Patterns

A modeling tool dedicated to biological network modeling to decipher Biological Networks with Patterned Heterogeneous (e.g. multiOmics) Measurements

Frédéric Bertrand and Myriam Maumy-Bertrand

Lifecycle: stable Project Status: Active – The project has reached a stable, usable state and is being actively developed. R-CMD-check Codecov test coverage CRAN status CRAN RStudio mirror downloads GitHub Repo stars DOI

It is designed to work with patterned data. Famous examples of problems related to patterned data are:

It allows for single or joint modeling of, for instance, genes and proteins.

The weights are viewed as a penalty factors in the penalized regression model: it is a number that multiplies the lambda value in the minimization problem to allow differential shrinkage, Friedman et al. 2010, equation 1 page 3. If equal to 0, it implies no shrinkage, and that variable is always included in the model. Default is 1 for all variables. Infinity means that the variable is excluded from the model. Note that the weights are rescaled to sum to the number of variables.

A word for those that have been using our seminal work, the Cascade package that we created several years ago and that was a very efficient network reverse engineering tool for cascade networks (Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014), https://doi.org/10.1093/bioinformatics/btt705, https://cran.r-project.org/package=Cascade, https://github.com/fbertran/Cascade and https://fbertran.github.io/Cascade/).

The Patterns package is more than (at least) a threeway major extension of the Cascade package :

Hence the Patterns package should be viewed more as a completely new modelling tools than as an extension of the Cascade package.

This website and these examples were created by F. Bertrand and M. Maumy-Bertrand.

Installation

You can install the released version of Patterns from CRAN with:

install.packages("Patterns")

You can install the development version of Patterns from github with:

devtools::install_github("fbertran/Patterns")

Examples

Data management

Import Cascade Data (repeated measurements on several subjects) from the CascadeData package and turn them into a micro array object. The second line makes sure the CascadeData package is installed.

library(Patterns)
if(!require(CascadeData)){install.packages("CascadeData")}
data(micro_US)
micro_US<-as.micro_array(micro_US[1:100,],time=c(60,90,210,390),subject=6)
str(micro_US)
#> Formal class 'micro_array' [package "Patterns"] with 7 slots
#>   ..@ microarray: num [1:100, 1:24] 103.2 26 70.7 213.7 13.7 ...
#>   .. ..- attr(*, "dimnames")=List of 2
#>   .. .. ..$ : chr [1:100] "1007_s_at" "1053_at" "117_at" "121_at" ...
#>   .. .. ..$ : chr [1:24] "N1_US_T60" "N1_US_T90" "N1_US_T210" "N1_US_T390" ...
#>   ..@ name      : chr [1:100] "1007_s_at" "1053_at" "117_at" "121_at" ...
#>   ..@ gene_ID   : num 0
#>   ..@ group     : num 0
#>   ..@ start_time: num 0
#>   ..@ time      : num [1:4] 60 90 210 390
#>   ..@ subject   : num 6

Get a summay and plots of the data:

