Resource | Github Actions | Code Coverage |
---|---|---|
Platforms | Windows, macOS, Linux | codecov |
R CMD check |
Gaussian Process (GP) approach for nonparametric modeling.
library("devtools")
install_github("NSAPH-Software/GPCERF", ref="develop")
library("GPCERF")
<- generate_synthetic_data(sample_size = 500, gps_spec = 3)
sim_data
# Estimate GPS function
# In the future, CausalGPS gps estimation will be used.
<- train_GPS(cov_mt = as.matrix(sim_data[,-(1:2)]),
GPS_m w_all = as.matrix(sim_data$treat))
# exposure values
<- seq(0,20,0.1)
w_all
::setDT(sim.data)
data.table
<- estimate_cerf_gp(sim_data,
cerf_gp_obj
w_all,
GPS_m,params = list(alpha = c(0.1,0.2,0.4),
beta=0.2,
g_sigma = 1,
tune_app = "all"),
nthread = 1)
Ren, B., Wu, X., Braun, D., Pillai, N. and Dominici, F., 2021. Bayesian modeling for exposure response curve via gaussian processes: Causal effects of exposure to air pollution on health outcomes. arXiv preprint arXiv:2105.03454.