Stand-level

Anika Seppelt

Once all trees were detected function was applied on the normalized point cloud and the tree list was generated, stand-level metrics and variables can be estimated. These estimations can be based on different plot designs i.e., circular fixed area, k-tree and angle-count plots. The sizes of the plots can be regulated by defining the radius, k and the basal area factor (BAF) respectively.

Computing stand-level metrics and variables

In order to calculare metrics and variables at stand-level, the function metrics.variables is applied as follows:

metrics <- metrics.variables(tree.tls = tree.list, 
                  tree.ds = tree.ds, tree.field = tree.field,
                  plot.design = c("fixed.area", "k.tree", "angle.count"),
                  plot.parameters = data.frame(radius = 10, k = 10, BAF = 1),
                  scan.approach = "single", var.metr = NULL,
                  dbh.min = 4, h.min = 1.3, max.dist = Inf, 
                  dir.data = dir.data, save.result = FALSE, dir.result = NULL)

The input data frame is introduced in tree.tls and should contain information about the trees detected from TLS based data e.g., the output data frame of the functions tree.detection.single.scan or tree.detection.multi.scan. Optionally, the path of the directory of the .txt files containing the reduced point cloud data generated by the function normalize can be specified in dir.data otherwise the current working directory will be assigned to this argument. If save.result is set to save.result = TRUE (default setting), the output files (see ….) will be saved to the directory indicated in dir.result.

The scan approach, either TLS single-scan ("single") or TLS multi-scan and SLAM point clouds approaches ("multi") have to be specified in the argument scan.approach. By default, the argument is set to "multi".

If only a selection of metrics and variables should be calculated, the metrics and variables of interest can be specified in a vector by var.metr. If nothing is specified, the argument is set to NULL and all posible metrics and variables will be calculated.

Distance sampling (distance.sampling function)

The distance sampling method is used for the correction of occlusion effects. When the distance.sampling function was applied, the list with tree detection probabilities (i.e., the output file of the mentioned function) can be introduced in tree.ds. By default, this argument is set to NULL and metrics using distance sampling corrections will not be calculated.

tree.ds <- distance.sampling(tree.tls = tree.list,
                             id.plots = NULL,
                             strata.attributes = NULL)

The distance.sampling function computes the probability of detection of trees depending on their distance to the TLS device. Detection functions are fitted to the histogram representing the distribution of the trees relative to their distances. The calculations of the functions are based on the data frame of the detected trees, thus the output file of the tree.detection.single.scan or tree.detection.multi.scan (i.e. here tree.list), which is introduced in the argument tree.tls. The plots to be analysed can be specified in id.plots by inserting a vector containing the plot identification numbers. If not specified, this argument is set to id.plots = NULL and all plots will be considered.

Two detection functions are fitted, that are the half normal and hazard rate functions, with and without dbh as covariate. These functions describe the decreasing detection probability with increasing distance. The probabilities are used for correcting estimation bias of the stand-level variables, which is caused by the lack of detection of trees due to occlusion.

A list with three elements is generated by the distance.sampling function. The data frame tree represents the detection probabilities for each tree of all plots according to the four different detection functions. The columns P.hn and P.hn.cov show the detection probabilities calcualed by the half normal function with and without dbh as covariate, while P.hr and P.hr.cov display the probabilities according to the hazard rate function with and without covariate.

head(tree.ds$tree)
#>   stratum id tree     P.hn  P.hn.cov      P.hr  P.hr.cov
#> 1       1  1    1 0.922808 0.9293580 0.9388107 0.9519734
#> 2       1  1    2 0.922808 0.8922843 0.9388107 0.9199997
#> 3       1  1    3 0.922808 0.9146826 0.9388107 0.9389643
#> 4       1  1    4 0.922808 0.9017652 0.9388107 0.9278849
#> 5       1  1    5 0.922808 0.9277925 0.9388107 0.9505678
#> 6       1  1    6 0.922808 0.9424095 0.9388107 0.9637861

The data frame par shows the parameters of the detection functions and AIC the Akaike information criterions (AICs) for every detection function fit.

head(tree.ds$par)
#>              P.hn.scale P.hn.cov.scale.intercept P.hn.cov.dbh P.hr.scale
#> X.Intercept.   35.84341                 64.17593    -2.231185   21.85271
#>              P.hr.shape P.hr.cov.scale.intercept P.hr.cov.dbh P.hr.cov.shape
#> X.Intercept.   3.544516                 26.38362   -0.7110327       3.832857

head(tree.ds$AIC)
#>       P.hn P.hn.cov     P.hr P.hr.cov
#> 1 3375.162 3376.521 3374.114 3375.123

Additional information about trees through field data

If supplementary field data is available for the sample plot, a data frame containing this information can be included in tree.field. Each row of the data frame must represent a tree and at least the following columns must be part of the data frame:

Further optional columns are h.blc (height based live crown, in m), h.bdc (height based dead crown, in m), v.user (tree volume, in m\(^3\)) and w.user (tree biomass, in Mg).