summary(micro_US)
#>    N1_US_T60        N1_US_T90        N1_US_T210    
#>  Min.   :  12.2   Min.   :  12.9   Min.   :   1.5  
#>  1st Qu.: 177.7   1st Qu.: 198.7   1st Qu.: 189.0  
#>  Median : 513.0   Median : 499.4   Median : 608.5  
#>  Mean   :1386.6   Mean   :1357.7   Mean   :1450.4  
#>  3rd Qu.:1912.3   3rd Qu.:1883.4   3rd Qu.:2050.2  
#>  Max.   :6348.4   Max.   :6507.3   Max.   :6438.5  
#>    N1_US_T390       N2_US_T60        N2_US_T90     
#>  Min.   :  10.1   Min.   :  16.7   Min.   :   3.4  
#>  1st Qu.: 196.7   1st Qu.: 212.4   1st Qu.: 185.7  
#>  Median : 541.2   Median : 584.1   Median : 501.5  
#>  Mean   :1331.2   Mean   :1381.9   Mean   :1345.4  
#>  3rd Qu.:1646.2   3rd Qu.:1616.2   3rd Qu.:1830.5  
#>  Max.   :6351.4   Max.   :6149.3   Max.   :6090.8  
#>    N2_US_T210       N2_US_T390       N3_US_T60     
#>  Min.   :   5.5   Min.   :   6.1   Min.   :   1.9  
#>  1st Qu.: 214.7   1st Qu.: 230.1   1st Qu.: 187.4  
#>  Median : 596.0   Median : 601.8   Median : 611.4  
#>  Mean   :1410.5   Mean   :1403.7   Mean   :1365.4  
#>  3rd Qu.:2005.8   3rd Qu.:1901.7   3rd Qu.:1855.2  
#>  Max.   :6160.6   Max.   :6143.1   Max.   :6636.6  
#>    N3_US_T90        N3_US_T210       N3_US_T390    
#>  Min.   :  10.3   Min.   :   3.3   Min.   :   6.6  
#>  1st Qu.: 194.6   1st Qu.: 177.8   1st Qu.: 222.6  
#>  Median : 576.2   Median : 552.2   Median : 593.7  
#>  Mean   :1381.2   Mean   :1310.1   Mean   :1427.1  
#>  3rd Qu.:2040.2   3rd Qu.:1784.5   3rd Qu.:2131.7  
#>  Max.   :6515.5   Max.   :6530.4   Max.   :6177.2  
#>    N4_US_T60        N4_US_T90        N4_US_T210    
#>  Min.   :  20.2   Min.   :  15.6   Min.   :  19.8  
#>  1st Qu.: 199.3   1st Qu.: 215.4   1st Qu.: 207.0  
#>  Median : 610.8   Median : 614.0   Median : 544.9  
#>  Mean   :1505.1   Mean   :1526.7   Mean   :1401.6  
#>  3rd Qu.:2198.1   3rd Qu.:2168.9   3rd Qu.:1831.2  
#>  Max.   :6986.2   Max.   :7148.0   Max.   :6820.0  
#>    N4_US_T390       N5_US_T60        N5_US_T90     
#>  Min.   :   9.3   Min.   :   3.4   Min.   :  10.0  
#>  1st Qu.: 197.8   1st Qu.: 213.2   1st Qu.: 209.8  
#>  Median : 590.7   Median : 609.4   Median : 561.3  
#>  Mean   :1458.8   Mean   :1498.2   Mean   :1424.8  
#>  3rd Qu.:1984.8   3rd Qu.:2008.7   3rd Qu.:1906.5  
#>  Max.   :6762.3   Max.   :7268.2   Max.   :6857.8  
#>    N5_US_T210       N5_US_T390       N6_US_T60     
#>  Min.   :  10.7   Min.   :  16.5   Min.   :  13.0  
#>  1st Qu.: 202.0   1st Qu.: 208.2   1st Qu.: 207.5  
#>  Median : 555.6   Median : 570.5   Median : 516.2  
#>  Mean   :1394.1   Mean   :1435.3   Mean   :1412.9  
#>  3rd Qu.:1923.9   3rd Qu.:1867.8   3rd Qu.:2037.4  
#>  Max.   :6574.0   Max.   :6896.6   Max.   :6898.1  
#>    N6_US_T90        N6_US_T210       N6_US_T390    
#>  Min.   :   6.6   Min.   :   3.8   Min.   :  14.4  
#>  1st Qu.: 198.6   1st Qu.: 203.9   1st Qu.: 195.8  
#>  Median : 530.6   Median : 578.0   Median : 580.0  
#>  Mean   :1388.3   Mean   :1416.5   Mean   :1360.8  
#>  3rd Qu.:1889.8   3rd Qu.:2030.8   3rd Qu.:1872.6  
#>  Max.   :6749.4   Max.   :6490.0   Max.   :6780.2

plot of chunk plotmicroarrayclassplot of chunk plotmicroarrayclassplot of chunk plotmicroarrayclass

plot(micro_US)

plot of chunk plotmicroarrayclass

Gene selection

There are several functions to carry out gene selection before the inference. They are detailed in the vignette of the package.

Data simulation

Let’s simulate some cascade data and then do some reverse engineering.

We first design the F matrix for \(T_i=4\) times and \(Ngrp=4\) groups. The Fmatobject is an array of sizes \((T_i,T-i,Ngrp^2)=(4,4,16)\).

Ti<-4
Ngrp<-4

Fmat=array(0,dim=c(Ti,Ti,Ngrp^2))

for(i in 1:(Ti^2)){
  if(((i-1) %% Ti) > (i-1) %/% Ti){
    Fmat[,,i][outer(1:Ti,1:Ti,function(x,y){0<(x-y) & (x-y)<2})]<-1
    }
}

The Patterns function CascadeFinit is an utility function to easily define such an F matrix.

Fbis=Patterns::CascadeFinit(Ti,Ngrp,low.trig=FALSE)
str(Fbis)
#>  num [1:4, 1:4, 1:16] 0 0 0 0 0 0 0 0 0 0 ...

