getRemoteDataAPI()
retrieves the API to query the
datagetMappingAPI()
calls the mapping for the fields needed
from the user API callsgetDatabaseList()
returns a list of database names
linked to the API callcallAPI()
initiates the request to calllibrary(IsoMemo)
getDatabaseList() # returns a character format of list of database names linked to the API call
#> [1] "14CSea" "CIMA" "IntChron" "LiVES"
= getData(db="IntChron",category = "Location")
df # see latitude and longitude of each site
head(df)
#> site
#> 1 Semna
#> 2 Semna
#> 3 Kumma
#> 4 Saqqara Step Pyramid Complex
#> 5 El-Bersheh
#> 6 Buhen
The function below retrieves ALL data and fields from all existing databases.
# ALL_DATA = getData()
# print(nrow(ALL_DATA)) # check how many rows
# levels(ALL_DATA$source) # check all the database sources are there
getDatabaseList() # tells what database are currently published
#> [1] "14CSea" "CIMA" "IntChron" "LiVES"
= getData('LiVES')
df1 summary(df1)
#> source id description
#> LiVES:3664 1000 : 1 Makrigialos , S Neo (I) : 22
#> 1001 : 1 Ajdovska Jama , S Neo (Lengyel): 10
#> 1002 : 1 Argus Bank , S Meso (Kongemose): 7
#> 1003 : 1 Spathes , S BZ : 5
#> 1004 : 1 Korinos , S BZ : 4
#> 1005 : 1 Rymnio , S BZ : 4
#> (Other):3658 (Other) :3612
#> d13C d15N latitude longitude
#> Min. :-25.00 Min. : 4.38 Min. :32.36 Min. :-10.439
#> 1st Qu.:-20.65 1st Qu.: 8.60 1st Qu.:40.42 1st Qu.: 7.506
#> Median :-19.89 Median : 9.70 Median :48.57 Median : 13.847
#> Mean :-19.66 Mean :10.14 Mean :47.22 Mean : 14.921
#> 3rd Qu.:-19.10 3rd Qu.:11.20 3rd Qu.:51.87 3rd Qu.: 22.717
#> Max. :-10.27 Max. :18.31 Max. :68.09 Max. : 84.050
#> NA's :60 NA's :721
#> site dateMean dateLower dateUpper
#> Durankulak : 83 Min. : 686 Min. : 758 Min. : 352
#> Aghia Triada : 70 1st Qu.: 3150 1st Qu.: 2559 1st Qu.: 2065
#> Aiterhofen : 60 Median : 4495 Median : 3970 Median : 3520
#> Lepenski Vir : 55 Mean : 4970 Mean : 4761 Mean : 4224
#> Varna : 55 3rd Qu.: 5421 3rd Qu.: 5360 3rd Qu.: 5000
#> Niederröblingen: 53 Max. :105000 Max. :130000 Max. :80000
#> (Other) :3288 NA's :7 NA's :7 NA's :7
#> dateUncertainty datingType
#> Min. : -17.5 expert :2225
#> 1st Qu.: 49.0 radiocarbon:1439
#> Median : 80.0
#> Mean : 125.5
#> 3rd Qu.: 125.0
#> Max. :12500.0
#> NA's :273
How is the distribution of the variable “d15N” isotope?
hist(df1$d15N)
Let’s see the linear relationship between variables d13C and d15N:
<- na.omit(df1)
df1 lm(d13C~d15N,data=df1)
#>
#> Call:
#> lm(formula = d13C ~ d15N, data = df1)
#>
#> Coefficients:
#> (Intercept) d15N
#> -21.8468 0.2195