Selecting trees to be included in the calculations

The arguments dbh.min, h.min and max.dist are used to determine the trees that are included in the calculations. The minimum diameter at breast height (dbh) and the minimum tree height can be specified in dbh.min (in cm) and h.min (in m) and are set to 4 cm and 1.3 m respectively by default. In max.dist, the maximal horizontal distance (in m) of a tree from the plot’s center to be included in the calculations can be defined. If not specified, no trees are discarded because of their distance.

Plot design and parameters

The metrics and values can be computed for different plot designs which are specified by plot.design and plot.parameters. There are three different plot designs, which are similar to the procedure used in conventional forest inventories. The plot design, which is to be used can be specified in plot.design. By default, all plot designs will be considered.

As the name implies, circular fixed area plots ("fixed.area") are plots with a circular area defined by the plot radius (in m). The size of k-tree plots ("k.tree") is determined by the number of trees (k) that enter the plot. The basal area factor (BAF in m\(^2\)/ha) defines the angle-count plots ("angle.count"). The parameters radius, k and BAF have to be specified as data frame in plot.parameters. If the one of these parameters is not specified, the corresponding plot design will not be considered in the calculations. To calculate the dominant height and diameter, the number of dominant trees per ha (trees/ha) can be indicated by the argument num.tree. By default, the number of dominant trees is set to 100 trees/ha.

Output files

The function metrics.variables generates a list of which each element represents one of the considered plot designs (fixed area, k-tree and angle-count plots). These elements are data frames containing the estimated metrics and variables at stand-level described below as columns. Further columns include information about the plot, such as the identification number (id) and the stratum identification (stratum) both coinciding with the respective columns in the output file of the tree.detection function. Each row represents a simulated plot i.e., a plot with a certain size (defined by the values for radius, k and BAF shown in the respective columns).

If save.result = TRUE, the data frames will be saved as seperate .csv files (one for every plot design) to the directory indicated in dir.result (or if not specified the working directory). The .csv files will not contain row names and will be created using the write.csv function from the utils package.