Check if the two matrices Fmat and Fbis are identical.

print(all(Fmat==Fbis))
#> [1] TRUE

End of F matrix definition.

Fmat[,,3]<-Fmat[,,3]*0.2
Fmat[3,1,3]<-1
Fmat[4,2,3]<-1
Fmat[,,4]<-Fmat[,,3]*0.3
Fmat[4,1,4]<-1
Fmat[,,8]<-Fmat[,,3]

We set the seed to make the results reproducible and draw a scale free random network.

set.seed(1)
Net<-Patterns::network_random(
  nb=100,
  time_label=rep(1:4,each=25),
  exp=1,
  init=1,
  regul=round(rexp(100,1))+1,
  min_expr=0.1,
  max_expr=2,
  casc.level=0.4
)
Net@F<-Fmat
str(Net)
#> Formal class 'network' [package "Patterns"] with 6 slots
#>   ..@ network: num [1:100, 1:100] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..@ name   : chr [1:100] "gene 1" "gene 2" "gene 3" "gene 4" ...
#>   ..@ F      : num [1:4, 1:4, 1:16] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..@ convF  : num [1, 1] 0
#>   ..@ convO  : num 0
#>   ..@ time_pt: int [1:4] 1 2 3 4

Plot the simulated network.

Patterns::plot(Net, choice="network")

plot of chunk plotnet1

If a gene clustering is known, it can be used as a coloring scheme.

plot(Net, choice="network", gr=rep(1:4,each=25))

plot of chunk plotnet2

Plot the F matrix, for low dimensional F matrices.

plot(Net, choice="F")

plot of chunk plotF

Plot the F matrix using the pixmap package, for high dimensional F matrices.

plot(Net, choice="Fpixmap")

plot of chunk plotFpixmap

We simulate gene expression according to the network that was previously drawn

set.seed(1)
M <- Patterns::gene_expr_simulation(
  network=Net,
  time_label=rep(1:4,each=25),
  subject=5,
  peak_level=200,
  act_time_group=1:4)
str(M)
#> Formal class 'micro_array' [package "Patterns"] with 7 slots
#>   ..@ microarray: num [1:100, 1:20] 86.1 -146.8 228.3 505.1 -36.6 ...
#>   .. ..- attr(*, "dimnames")=List of 2
#>   .. .. ..$ : chr [1:100] "gene 1" "gene 2" "gene 3" "gene 4" ...
#>   .. .. ..$ : chr [1:20] "log(S/US) : P1T1" "log(S/US) : P1T2" "log(S/US) : P1T3" "log(S/US) : P1T4" ...
#>   ..@ name      : chr [1:100] "gene 1" "gene 2" "gene 3" "gene 4" ...
#>   ..@ gene_ID   : num 0
#>   ..@ group     : int [1:100] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..@ start_time: num 0
#>   ..@ time      : int [1:4] 1 2 3 4
#>   ..@ subject   : num 5

Get a summay and plots of the simulated data:

