Package ‘GrassmannOptim’

June 22, 2022
Type Package

Title Grassmann Manifold Optimization

Version 2.0.1

Date 2013-12-01

Author Kofi Placid Adragni and Seongho Wu

Maintainer Kofi Placid Adragni <kofi@umbc.edu>

Depends Matrix

Description Optimizing a function F(U), where U is a semi-
orthogonal matrix and F is invariant under an orthogonal transformation of U.

URL https://userpages.umbc.edu/~kofi/GrassmannOptim/

License GPL (>=2)

NeedsCompilation no

Repository CRAN

Date/Publication 2022-06-22 05:53:19 UTC

R topics documented:

GrassmannOptim e 1
Index 7
GrassmannOptim Grassmann Manifold Optimization
Description

Maximizing a function F(U), where U is a semi-orthogonal matrix and the function is invariant
under an orthogonal transformation of U. An explicit expression of the gradient is not required and
the hessian is not used. It includes a global search option using simulated annealing.

1

https://userpages.umbc.edu/~kofi/GrassmannOptim/

2 GrassmannOptim

Usage

GrassmannOptim(objfun, W, sim_anneal = FALSE, temp_init = 20,
cooling_rate = 2, max_iter_sa = 100, eps_conv = 1e-05,
max_iter = 100, eps_grad = 1e-05, eps_f = .Machine$double.eps,
verbose = FALSE)

Arguments

objfun a required R function that evaluates value and possibly gradient of the func-
tion to be maximized. It returns a list of components in which the component
value is required whereas gradient is optional. When gradient is not pro-
vided, an approximation is used by default. The parameter of objfun is W that
is a list of components described next.

W a list object of arguments to be passed to objfun. It contains all arguments
required to compute the objective function and eventually the gradient. It has a
required component that is the dimension of the matrix U as dim=c(d, p) where
d is the number of columns and p is the number of rows d<p. An initial starting
matrix may be provided as a pxp orthogonal matrix Qt. The minimal expression
of Wis list(dim=c(d,p)).

sim_anneal If TRUE the program searches for global maximum by simulating annealing using
stochastic gradients. If FALSE a local maximum is likely to be reached.

temp_init a positive scalar that is the initial temperature for simulated annealing if sim_anneal
is TRUE. The minimum temperature is set to @. 1.

cooling_rate a positive scalar greater than 1 that controls the cooling process. A new cooling
temperature is obtained as the previous divided by the cooling rate.

max_iter_sa a positive integer specifying the maximum number of iterations to be performed
at a fixed temperature before cooling.

eps_conv a small positive scalar. The program terminates when the norm of the gradient
gets smaller or equal to eps_conv.

max_iter a positive integer specifying the maximum number of iterations to be performed
before the program is terminated.

eps_grad is a small positive scalar. If gradient is not explicitly provided through objfun,
eps_grad is used to estimate gradient based on a finite difference.

eps_f small positive scalar giving the tolerance at which the difference between the
current objective function value and the preceding is considered small enough
to terminate the program.

verbose if TRUE, steps are printed. Otherwise, nothing is printed.

Details

The algorithm was adapted from Liu, Srivastava and Gallivan (2004) who discussed the geometry
of Grassmann manifolds. See also Edelman, Arias and Smith (1998) for more expositions.

This is a non-linear optimization program. We describe a basic gradient algorithm for Grassmann
manifolds.

GrassmannOptim 3

Let G, 4 be the set of all d-dimensional subspaces of R". It is a compact, connected manifold of
dimension d(p-d). An element of this manifold is a subspace. It can be represented by a basis or
by a projection matrix. Here, the computations are carried in terms of the bases.

Let U such that Span(U) € G}, 4. We consider an objective function F'(U) to be optimized.