Stand-level metrics

metrics[1:10, -c(3:36)]
id radius n.pts n.pts.est n.pts.red n.pts.red.est P01 P05 P10 P20 P25 P30 P40 P50 P60 P70 P75 P80 P90 P95 P99 mean.z mean.q.z mean.g.z mean.h.z median.z mode.z max.z min.z var.z sd.z CV.z D.z ID.z kurtosis.z skewness.z p.a.mean.z p.a.mode.z p.a.2m.z p.b.mean.z p.b.mode.z p.b.2m.z CRR.z L2.z L3.z L4.z L3.mu.z L4.mu.z L.CV.z median.a.d.z mode.a.d.z weibull_c.z weibull_b.z mean.rho mean.q.rho mean.g.rho mean.h.rho median.rho mode.rho max.rho min.rho var.rho sd.rho CV.rho D.rho ID.rho kurtosis.rho skewness.rho p.a.mean.rho p.a.mode.rho p.b.mean.rho p.b.mode.rho CRR.rho L2.rho L3.rho L4.rho L3.mu.rho L4.mu.rho L.CV.rho median.a.d.rho mode.a.d.rho weibull_c.rho weibull_b.rho mean.r mean.q.r mean.g.r mean.h.r median.r mode.r max.r min.r var.r sd.r CV.r D.r ID.r kurtosis.r skewness.r p.a.mean.r p.a.mode.r p.b.mean.r p.b.mode.r CRR.r L2.r L3.r L4.r L3.mu.r L4.mu.r L.CV.r median.a.d.r mode.a.d.r weibull_c.r weibull_b.r
1 10 9788.667 1796.620 444.6667 322.3520 1.1763271 4.149327 5.984327 7.555327 7.824327 7.932327 8.176327 8.646327 9.357327 10.002327 10.320327 10.685327 11.39733 12.03533 13.43333 8.686622 8.991724 8.185912 6.949452 8.601327 7.935327 15.11633 0.2503271 5.393706 2.322435 0.2673577 14.866 2.423 4.535413 -0.8176501 48.55133 69.29800 98.07203 51.44867 30.64412 1.927974 0.5746516 112023087 1088745309 10962245432 -1830560027 23849979309 1e-07 1.223295 0.7512949 4.218465 9.554482 4.455202 5.325242 3.203021 1.745464 3.977145 0.1000033 9.999991 0.1000033 8.509383 2.917085 0.6547593 9.899988 5.068693 1.782223 0.2812223 46.60337 99.99993 53.39663 0 0.4455206 39291647 289779246 2301164191 -235377229 1816420654 1e-07 2.562719 4.355199 1.560419 4.957027 10.176251 10.45033 9.878583 9.541126 10.036128 7.9399569 18.04629 1.9854031 5.653233 2.377653 0.2336472 16.06089 3.486677 2.864220 0.0953509 48.15005 85.54384 51.84995 14.4560852 0.5638970 151314734 1701009907 19924353576 -2918437931 44702069599 1e-07 1.765318 2.2362936 4.892407 11.09717
2 10 11222.000 2815.061 611.1667 506.5021 1.0425898 4.121590 5.898590 7.335590 7.912590 8.448590 9.110590 9.663590 10.223590 10.649590 10.790590 10.879590 11.37959 11.90259 13.43459 9.052322 9.383953 8.475137 7.020125 9.605590 10.788590 16.82859 0.2505898 6.114052 2.472661 0.2731521 16.578 2.933 4.501117 -1.0871433 60.10169 23.93897 97.82422 39.89831 75.97166 2.175783 0.5379133 101884570 1031348422 10753389699 -1735525894 23502278857 1e-07 1.586268 1.7362678 4.119804 9.970272 5.443356 6.210808 4.027388 1.859293 5.913727 0.1000035 9.999995 0.1000035 8.944021 2.990656 0.5494140 9.899991 5.164815 1.754274 -0.2467470 52.36865 99.99991 47.63135 0 0.5443358 44630617 347962930 2851615225 -380857693 3209731874 1e-07 2.607957 5.343352 1.892479 6.133511 11.069896 11.25312 10.857815 10.592588 10.955864 10.7780538 18.13256 1.1552180 4.090119 2.022404 0.1826941 16.97734 2.092208 4.720474 -0.3191920 47.73584 57.02047 52.26416 42.9794410 0.6104983 146515187 1723625155 20809992902 -3142095776 52214652344 1e-07 1.040121 0.2918422 6.395220 11.89079
3 10 7931.000 3522.606 644.6667 676.3987 0.7535283 3.119528 5.446528 7.362528 7.852528 8.331528 8.914528 9.612528 10.219528 10.816528 11.008528 11.297528 12.37553 13.04753 14.07753 9.177116 9.598251 8.419140 6.533724 9.612528 10.845528 15.92853 0.2505283 7.906972 2.811934 0.3064071 15.678 3.156 3.930470 -0.9284260 56.40392 29.20901 96.89650 43.59608 70.75913 3.103504 0.5761434 92236146 971093853 10589014798 -1568290062 21550099741 1e-07 1.685412 1.6684122 3.627730 10.180048 6.672340 6.885693 6.452606 6.234672 6.568161 1.0608273 9.999985 1.0608273 2.892645 1.700778 0.2548997 8.939158 3.089093 1.845899 0.1775212 48.04518 99.99990 51.95482 0 0.6672350 47469238 356252676 2796808210 -593939497 5968664998 1e-07 1.542566 5.611513 4.446252 7.316667 11.644075 11.81267 11.457447 11.243853 11.753827 1.1807736 18.26309 1.1807736 3.954716 1.988647 0.1707862 17.08232 2.547107 3.769785 -0.2945041 52.92946 99.99990 47.07054 0.0000000 0.6375741 139705385 1716628700 21577086613 -3163588038 55274110885 1e-07 1.274854 10.4633013 6.878014 12.45916