summary(M)
#>  log(S/US) : P1T1   log(S/US) : P1T2    log(S/US) : P1T3  
#>  Min.   :-486.823   Min.   :-1962.641   Min.   :-1923.74  
#>  1st Qu.: -54.618   1st Qu.:  -23.300   1st Qu.:  -71.99  
#>  Median :  -8.319   Median :    0.000   Median :   -3.85  
#>  Mean   :   8.799   Mean   :   22.064   Mean   :   20.72  
#>  3rd Qu.:  69.340   3rd Qu.:    9.707   3rd Qu.:   33.00  
#>  Max.   : 942.229   Max.   : 1616.469   Max.   : 2899.61  
#>  log(S/US) : P1T4   log(S/US) : P2T1  log(S/US) : P2T2  
#>  Min.   :-3391.76   Min.   :-359.82   Min.   :-1126.13  
#>  1st Qu.:  -58.69   1st Qu.: -39.27   1st Qu.:  -14.15  
#>  Median :    1.53   Median :  12.54   Median :    0.00  
#>  Mean   :   19.82   Mean   :  21.35   Mean   :   20.02  
#>  3rd Qu.:   69.45   3rd Qu.:  73.02   3rd Qu.:   28.54  
#>  Max.   : 3231.17   Max.   : 451.61   Max.   :  946.22  
#>  log(S/US) : P2T3   log(S/US) : P2T4   log(S/US) : P3T1  
#>  Min.   :-600.757   Min.   :-797.980   Min.   :-430.696  
#>  1st Qu.: -49.998   1st Qu.: -73.700   1st Qu.: -65.939  
#>  Median :  -7.749   Median :  -9.760   Median :   1.392  
#>  Mean   :  23.579   Mean   :   8.361   Mean   :   4.032  
#>  3rd Qu.:  67.216   3rd Qu.:  62.297   3rd Qu.:  62.391  
#>  Max.   :1869.077   Max.   : 935.321   Max.   : 514.510  
#>  log(S/US) : P3T2    log(S/US) : P3T3    log(S/US) : P3T4   
#>  Min.   :-1003.575   Min.   :-718.3926   Min.   :-1211.592  
#>  1st Qu.:   -3.637   1st Qu.: -43.3783   1st Qu.:  -61.300  
#>  Median :    0.000   Median :  -0.3233   Median :   -4.124  
#>  Mean   :   11.431   Mean   :  19.7553   Mean   :    5.993  
#>  3rd Qu.:   36.945   3rd Qu.:  69.6650   3rd Qu.:   62.634  
#>  Max.   :  752.066   Max.   :1497.5790   Max.   : 1296.563  
#>  log(S/US) : P4T1   log(S/US) : P4T2     log(S/US) : P4T3   
#>  Min.   :-451.370   Min.   :-1113.1785   Min.   :-1506.536  
#>  1st Qu.: -44.107   1st Qu.:   -8.8769   1st Qu.:  -48.512  
#>  Median :   7.193   Median :    0.0000   Median :    4.243  
#>  Mean   :  16.034   Mean   :    0.9469   Mean   :  -28.544  
#>  3rd Qu.:  62.840   3rd Qu.:   33.2306   3rd Qu.:   46.374  
#>  Max.   : 657.434   Max.   :  844.0070   Max.   :  694.220  
#>  log(S/US) : P4T4  log(S/US) : P5T1   log(S/US) : P5T2 
#>  Min.   :-446.40   Min.   :-747.865   Min.   :-862.59  
#>  1st Qu.: -56.95   1st Qu.: -78.166   1st Qu.: -15.10  
#>  Median :   3.71   Median :  -8.900   Median :   0.00  
#>  Mean   :  28.74   Mean   :  -7.693   Mean   :  66.20  
#>  3rd Qu.:  64.89   3rd Qu.:  45.926   3rd Qu.:  31.74  
#>  Max.   :1368.62   Max.   : 960.419   Max.   :1899.57  
#>  log(S/US) : P5T3    log(S/US) : P5T4   
#>  Min.   :-1493.607   Min.   :-1420.740  
#>  1st Qu.:  -59.853   1st Qu.:  -32.799  
#>  Median :   -2.776   Median :    4.008  
#>  Mean   :  -13.865   Mean   :  -12.332  
#>  3rd Qu.:   40.324   3rd Qu.:   59.892  
#>  Max.   :  770.655   Max.   :  489.916

plot of chunk summarysimuldataplot of chunk summarysimuldataplot of chunk summarysimuldata

plot(M)

plot of chunk plotsimuldataplot of chunk plotsimuldataplot of chunk plotsimuldataplot of chunk plotsimuldataplot of chunk plotsimuldataplot of chunk plotsimuldataplot of chunk plotsimuldata

Network inferrence

We infer the new network using subjectwise leave one out cross-validation (default setting): all measurements from the same subject are removed from the dataset). The inference is carried out with a general Fshape.

Net_inf_P <- Patterns::inference(M, cv.subjects=TRUE)
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.01
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00522
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0034
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00235
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00181
#> We are at step :  6
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00142
#> We are at step :  7
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00117
#> We are at step :  8
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00098

plot of chunk netinfdefaultplot of chunk netinfdefault

Plot of the inferred F matrix

plot(Net_inf_P, choice="F")

plot of chunk Fresults

Heatmap of the inferred coefficients of the Omega matrix

stats::heatmap(Net_inf_P@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresults

Default values fot the \(F\) matrices. The Finit matrix (starting values for the algorithm). In our case, the Finitobject is an array of sizes \((T_i,T-i,Ngrp^2)=(4,4,16)\).

Ti<-4;
ngrp<-4
nF<-ngrp^2
Finit<-array(0,c(Ti,Ti,nF)) 
              for(ii in 1:nF){    
                if((ii%%(ngrp+1))==1){
                  Finit[,,ii]<-0
                } else {
                  Finit[,,ii]<-cbind(rbind(rep(0,Ti-1),diag(1,Ti-1)),rep(0,Ti))+rbind(cbind(rep(0,Ti-1),diag(1,Ti-1)),rep(0,Ti))
                }
              }

The Fshape matrix (default shape for F matrix the algorithm). Any interaction between groups and times are permitted except the retro-actions (a group on itself, or an action at the same time for an actor on another one).

