function will check the existence of a subdirectory called data in the directory where
the metadata files are located.

14 setupfile

In batch mode, the code starts with the argument delim = ",", but if the .csv file is delimited
differently it will also try hard to find other delimiters that will match the variable names in the
metadata file. At the initial version 0.1-0, the automatically detected delimiters include ";" and
"\t".

The argument OS (case insensitive) can be either:
"Windows" (default), or "Win",
"MacOS", "Darwin", "Apple", "Mac",
"Linux".

The end of line character(s) changes only when the target OS is different from the running OS.

Value

A setup file to complement the imported raw dataset.

Examples

codeBook <- list(dataDscr = list(
ID = list(

label = "Questionnaire ID",
type = "num",
measurement = "interval"

),
V1 = list(

label = "Label for the first variable",
labels = c(

"No" = 0,
"Yes" = 1,
"Not applicable" = -97,
"Not answered" = -99),

na_values = c(-99, -97),
type = "cat",
measurement = "nominal"

),
V2 = list(

label = "Label for the second variable",
labels = c(

"Very little" = 1,
"Little" = 2,
"So, so" = 3,
"Much" = 4,
"Very much" = 5,
"Don't know" = -98),

na_values = c(-98),
type = "cat",
measurement = "ordinal"

),
V3 = list(

label = "Label for the third variable",
labels = c(

setupfile 15

"First answer" = "A",
"Second answer" = "B",
"Don't know" = -98),

na_values = c(-98),
type = "cat",
measurement = "nominal"

),
V4 = list(

label = "Number of children",
labels = c(

"Don't know" = -98,
"Not answered" = -99),

na_values = c(-99, -98),
type = "numcat",
measurement = "ratio"

)))

Not run:
IMPORTANT:
make sure to set the working directory to a directory with read/write permissions
setwd("/path/to/read/write/directory")

setupfile(codeBook)

if the csv data file is available
setupfile(codeBook, csv="/path/to/csv/file.csv")

generating a specific type of setup file
setupfile(codeBook, file = "codeBook.do") # type = "Stata" is unnecessary

other types of possible utilizations, using paths to specific files
an XML file containing a DDI metadata object

setupfile("/path/to/the/metadata/file.xml", csv="/path/to/csv/file.csv")

or in batch mode, specifying entire directories
setupfile("/path/to/the/metadata/directory", csv="/path/to/csv/directory")

End(Not run)

Index

∗ functions
convert, 2
exportDDI, 5
getMetadata, 8
recodeCharcat, 10
recodeValues, 10
setupfile, 13

∗ package
About the DDIwR package, 2

About the DDIwR package, 2

convert, 2

DDIwR (About the DDIwR package), 2
declared, 4

exportDDI, 5

getMetadata, 4, 8

labelled, 4

read.csv, 4
read_sav, 3
recodeCharcat, 4, 10
recodeValues, 10

setupfile, 4, 13

write_dta, 3

16

	About the DDIwR package
	convert
	exportDDI
	getMetadata
	recodeCharcat
	recodeValues
	setupfile
	Index