4 10 14815.833 2391.316 253.5000 228.6277 0.8293213 3.240321 5.588321 7.137321 7.584321 7.896321 8.796321 9.439321 9.999321 10.675321 11.144321 11.667321 13.05332 13.78632 15.08332 9.208836 9.676083 8.445007 6.697945 9.439321 9.490321 35.28932 0.2503213 8.823948 2.970513 0.3225720 35.039 3.560 3.513803 -0.5324590 54.14860 48.89439 97.14021 45.85140 51.07578 2.859793 0.2609525 28567998 308407516 3490877952 -480824942 6666412747 3e-07 1.767485 0.2814852 3.426340 10.246363 4.801007 5.401068 4.067086 3.284440 4.668175 0.6118197 9.999958 0.6118197 6.121887 2.474245 0.5153596 9.388139 3.940113 2.071634 0.2721649 47.95151 99.99967 52.04849 0 0.4801027 8901023 61927806 468289564 -66273596 510018428 5e-07 2.021859 4.189187 2.031767 5.418747 10.783934 11.08143 10.423270 9.950309 10.505246 9.2126594 35.48690 2.2008590 6.504908 2.550472 0.2365066 33.28604 3.332113 3.510630 -0.3286589 44.53457 77.13968 55.46543 22.8599894 0.3038850 37469021 445207961 5485056120 -766979859 12425003393 3e-07 1.618794 1.5712744 4.827566 11.76894
5 10 13582.333 4682.324 574.6667 445.8058 0.8972930 4.469293 7.796293 8.695293 9.044293 9.561293 10.514293 10.960293 11.478293 12.077293 12.460293 12.858293 13.79829 14.36229 15.39429 10.584187 10.963716 9.863618 7.785157 10.964293 10.945293 16.88629 0.2502930 8.178051 2.859729 0.2701888 16.636 3.426 5.038409 -1.1877711 58.91270 50.64919 97.66575 41.08730 49.31287 2.334252 0.6267916 151746390 1789588757 21722917667 -3028745442 47953862766 1e-07 1.718894 0.3611058 4.169715 11.649419 5.359885 6.080607 4.037565 2.053025 5.693991 0.1000073 9.999996 0.1000073 8.245425 2.871485 0.5357363 9.899989 4.844945 1.909141 -0.2794109 54.17449 99.99992 45.82551 0 0.5359887 46676336 353412044 2820930172 -397127026 3289545553 1e-07 2.451160 5.259878 1.946119 6.044389 12.228454 12.53702 11.850902 11.333547 12.471519 11.3467337 18.43135 0.8785378 7.641773 2.764376 0.2260609 17.55282 4.173565 2.992009 -0.5124616 53.34442 63.06284 46.65558 36.9370818 0.6634594 198422726 2648674843 36436151565 -4630530899 84906244333 1e-07 2.160321 0.8817201 5.072474 13.30724
6 10 6254.500 1674.809 448.0000 364.1714 0.6060312 3.035031 6.009031 8.205031 8.697031 9.233031 10.052031 10.662031 11.199031 11.607031 11.808031 12.043031 12.86603 13.40603 14.68603 9.948021 10.370678 9.078045 6.626844 10.662031 11.459031 16.45303 0.2500312 8.587836 2.930501 0.2945813 16.203 3.111 4.773276 -1.3195711 61.54501 33.64629 96.60452 38.45499 66.31770 3.395478 0.6046315 85730909 962580012 11098719111 -1595976775 23700818001 1e-07 1.688990 1.5110099 3.789572 11.008726 6.594068 6.949814 6.180656 5.719248 6.507049 0.9677901 9.999993 0.9677901 4.818198 2.195039 0.3328809 9.032203 3.993594 1.867432 -0.0993663 48.84616 99.99987 51.15384 0 0.6594072 38500784 303690374 2521537499 -457939362 4555795906 2e-07 1.978972 5.626277 3.308526 7.350166 12.259273 12.48402 11.988194 11.639040 12.452602 1.0711337 18.74465 1.0711337 5.561109 2.358200 0.1923605 17.67352 2.645716 4.167097 -0.6340967 54.22377 99.99987 45.77623 0.0000000 0.6540144 124231693 1625048934 21779500092 -2943918051 54116275529 1e-07 1.326611 11.1881392 6.047834 13.20862