Let D(U) be the gradient of the objective function F' at the point U. The algorithm starts with an
initial value U; of U. For step size 6§ in R, a single step of the gradient algorithm is

Qi+1 = exp(—éA)Qt

where Q; = [Uy, V4] and V; is the orthogonal completion of Uy so that Q; is orthogonal. The matrix
A is computed using the directional derivatives of F'. The new value of the objective function is
F(Uy).

The matrix A is skewed-symmetric and exp(—JA) is orthogonal. The algorithm works by rotating
the starting orthonormal basis); to a new basis by left multiplication by an orthogonal matrix.

The iterations continues until a stopping criterion is met. Ideally, convergence is met when the norm
of the gradient is sufficiently small. But stopping can be set at a fixed number of iterations.

An explicit expression of the gradient may not be provided; finite difference approximations are
used instead. However, deriving the gradient expression may pay off in terms of the efficiency and
reliability of the algorithm. But a differentiable function F that maps G,, 4 to R! is necessary.

The choice of the initial starting value U; of U is important. We recommend not to use random start
for the optimization to avoid a local maximum. Liu et al. (2004) suggested a simulated annealing
method to attain a global optimum.

Value

A list containing the following components

Qt optimal orthogonal matrix such that Qt[,1:d] maximizes the objective func-
tion.

norm_grads a vector of successive norms of the directional derivative throughout all itera-
tions. The last scalar is the norm of the gradient at the optimal Qt.

fvalues a vector of successive values of the objective function throughout all iterations.
The last scalar is the value of the objective function at the optimal Qt.

converged if TRUE, the final iterate was considered optimal by the specified termination
criteria.

Warning

This program may search for a global maximizer using a simulated annealing stochastic gradient.
The choice of the initial temperature, cooling rate and also of the maximum allowable number of
iterations within the simulated annealing process affect the success of reaching that global maxi-
mum.

Note

This program uses the objective function objfun provided by the user. An expression of the objec-
tive function needs to follow the format illustrated in the example.

4 GrassmannOptim

Author(s)
Kofi Placid Adragni <kofi @umbc.edu> and Seongho Wu

References

Liu, X.; Srivastava, A,; Gallivan, K. (2004) Optimal linear representations of images for object
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol 26, No. 5, pp
662-666

Edelman, A.; Arias, T. A.; Smith, S. T. (1998) The Geometry of Algorithms with Orthogonality
Constraints. SIAM J. Matrix Anal. Appl. Vol. 20, No. 2, pp 303-353

See Also

nlm, nlminb, optim, optimize, constrOptim for other optimization functions.

Examples

objfun <- function(W){value <- f(W); gradient <- Grad(W);
return(list(value=value, gradient=gradient))}

f <= function(W){d <- W$dim[1]; Y<-matrix(W$Qt[,1:d], ncol=d);
return(@.5*xsum(diag(t(Y)%*x%W$A%*%Y)))}

Grad <- function(W){

Qt <- W$Qt; d <- W$dim[1]; p <- nrow(Qt); grad <- matrix (@, p, p);

Y <- matrix(Qt[,1:d], ncol=d); YO <- matrix(Qt[, (d+1):p], ncol=(p-d));
return(t(Y) %*% W$A %*% YO)}

p=5; d=2; set.seed(234);
a <- matrix(rnorm(p**2), ncol=p); A <- t(a)%*%a;

Exact Solution

W <- list(Qt=eigen(A)$vectors[,1:p], dim=c(d,p), A=A);

ans <- GrassmannOptim(objfun, W, eps_conv=1e-5, verbose=TRUE);
ans$converged

Random starting matrix

m<-matrix(rnorm(px*2), ncol=p); m<-t(m)%*%m;

W <- list(Qt=eigen(m)$vectors, dim=c(d,p), A=A);

ans <- GrassmannOptim(objfun, W, eps_conv=1e-5, verbose=TRUE);
plot(ans$fvalues)

Simulated Annealing

W <- list(dim=c(d,p), A=A);

ans <- GrassmannOptim(objfun, W, sim_anneal=TRUE, max_iter_sa=35,
verbose=TRUE) ;