Fshape<-array("0",c(Ti,Ti,nF)) 
for(ii in 1:nF){  
  if((ii%%(ngrp+1))==1){
    Fshape[,,ii]<-"0"
  } else {
    lchars <- paste("a",1:(2*Ti-1),sep="")
    tempFshape<-matrix("0",Ti,Ti)
    for(bb in (-Ti+1):(Ti-1)){
      tempFshape<-replaceUp(tempFshape,matrix(lchars[bb+Ti],Ti,Ti),-bb)
    }
    tempFshape <- replaceBand(tempFshape,matrix("0",Ti,Ti),0)
    Fshape[,,ii]<-tempFshape
  }
}

Any other form can be used. A “0” coefficient is missing from the model. It allows testing the best structure of an “F” matrix and even performing some significance tests of hypothses on the structure of the \(F\) matrix.

The IndicFshape function allows to design custom F matrix for cascade networks with equally spaced measurements by specifying the zero and non zero \(F_{ij}\) cells of the \(F\) matrix. It is useful for models featuring several clusters of actors that are activated at the time. Let’s define the following indicatrix matrix (action of all groups on each other, which is not a possible real modeling setting and is only used as an example):

TestIndic=matrix(!((1:(Ti^2))%%(ngrp+1)==1),byrow=TRUE,ngrp,ngrp)
TestIndic
#>       [,1]  [,2]  [,3]  [,4]
#> [1,] FALSE  TRUE  TRUE  TRUE
#> [2,]  TRUE FALSE  TRUE  TRUE
#> [3,]  TRUE  TRUE FALSE  TRUE
#> [4,]  TRUE  TRUE  TRUE FALSE

For that choice, we get those init and shape \(F\) matrices.

IndicFinit(Ti,ngrp,TestIndic)
#> , , 1
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> , , 2
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 3
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 4
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 5
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 6
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> , , 7
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 8
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 9
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 10
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 11
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> , , 12
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 13
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 14
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 15
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 16
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
IndicFshape(Ti,ngrp,TestIndic)
#> , , 1
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0" 
#> 
#> , , 2
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 3
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 4
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 5
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 6
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0" 
#> 
#> , , 7
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 8
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 9
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 10
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 11
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0" 
#> 
#> , , 12
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 13
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 14
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 15
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 16
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0"

Those \(F\) matrices are lower diagonal ones to enforce that an observed value at a given time can only be predicted by a value that was observed in the past only (i.e. neither at the same moment or in the future).

The plotF is convenient to display F matrices. Here are the the displays of the three \(F\) matrices we have just introduced.

plotF(Fshape,choice="Fshape")

plot of chunk plotfshape1

plotF(CascadeFshape(4,4),choice="Fshape")

plot of chunk plotfshape2

plotF(IndicFshape(Ti,ngrp,TestIndic),choice="Fshape")

plot of chunk plotfshape3

We now fit the model with an \(F\) matrix that is designed for cascade networks.

Specific Fshape

Net_inf_P_S <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4))
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0074
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00314
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0019
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00131
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00101
#> We are at step :  6
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00081

plot of chunk netinfLCplot of chunk netinfLC

Plot of the inferred F matrix

plot(Net_inf_P_S, choice="F")

plot of chunk FresultsLC

Heatmap of the coefficients of the Omega matrix of the network. They reflect the use of a special \(F\) matrix. It is an example of an F matrix specifically designed to deal with cascade networks.

stats::heatmap(Net_inf_P_S@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresultsLC

There are many fitting functions provided with the Patterns package in order to search for specific features for the inferred network such as sparsity, robust links, high confidence links or stable through resampling links. :

Net_inf_P_Lasso2 <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="LASSO2")
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0069
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00229
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00153
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00114
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00086

plot of chunk netinflasso2plot of chunk netinflasso2

Plot of the inferred F matrix

plot(Net_inf_P_Lasso2, choice="F")

plot of chunk Fresultslasso2

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_Lasso2@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresultslasso2

We create a weighting vector to perform weighted lasso inference.

