NetworkInference: Quick Start Guide

Fridolin Linder

2019-02-27


Introduction


This package provides an R implementation of the netinf algorithm created by @gomez2010inferring (see here for more information and the original C++ implementation). Given a set of events that spread between a set of nodes the algorithm infers the most likely stable diffusion network that is underlying the diffusion process.


Installation


The package can be installed from CRAN:

install.packages("NetworkInference")

The latest development version can be installed from github:

#install.packages(devtools)
devtools::install_github('desmarais-lab/NetworkInference')

Quick start guide


To get started, get your data into the cascades format required by the netinf function:

library(NetworkInference)

# Simulate random cascade data
df <- simulate_rnd_cascades(50, n_node = 20)

# Cast data into `cascades` object
## From long format
cascades <- as_cascade_long(df)

## From wide format
df_matrix <- as.matrix(cascades) ### Create example matrix
cascades <- as_cascade_wide(df_matrix)

Then fit the model:

result <- netinf(cascades, quiet = TRUE, p_value_cutoff = 0.05)
head(result)
origin_node destination_node improvement p_value
12 3 310.1 2.693e-06
8 12 264.4 1.99e-05
15 13 246.4 4.715e-05
3 6 231.4 0.0001109
19 8 230.3 0.0001127
17 11 224.9 0.0001122