HHHEH

set.seed(13); p=8; nobs=200; d=3; sigma=1.5; sigma@=2;

GrassmannOptim

rmvnorm <- function (n, mean = rep(@, nrow(sigma)), sigma = diag(length(mean)))
{ # This function generates random numbers from the multivariate normal -
see library "mvtnorm”
ev <- eigen(sigma, symmetric = TRUE)

retval <- ev$vectors %*% diag(sqrt(ev$values), length(ev$values)) %*%
t(ev$vectors)

retval <- matrix(rnorm(n * ncol(sigma)), nrow = n) %*% retval;

retval <- sweep(retval, 2, mean, "+");

colnames(retval) <- names(mean);
retval

3
objfun <- function(W){return(list(value=f(W), gradient=Gradient(W)))}

f <= function(W){

Qt <- W$Qt; d <- W$dim[1]; p <- ncol(Qt); Sigmas <- W$sigmas;

U <- matrix(Qt[,1:d], ncol=d); V <- matrix(Qt[, (d+1):pl, ncol=(p-d));
return(-log(det (t(V)%*%Sigmas$S%x%V))-log(det (t(U)%*%Sigmas$S_reskh*%U)))}

Gradient <- function(W)

{Qt <- W$Qt; d <- W$dim[1]; p <- ncol(Qt); Sigmas <- W$sigmas;

U <- matrix(Qt[,1:d], ncol=d); V <- matrix(Qt[, (d+1):p], ncol=(p-d));
termel <- solve(t(U)%*%Sigmas$S_resk*%U)%*% t(U)%*%Sigmas$S_resh*%V;
terme2 <- t(U)%*x%Sigmas$S%*%Vrhxhsolve (t(V)%x%Sigmas$Sk*%V) ;
return(2x(termel - terme2))}

y<-array(runif(n=nobs, min=-2, max=2), c(nobs, 1));
fy<-scale(cbind(y, y*2, y”*3),TRUE,FALSE);

#Structured error PFC model;

Gamma<-diag(p)[,c(1:3)]1; Gamma®d<-diag(p)[,-c(1:3)];

Omega <-sigma*2xmatrix(0.5, ncol=3, nrow=3); diag(Omega)<-sigma’2;
Delta<- Gamma%*%Omega%*%t(Gamma) + sigma@”2*Gamma@%x%t(Gamma®) ;

Err <- t(rmvnorm(n=nobs, mean = rep(@, p), sigma = Delta))
beta <- diag(3*c(1, 0.4, 0.4));
X <- t(Gamma%x%beta%*%t(fy) + Err);

Xc <- scale(X, TRUE, FALSE);

P_F <- fy%x%solve(t(fy)%*%fy)%x%t(fy);

S <= t(Xc)%*%Xc/nobs; S_fit <- t(Xc)%*%P_F%*%Xc/nobs; S_res <- S-S_fit;
sigmas <- list(S=S, S_fit=S_fit, S_res=S_res, p=p, nobs=nobs);

Random starting matrix;
Qt <- svd(matrix(rnorm(p*2), ncol=p))$u;
W <- list(Qt=Qt, dim=c(d, p), sigmas=sigmas)

ans <- GrassmannOptim(objfun, W, eps_conv=1e-4);
ans$converged;

ans$fvalues;

ans$Qt[,1:3];

GrassmannOptim

Good starting matrix;

Qt <- svd(S_fit)$u;

W <- list(Qt=Qt, dim=c(d, p), sigmas=sigmas)

ans <- GrassmannOptim(objfun, W, eps_conv=1e-4, verbose=TRUE);
ans$converged;

Index

* optimize
GrassmannOptim, 1

* package
GrassmannOptim, 1

* programming
GrassmannOptim, 1

constrOptim, 4
GrassmannOptim, 1

nlm, 4
nlminb, 4

optim, 4
optimize, 4

	GrassmannOptim
	Index

