data.table
instead of
dplyr
/tidyr
/purrr
.shiny
application. #36Full Changelog: https://github.com/mcanouil/NACHO/compare/v1.1.0...v2.0.0
DESCRIPTION
,
ggplot2
version (>= 3.3.0).dplyr
version (>= 1.0.2).R/autoplot.R
,
ggplot2::expand_scale()
with
ggplot2::expansion()
.R/load_rcc.R
,
dplyr::progress_estimated()
.R/norm_glm.R
,
dplyr::progress_estimated()
.tests
,
DESCRIPTION
,
R/normalise.R
,
normalise()
without removing outliers (#26).R/GSE74821.R
,
data-raw
root directory.R/-
,
Rd
files for internal
functions.R/load_rcc.R
and
R/normalise.R
.file.path()
in examples and vignette.R/autoplot.R
, reduce alpha for ellipses.inst/app/utils.R
, set default point size (also for
outliers) to 1
.R/load_rcc.R
, use inherits()
instead of
class()
.R/conflicts.R
,
NACHO
.nacho_conflicts()
can be used to print conflicts.inst/app/
, (#4, #5 & #14)
visualise()
, to load "nacho"
object
from load_rcc()
(previous summarise()
) or from
normalise()
.deploy()
(R/deploy.R
) function to
easily deploy (copy) the shiny app.inst/extdata/
.NACHO-analysis
, which describe how to use
limma
or other model after using –NACHO–.DESCRIPTION
,
summarise()
and summarize()
have been
deprecated and replaced with load_rcc()
. (#12 &
#15)raw_counts
and
normalised_counts
) are no longer (directly) available,
-i.e.-, counts are available in a long format within the
nacho
slot of a nacho object.visualise()
, now uses a new shiny app
(inst/app/
).R/visualise.R
, R/render.R
,
print()
, R/load_rcc.R
and
R/normalise.R
,
check_outliers()
.R/visualise.R
, replace datatable (render and output)
with classical table. (#13)R/autoplot.R
,
show_outliers
to show outliers differently on plots
(-i.e.-, in red).outliers_factor
to highligth outliers with
different point size.outliers_labels
to print labels on top of
outliers._S-
) to remove duplicated QC
metrics.R/print.R
, now print a table with outliers if any
(with echo = TRUE
).R/GSE74821.R
, dataset is up to date according to
NACHO functions.DESCRIPTION
, add
"SystemRequirements: pandoc (>= 1.12.3) - http://pandoc.org, pandoc-citeproc"
.R/render.R
,
opts_chunk::knitr
in roxygen
documentation.sessioninfo::session_info
in
roxygen documentation.tests/testthat/test-render.R
, now checks if pandoc
is available.tests/testthat/test-summarise.R
, fix tests when
connection to GEO is alternatively up/down between two tests.autoplot()
allows to plot a chosen QC plot available in
the shiny app (visualise()
) and/or in the HTML report
(render()
).print()
allows to print the structure or to print text
and figures formatted using markdown (mainly to be used in a Rmakrdown
chunk).render()
render figures from visualise()
in a HTML friendly output.R/read_rcc.R
, R/summarise.R
,
tidyr
1.0.0 (#9).R/summarise.R
,
autoplot()
.tidyr
1.0.0 (#9).R/normalise.R
,
autoplot()
.outliers_thresholds
component in returned
object.R/visualise.R
,
app
object in non-interactive session.vignettes/NACHO.Rmd
,
autoplot()
, print()
and
render()
(#7).results = "asis"
).normalise()
call with custom housekeeping genes
(-i.e.-, set housekeeping_predict = FALSE
) (#10).tests/testthat/test-summarise.R
, add condition to
handle when GEOQuery
is down and cannot retrieve online
data.vignettes/NACHO.Rmd
, add condition to handle when
GEOQuery
is down and cannot retrieve online data.R/summarise.R
, put example in
if (interactive()) {...}
instead of
\dontrun{...}
.R/normalise.R
, put example in
if (interactive()) {...}
instead of
\dontrun{...}
.R/visualise.R
, put example in
if (interactive()) {...}
instead of
\dontrun{...}
.DESCRIPTION
and README
, description
updated for CRAN, by adding “messenger-RNA/micro-RNA”.R/normalise.R
, add short running example for
normalise()
.R/visualise.R
, add short running example for
visualise()
.DESCRIPTION
, description updated for CRAN, by
removing some capital letters and put –NACHO– between single
quotes.DESCRIPTION
, title and description updated for
CRAN.DESCRIPTION
and
vignetteDESCRIPTION
, title and description updated for
CRAN.summarise()
imports and pre-process RCC files.normalise()
allows to change settings used in
summarise()
and exclude outliers.visualise()
allows customisation of the quality
thresholds.summarise()
, ssheet_csv
can take a
data.frame or a csv file.normalise()
(and internal
functions).visualise()
replaces the Shiny app.summarise()
and
normalise()
(and all internal functions).