7 10 5714.000 2111.974 421.6667 336.7864 0.5685654 1.935565 3.833565 5.436565 5.971565 6.557565 6.984565 7.462565 8.121565 9.199565 9.478565 9.832565 10.94257 11.55557 13.14957 7.493919 7.977575 6.692132 5.009319 7.462565 6.957565 15.21057 0.2505654 7.482884 2.735486 0.3650274 14.960 3.507 3.048755 -0.4143436 49.41443 60.86139 94.85520 50.58557 39.09871 5.144797 0.4926786 40196672 366710022 3531747461 -536981016 6083744872 2e-07 1.817646 0.5363541 2.985498 8.393822 5.626769 6.196345 4.958949 4.286719 5.375033 1.2702425 9.999990 1.2702425 6.734170 2.595028 0.4611933 8.729747 4.991540 1.595999 0.0912346 47.21909 99.99984 52.78091 0 0.5626775 24250432 185323897 1509477761 -224030503 1945065041 2e-07 2.493979 4.356527 2.299391 6.351386 9.732677 10.10131 9.350891 8.961849 9.506762 9.6644063 18.10333 2.6453776 7.311408 2.703962 0.2778230 15.45795 3.909543 2.506014 0.3252880 45.94504 47.14752 54.05496 52.8523184 0.5376181 64447105 721194531 8534665599 -1160532136 17086536377 2e-07 1.954278 0.0682704 4.043365 10.73111
8 10 9743.667 3757.255 562.6667 611.5376 0.9307070 4.500957 7.517707 9.454707 9.653707 9.920707 10.660707 11.246707 11.804707 12.258707 12.689707 12.979707 13.95571 14.74871 16.55971 10.860327 11.251850 10.109936 7.928546 11.264707 11.998707 18.60871 0.2507070 8.657447 2.942354 0.2709268 18.358 3.027 5.235847 -1.1890803 57.27333 35.37220 97.69587 42.72667 64.59455 2.304129 0.5836153 150405458 1820865638 22708259825 -3079489000 50046395337 1e-07 1.422380 1.1383804 4.157193 11.955416 5.312133 6.069788 3.946387 1.854522 5.467076 0.1000016 9.999998 0.1000016 8.623579 2.936593 0.5528087 9.899996 5.116112 1.748930 -0.1888821 50.86717 99.99992 49.13283 0 0.5312134 43768608 335665499 2714338876 -361848155 2992511154 1e-07 2.584502 5.212131 1.879612 5.984257 12.530005 12.78462 12.220955 11.791952 12.507933 9.6062276 20.25897 0.6243428 6.445452 2.538790 0.2026168 19.63463 3.038022 4.084158 -0.4502819 49.63838 89.64653 50.36162 10.3533844 0.6184916 194174066 2616137403 36259293992 -4682864398 88051515574 1e-07 1.532510 2.9237769 5.716029 13.54283
9 10 4279.333 1646.029 308.3333 270.9809 0.6031318 3.579132 5.832132 7.148132 7.772132 8.510132 9.499132 10.203132 10.789132 11.405132 11.732132 12.027132 12.98713 13.57613 14.66913 9.605225 10.066179 8.743306 6.440769 10.203132 11.819132 16.49613 0.2501318 9.067614 3.011248 0.3135010 16.246 3.960 3.758277 -0.9044234 58.96927 23.32420 96.52975 41.03073 76.65027 3.470248 0.5822714 88128573 976518312 11212339438 -1562964338 22478240445 1e-07 2.061094 2.2139065 3.536683 10.669550 6.730110 7.019065 6.400429 6.032778 6.628989 0.4151342 9.999998 0.4151342 3.972893 1.993212 0.2961633 9.584864 3.501628 1.973615 -0.1377673 47.79657 99.99989 52.20343 0 0.6730111 42849522 333943140 2724935969 -531202288 5380089693 2e-07 1.768527 6.314976 3.767138 7.450165 11.991092 12.27172 11.662012 11.243122 12.198369 0.9138638 19.00635 0.7140398 6.808948 2.609396 0.2176112 18.29231 3.605498 2.951113 -0.3990219 54.22588 99.99287 45.77412 0.0070136 0.6308993 130978095 1706426439 22913600260 -3005281379 54062999692 1e-07 1.814688 11.0772284 5.288140 13.01774
10 10 3406.333 1455.664 275.6667 233.3156 0.5729873 2.722987 5.495987 7.916987 8.435987 8.780987 9.394987 10.117987 10.792987 11.592987 12.031987 12.437987 13.26199 13.86599 14.81099 9.734746 10.234741 8.751519 6.185856 10.117987 9.122987 16.92899 0.2509873 9.984659 3.159851 0.3245951 16.678 3.596 3.899630 -0.9617088 56.11462 64.21504 95.78039 43.88538 35.75615 4.219608 0.5750341 78904867 891695670 10444019980 -1412658924 20586918534 1e-07 1.844242 0.6117584 3.402585 10.835438 6.346769 6.735573 5.882559 5.343706 6.429673 0.8228467 9.999990 0.8228467 5.086469 2.255320 0.3553493 9.177144 4.132672 1.839781 -0.1149567 50.66039 99.99987 49.33961 0 0.6346775 34174262 264537750 2158913229 -386150185 3702606927 2e-07 2.059980 5.523922 3.076309 7.099386 11.960944 12.25226 11.556626 10.796298 11.920920 1.1358458 19.07216 0.8945503 7.053692 2.655879 0.2220459 18.17761 3.490515 4.460802 -0.6442338 49.35820 99.95075 50.64180 0.0491192 0.6271417 113079129 1470546634 19710531865 -2587049261 46419402627 1e-07 1.724580 10.8250979 5.172859 13.00145

