The PL94171 package contains tools to process legacy format summary redistricting data files produced by the United States Census Bureau pursuant to P.L. 94-171. These files are generally available earlier but are difficult to work with as-is.
Install the latest version from CRAN with:
install.packages("PL94171")
You can also install the development version from GitHub with:
# install.packages("devtools")
::install_github("CoryMcCartan/PL94171") devtools
Just need block- or precinct-level data for total and voting-age
population by race? Then pl_tidy_shp()
is all you need.
library(PL94171)
# put the path to the PL 94-171 files here, or use `pl_url()` to download them
= system.file("extdata/ri2018_2020Style.pl", package="PL94171")
pl_path pl_tidy_shp("RI", pl_path)
#> Simple feature collection with 569 features and 24 fields (with 569 geometries empty)
#> Geometry type: GEOMETRY
#> Dimension: XY
#> Bounding box: xmin: NA ymin: NA xmax: NA ymax: NA
#> Geodetic CRS: NAD83
#> # A tibble: 569 × 25
#> GEOID state county vtd pop pop_h…¹ pop_w…² pop_b…³ pop_a…⁴ pop_a…⁵
#> <chr> <chr> <chr> <chr> <int> <int> <int> <int> <int> <int>
#> 1 44007000101… RI <NA> 4428… 0 0 0 0 0 0
#> 2 44007000101… RI <NA> 4428… 0 0 0 0 0 0
#> 3 44007000101… RI <NA> 4428… 0 0 0 0 0 0
#> 4 44007000101… RI <NA> 4428… 50 0 50 0 0 0
#> 5 44007000101… RI <NA> 4428… 0 0 0 0 0 0
#> 6 44007000101… RI <NA> 4428… 0 0 0 0 0 0
#> 7 44007000101… RI <NA> 4428… 18 18 0 0 0 0
#> 8 44007000101… RI <NA> 4428… 0 0 0 0 0 0
#> 9 44007000101… RI <NA> 4428… 86 86 0 0 0 0
#> 10 44007000101… RI <NA> 4428… 19 0 0 19 0 0
#> # … with 559 more rows, 15 more variables: pop_nhpi <int>, pop_other <int>,
#> # pop_two <int>, vap <int>, vap_hisp <int>, vap_white <int>, vap_black <int>,
#> # vap_aian <int>, vap_asian <int>, vap_nhpi <int>, vap_other <int>,
#> # vap_two <int>, area_land <dbl>, area_water <dbl>,
#> # geometry <GEOMETRYCOLLECTION [°]>, and abbreviated variable names
#> # ¹pop_hisp, ²pop_white, ³pop_black, ⁴pop_aian, ⁵pop_asian
#> # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
To tabulate at different geographies, or to extract other variables, check out the Getting Started page.