Weights_Net=slot(Net,"network")
Weights_Net[Net@network!=0]=.1        
Weights_Net[Net@network==0]=1000
Net_inf_P_Lasso2_Weighted <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="LASSO2", priors=Weights_Net)
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0075
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 4e-04

plot of chunk netinflasso2Weightedplot of chunk netinflasso2Weighted

Plot of the inferred F matrix

plot(Net_inf_P_Lasso2_Weighted, choice="F")

plot of chunk Fresultslasso2Weighted

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_Lasso2_Weighted@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresultslasso2Weighted

Net_inf_P_SPLS <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="SPLS")
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0075
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00229
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00164
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00123
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00104
#> We are at step :  6
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00088

plot of chunk netinfSPLSplot of chunk netinfSPLS

Plot of the inferred F matrix

plot(Net_inf_P_SPLS, choice="F")

plot of chunk FresultsSPLS

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_SPLS@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresultsSPLS

Net_inf_P_ELASTICNET <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="ELASTICNET")
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0074
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00402
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00289
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00223
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00178
#> We are at step :  6
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00142
#> We are at step :  7
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00121
#> We are at step :  8
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00107
#> We are at step :  9
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00095

plot of chunk netinfENplot of chunk netinfEN

Plot of the inferred F matrix

plot(Net_inf_P_ELASTICNET, choice="F")

plot of chunk FresultsEN

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_ELASTICNET@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresultsEN

Net_inf_P_stability <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="stability.c060")
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1mc.cores=2
#>  2mc.cores=2.........................
#>  3mc.cores=2.........................
#>  4mc.cores=2.........................
#> The convergence of the network is (L1 norm) : 0.0042
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1mc.cores=2
#>  2mc.cores=2.........................
#>  3mc.cores=2.........................
#>  4mc.cores=2.........................
#> The convergence of the network is (L1 norm) : 0.00095

plot of chunk netinfStabplot of chunk netinfStab

Plot of the inferred F matrix

plot(Net_inf_P_stability, choice="F")

plot of chunk FresultsStab

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_stability@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresultsStab

Net_inf_P_StabWeight <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="stability.c060.weighted", priors=Weights_Net)
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1mc.cores=2 
#>  2mc.cores=2 .........................
#>  3mc.cores=2 .........................
#>  4mc.cores=2 .........................
#> The convergence of the network is (L1 norm) : 0.0075
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1mc.cores=2 
#>  2mc.cores=2 .........................
#>  3mc.cores=2 .........................
#>  4mc.cores=2 .........................
#> The convergence of the network is (L1 norm) : 0.00034

plot of chunk netinfStabWeightplot of chunk netinfStabWeight

Plot of the inferred F matrix

plot(Net_inf_P_StabWeight, choice="F")

plot of chunk FresultsStabWeight

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_StabWeight@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresultsStabWeight

Net_inf_P_Robust <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="robust")
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0069
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00366
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00203
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00142
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00117
#> We are at step :  6
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00086

plot of chunk netinfRobustplot of chunk netinfRobust

Plot of the inferred F matrix

plot(Net_inf_P_Robust, choice="F")

plot of chunk FresultsRobust

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_Robust@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresultsRobust

Weights_Net_1 <- Weights_Net
Weights_Net_1[,] <- 1
Net_inf_P_SelectBoost <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="selectboost.weighted",priors=Weights_Net_1)
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#> Loading required namespace: SelectBoost
#> 
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0057
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00174
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00125
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00094

plot of chunk netinfSBplot of chunk netinfSB

#> 
#> Attaching package: 'Patterns'
#> The following object is masked from 'package:igraph':
#> 
#>     compare

Plot of the inferred F matrix

plot(Net_inf_P_SelectBoost, choice="F")

plot of chunk FresultsSB

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_SelectBoost@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresultsSB

Net_inf_P_SelectBoostWeighted <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="selectboost.weighted",priors=Weights_Net)
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.007
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00047

plot of chunk netinfSBWplot of chunk netinfSBW

#> 
#> Attaching package: 'Patterns'
#> The following object is masked from 'package:igraph':
#> 
#>     compare

Plot of the inferred F matrix

plot(Net_inf_P_SelectBoostWeighted, choice="F")

plot of chunk FresultsSBW

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_SelectBoostWeighted@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

plot of chunk heatresultsSBW

Post inference network analysis

Such an analysis is only required if the model was not fitted using the stability selection or the selectboost algorithm.

Create an animation of the network with increasing cutoffs with an animated .gif format or a html webpage in the working directory.

data(network)
sequence<-seq(0,0.2,length.out=20)
evolution(network,sequence,type.ani = "gif", outdir=getwd())
evolution(network,sequence,type.ani = "html", outdir=getwd())
#> Error in setwd(outdir): impossible de changer de répertoire de travail
#> Error in setwd(outdir): impossible de changer de répertoire de travail
Evolution as .gif.