The stand-level metrics consist of statistical descriptive values, such as percentiles, standard deviation or means, as well as the number of points belonging to a section of the point cloud.

The values n.pts and n.pts.est indicate the number of points and the estimated number of points respectively that belong to the tree’s normal section (1.3 m +/- 0.05 m). This is calculated for the original point cloud (n.pts, n.pts.est) and the reduced point cloud (n.pts.red, n.pts.red.est).

Furthermore, the height percentiles (P01, P05, P10, P20, P25, P30, P40, P50, P60, P70, P75, P80, P90, P95, P99, numbers indicating the k-th percentile) are calculated for the \(z\) coordinate of the TLS point cloud. Therefore they denominate the height (in m) above ground level.

Statistics of the z, rho and r

To describe the tendencies and distribution of the spherical coordinates z, \(\rho\) (horizontal distance, rho) and r (euclidean distance), the following statics are calculated:

  • arithmetic (mean.arit.z/rho/r), quadratic (mean.qua.z/rho/r), geometric (mean.geom.z/rho/r) and harmonic means (mean.harm.z/rho/r)
  • median (median.z/rho/r)
  • mode (mode.z/rho/r)
  • variance (var.z/rho/r)
  • standard deviation (sd.z/rho/r)
  • coefficient of variation (CV.z/rho/r)
  • range (D.z/rho/r)
  • interquartile range (ID.z/rho/r)
  • maximum (max.z/rho/r)
  • minimum (min.z/rho/r)
  • kurtosis (kurtosis.z/rho/r)
  • skewness (skewness.z/rho/r)
  • percentage of points above the arithmetic mean (p.a.mean.z/rho/r) and the mode (p.a.mode.z/rho/r)
  • percentage of points below the arithmetic mean (p.b.mean.z/rho/r) and the mode (p.b.mode.z/rho/r)
  • percentage of points above a height of 2 m (p.a.2m.z, only for the z coordinate)
  • percentage of points below a height of 2 m (p.b.2m.z, only for the z coordinate)
  • L-moments of order 2, 3 and 4 (L2.z/rho/r, L3.z/rho/r and L4.z/rho/r)
  • third and forth central L-moments (L3.mu.z/rho/r and L4.mu.z/rho/r)
  • ratio of L1 and L2 moments (L.CV.z/rho/r)
  • median of the absolute deviation from the overall median (median.a.d.z/rho/r)
  • mode of the absolute deviation from the overall mode (mode.a.d.z/rho/r)
  • Canopy relief ratio i.e., the ration of mean.z/rho/r to max.z/rho/r (CRR.z/rho/r)
  • scale and shape parameters of the Weibull distribution fitted for the spherical coordinates (weibull_c.z/rho/r, weibull_b.z/rho/r)

Stand-level variables

metrics[1:10, 1:36]
id radius N.tls N.hn N.hr N.hn.cov N.hr.cov N.sh G.tls G.hn G.hr G.hn.cov G.hr.cov G.sh V.tls V.hn V.hr V.hn.cov V.hr.cov V.sh d.tls dg.tls dgeom.tls dharm.tls h.tls hg.tls hgeom.tls hharm.tls d.0.tls dg.0.tls dgeom.0.tls dharm.0.tls h.0.tls hg.0.tls hgeom.0.tls hharm.0.tls
1 10 222.8169 241.4554 237.3396 239.9341 234.2128 230.5601 12.83139 13.90472 13.66770 13.81712 13.48764 13.27729 72.26462 78.30949 76.97464 77.81611 75.96057 74.77589 26.63218 27.07807 26.17896 25.72557 11.989629 12.020864 11.95768 11.925077 31.50910 31.60757 31.40772 31.30362 12.779890 12.785912 12.773816 12.767686
2 10 350.1409 379.4298 372.9622 374.9814 366.2799 364.2843 18.91537 20.49762 20.14823 20.25731 19.78724 19.67943 101.80664 110.32268 108.44214 109.02925 106.49921 105.91896 25.75150 26.22655 25.29375 24.86175 11.593800 11.661994 11.51966 11.439023 32.68378 32.75790 32.60870 32.53280 12.419503 12.443320 12.395757 12.372121
3 10 381.9719 413.9235 406.8678 414.2445 403.9974 392.6248 23.55858 25.52924 25.09407 25.54904 24.91703 24.21562 115.70695 125.38573 123.24843 125.48298 122.37892 118.93393 27.86976 28.02296 27.71227 27.55093 11.382013 11.442462 11.32332 11.266332 31.17303 31.20949 31.13698 31.10141 11.785407 11.939159 11.628835 11.472547
4 10 254.6479 275.9490 271.2452 274.7699 268.1497 265.5833 22.15673 24.01012 23.60084 23.90752 23.33151 23.10820 124.40696 134.81348 132.51548 134.23744 131.00320 129.74938 32.71822 33.28417 32.14873 31.58609 12.696362 12.816023 12.56975 12.435972 38.69937 38.87412 38.53131 38.37101 12.559739 12.576498 12.541855 12.522566
5 10 318.3099 344.9362 339.0565 360.7488 349.0381 334.1288 21.34794 23.13368 22.73934 24.19417 23.40878 22.40886 117.11494 126.91149 124.74819 132.72937 128.42070 122.93514 28.64160 29.22187 27.98239 27.23715 12.774202 12.993287 12.47878 12.083401 34.98638 35.05872 34.91178 34.83518 13.399105 13.404667 13.393588 13.388121
6 10 254.6479 275.9490 271.2452 276.1346 269.3076 260.6298 15.96468 17.30011 17.00522 17.31175 16.88375 16.33971 89.59139 97.08563 95.43073 97.15093 94.74903 91.69596 28.06921 28.25304 27.88269 27.69453 12.823806 12.846892 12.80020 12.776111 31.41186 31.44841 31.37513 31.33830 12.793794 12.816664 12.771296 12.749230
7 10 222.8169 241.4554 237.3396 240.5856 234.7690 227.6167 14.54917 15.76620 15.49745 15.70941 15.32961 14.86259 68.43174 74.15599 72.89194 73.88887 72.10248 69.90586 28.64982 28.83369 28.46615 28.28447 9.427252 9.538041 9.30623 9.174771 32.09548 32.11374 32.07683 32.05773 9.467794 9.491537 9.442169 9.414334
8 10 381.9719 413.9235 406.8678 409.1669 399.6612 397.0100 25.47545 27.60645 27.13587 27.28921 26.65523 26.47841 162.31490 175.89239 172.89417 173.87114 169.83178 168.70520 27.97931 29.14072 26.81026 25.63604 12.967147 13.221756 12.64289 12.226733 37.57058 38.21408 36.96986 36.42600 14.302392 14.419537 14.188125 14.078081
9 10 159.1549 172.4681 169.5283 189.2484 180.6815 161.4225 15.61629 16.92258 16.63412 18.56906 17.72848 15.83879 86.51096 93.74753 92.14953 102.86868 98.21201 87.74355 34.77630 35.34549 34.16537 33.51814 12.948546 13.072242 12.82890 12.714533 38.45597 38.66824 38.25009 38.05223 14.021901 14.100620 13.943145 13.864905
10 10 159.1549 172.4681 169.5283 180.4342 174.5637 161.0274 12.62109 13.67684 13.44371 14.30855 13.84302 12.76958 66.19513 71.73229 70.50956 75.04552 72.60387 66.97390 31.63177 31.77558 31.49079 31.35335 12.865906 13.030798 12.69047 12.508349 33.53881 33.61798 33.46008 33.38204 11.969079 12.173402 11.774260 11.593831

The variables are estimated based on the tree attributes of the detected trees from the point cloud data (output of the functions tree.deteection.single.scan and tree.deteection.multi.scan) similar to the procedure of conventional forest inventories. The values are computed at stand-level and therefore extended to an area of one ha.