Evolution as .html.

Evolution of some properties of a reverse-engineered network with increasing cut-off values. Evolution of some properties of a reverse-engineered network with increasing cut-off values.

We switch to data that were derived from the inferrence of a real biological network and try to detect the optimal cutoff value: the best cutoff value for a network to fit a scale free network. The cutoff was validated only single group cascade networks (number of actors groups = number of timepoints) and for genes dataset. Instead of the cutoff function, manual curation or the stability selection or the selectboost algorithm should be used.

data("networkCascade")
set.seed(1)
cutoff(networkCascade)
#> [1] "This computation may be long"
#> [1] "1/10"
#> [1] "2/10"
#> [1] "3/10"
#> [1] "4/10"
#> [1] "5/10"
#> [1] "6/10"
#> [1] "7/10"
#> [1] "8/10"
#> [1] "9/10"
#> [1] "10/10"
#>  [1] 0.000 0.007 0.423 0.388 0.236 0.631 0.952 0.976 0.825 0.362

plot of chunk cutoff

#> $p.value
#>  [1] 0.000 0.007 0.423 0.388 0.236 0.631 0.952 0.976 0.825 0.362
#> 
#> $p.value.inter
#>  [1] -0.04643835  0.14848083  0.28125541  0.36247646  0.33538710
#>  [6]  0.60021707  0.92531630  0.98522398  0.79881816  0.37310221
#> 
#> $sequence
#>  [1] 0.00000000 0.04444444 0.08888889 0.13333333 0.17777778
#>  [6] 0.22222222 0.26666667 0.31111111 0.35555556 0.40000000

Analyze the network with a cutoff set to the previouly found 0.133 optimal value.