Stand density (N), volume (V) and basal area (G)

The stand density (N.tls, trees/ha) is calculated by the following equations. For the circular fixed area and k-tree plots, N.tls is calculated by

\(N.tls=\frac{10000}{\pi R^2}\cdot n\)

with \(R\) being the radius of the plot (in m) and \(n\) the number of detected trees. The density of angle-count plots is calculated by

\(N.tls=\sum_{i=1}^{n} \frac{BAF}{g_i}\)

with \(BAF\) being the basal area factor (in m\(^2\)/ha) and \(g_i\) the basal area of the tree \(i\) (in m\(^2\)).

The basal area (G.tls, in m\(^2\)/ha) is estimated for circular fixed area and k-tree plots by the following equation:

\(G.tls=\frac{10000}{\pi R^2}\sum_{i=1}^{n} g_i\)

and for angle-count plots, the following equation is applied:

\(G.tls=BAF \cdot n\)

The stem volume (V.tls, in m\(^3\)/ha) is estimated by modelling the stem profile as a paraboloid The volume is calculated as the volume of the revolution of the paraboloid function. The total heights of the detected trees are estimated as the 99th percentile of the points of the \(z\) coordinate delimited by Voronoi polygons (\(h_{P_{99}i}\), in m). The equation used for the calculation for circular fixed area and k-tree plots is

\(V.tls=\frac{10000}{\pi R^2}\sum_{i=1}^{n} \pi \cdot \frac{h_{P_{99}i}^2}{2} \cdot \frac{(\frac{1}{2} \cdot dbh_i)^2}{(h_{P_{99}i} - 1.3)^2}\)

and for angle-count plots is

\(V.tls=\sum_{i=1}^{n} \frac{BAF}{g_i} \cdot \pi \cdot \frac{h_{P_{99}i}^2}{2} \cdot \frac{(\frac{1}{2} \cdot dbh_i)^2}{(h_{P_{99}i} - 1.3)^2}\)

Occlusion correction

The above mentioned calculations of the stand-level variables N, V and G do not consider possible occlusions of trees. Therefore different occlusion correction approaches are included in the function which are explained below.

For angle-count plots, the occlusion correction based on the Poisson attenuation model is applied. This approach is based on a geometric gap probablility which decreases with increasing distance from the TLS device and follows a possion distribution. The thereby calculated stand density, volume and basal area are called N.pam, V.pam and G.pam respectively.

For the other two plot designs (circular fixed area and k-tree plots) different occlusion correction approaches are applied. One approach is based on distance smpling data and can therefore only be used when the function distance.sampling was used (i.e., when the tree.ds argument is specified other than NULL). Functions based on point transect sampling that describe how the probability of tree detection decreases whith increasing distance from the TLS device are used for the calculation. These functions applied for the calculation of the variables N.hn/V.hn/G.hn and N.hr/V.hr/G.hr are Half-Normal and Hazard-Rate respectively. Additionally, N.hn.cov/V.hn.cov/G.hn.cov and N.hr.cov/V.hr.cov/G.hr.cov are calculated with expanding the scale component of the function with the \(dbh\) as covariate.

The other approaches corrects shadowing effects. With this method an expansion factor is calculated to correct the variables. The expansion factor is based on the percentage of the shaded area i.e., the unsample area which is not seen from the TLS device due to masking by trees. The corrected calculated variables are called N.sh/V.sh/G.sh.

Mean and dominant heights (h) and diameters (d)

The mean heights (in m) and diameters (in cm) are calculated by the arithmetic (h.tls, d.tls), quadratic (h.g, d.g), geometric (h.geom, d.geom) and harmonic mean (h.harm, d.harm). To calculate the dominant heights and diameters, only the \(n\) largest trees per hectar are considered. If not otherwise specified in the num.tree argument (see above), the number of dominant trees per hectar is set to 100 trees/ha. Dominant heights and diameters are also calculated as the arithmetic (h.0.tls, d.0.tls), quadratic (h.0.g, d.0.g), geometric (h.0.geom, d.0.geom) and harmonic mean (h.0.harm, d.0.harm).