analyze_network(networkCascade,nv=0.133)
#>     node betweenness degree    output  closeness
#> 1      1           0      3 0.6442821  2.5337730
#> 2      2           8      4 1.3784717  5.4211261
#> 3      3           0      6 1.3308218  6.1428682
#> 4      4           0      9 1.7531528 19.4060065
#> 5      5           0      2 0.6400128  2.5169831
#> 6      6           0      1 0.2725100  3.4520368
#> 7      7           0      0 0.0000000  0.0000000
#> 8      8           0      1 0.1483077 10.4595738
#> 9      9           4      4 0.7969945  3.4810740
#> 10    10          20      7 1.3485173  6.0949803
#> 11    11           0      4 0.8054122 16.2236448
#> 12    12           0     11 2.4624877 10.7417814
#> 13    13           0      0 0.0000000  0.0000000
#> 14    14           0      1 0.1882265  3.8504312
#> 15    15           0      5 1.5808956 13.7135886
#> 16    16          81     24 6.7716649 29.1131750
#> 17    17           0      9 2.0059124 11.2249512
#> 18    18           0      9 1.6083138  6.6506106
#> 19    19           0      0 0.0000000  0.0000000
#> 20    20           0      0 0.0000000  0.0000000
#> 21    21           0      0 0.0000000  0.0000000
#> 22    22           0      0 0.0000000  0.0000000
#> 23    23           0      0 0.0000000  0.0000000
#> 24    24           0      1 0.1607163  0.6320503
#> 25    25           0      0 0.0000000  0.0000000
#> 26    26           0      0 0.0000000  0.0000000
#> 27    27           0      8 3.2710799 13.9045595
#> 28    28           0      2 0.3957891  2.1118782
#> 29    29           0      0 0.0000000  0.0000000
#> 30    30           0      1 0.2255093  0.8868623
#> 31    31           0      0 0.0000000  0.0000000
#> 32    32           0      0 0.0000000  0.0000000
#> 33    33           0      0 0.0000000  0.0000000
#> 34    34           0      0 0.0000000  0.0000000
#> 35    35           0      6 1.4397935  5.6622868
#> 36    36           0      0 0.0000000  0.0000000
#> 37    37           0      0 0.0000000  0.0000000
#> 38    38           0      0 0.0000000  0.0000000
#> 39    39           0      0 0.0000000  0.0000000
#> 40    40           0      0 0.0000000  0.0000000
#> 41    41           0      0 0.0000000  0.0000000
#> 42    42           2      1 0.5205955  2.0473501
#> 43    43           0      0 0.0000000  0.0000000
#> 44    44           0      0 0.0000000  0.0000000
#> 45    45           0      0 0.0000000  0.0000000
#> 46    46           0      0 0.0000000  0.0000000
#> 47    47           0      0 0.0000000  0.0000000
#> 48    48           0      1 0.5096457  2.0042877
#> 49    49           1      1 0.1814386  0.7135450
#> 50    50           0      0 0.0000000  0.0000000
#> 51    51           0      0 0.0000000  0.0000000
#> 52    52           0      0 0.0000000  0.0000000
#> 53    53           0      0 0.0000000  0.0000000
#> 54    54           0      0 0.0000000  0.0000000
#> 55    55           0      0 0.0000000  0.0000000
#> 56    56           0      0 0.0000000  0.0000000
#> 57    57           5      1 0.7142387  2.8088919
#> 58    58           0      0 0.0000000  0.0000000
#> 59    59           0      0 0.0000000  0.0000000
#> 60    60           0      0 0.0000000  0.0000000
#> 61    61           0      0 0.0000000  0.0000000
#> 62    62           0      0 0.0000000  0.0000000
#> 63    63           0      1 0.1668072  0.6560038
#> 64    64           0      0 0.0000000  0.0000000
#> 65    65           0      0 0.0000000  0.0000000
#> 66    66           0      0 0.0000000  0.0000000
#> 67    67           0      0 0.0000000  0.0000000
#> 68    68           0      0 0.0000000  0.0000000
#> 69    69           0      0 0.0000000  0.0000000
#> 70    70           0      0 0.0000000  0.0000000
#> 71    71           0      0 0.0000000  0.0000000
#> 72    72           0      0 0.0000000  0.0000000
#> 73    73           4      1 0.1937648  0.7620205
#> 74    74           0      0 0.0000000  0.0000000
#> 75    75           0      0 0.0000000  0.0000000
#> 76    76           0      0 0.0000000  0.0000000
#> 77    77           0      0 0.0000000  0.0000000
#> 78    78           0      0 0.0000000  0.0000000
#> 79    79           0      0 0.0000000  0.0000000
#> 80    80           0      0 0.0000000  0.0000000
#> 81    81           0      0 0.0000000  0.0000000
#> 82    82           4      2 0.4875471  1.9173803
#> 83    83           4      1 0.2849991  1.1208180
#> 84    84           5      1 0.4477398  1.7608296
#> 85    85           4      1 0.2126269  0.8361995
#> 86    86           0      0 0.0000000  0.0000000
#> 87    87           0      0 0.0000000  0.0000000
#> 88    88           0      0 0.0000000  0.0000000
#> 89    89           0      0 0.0000000  0.0000000
#> 90    90           5      1 0.1522237  0.5986513
#> 91    91           3      1 0.2857613  1.1238157
#> 92    92           0      0 0.0000000  0.0000000
#> 93    93           0      1 0.1784006  0.7015976
#> 94    94           0      0 0.0000000  0.0000000
#> 95    95           0      0 0.0000000  0.0000000
#> 96    96           0      0 0.0000000  0.0000000
#> 97    97           0      0 0.0000000  0.0000000
#> 98    98           0      0 0.0000000  0.0000000
#> 99    99           0      0 0.0000000  0.0000000
#> 100  100           0      0 0.0000000  0.0000000
#> 101  101           0      0 0.0000000  0.0000000
#> 102  102           0      0 0.0000000  0.0000000
data(Selection)
plot(networkCascade,nv=0.133, gr=Selection@group)

plot of chunk plotnet

Perform gene selection

Import data.

library(Patterns)
library(CascadeData)
data(micro_S)
micro_S<-as.micro_array(micro_S,time=c(60,90,210,390),subject=6,gene_ID=rownames(micro_S))
data(micro_US)
micro_US<-as.micro_array(micro_US,time=c(60,90,210,390),subject=6,gene_ID=rownames(micro_US))

Select early genes (t1 or t2):

Selection1<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns=rbind(c(0,1,0,0),c(1,0,0,0),c(1,1,0,0)))

Section genes with first significant differential expression at t1:

Selection2<-geneSelection(x=micro_S,y=micro_US,20,peak=1)

Section genes with first significant differential expression at t2:

Selection3<-geneSelection(x=micro_S,y=micro_US,20,peak=2)

Select later genes (t3 or t4)

Selection4<-geneSelection(x=micro_S,y=micro_US,50,
wanted.patterns=rbind(c(0,0,1,0),c(0,0,0,1),c(1,1,0,0)))

Merge those selections:

Selection<-unionMicro(Selection1,Selection2)
Selection<-unionMicro(Selection,Selection3)
Selection<-unionMicro(Selection,Selection4)
head(Selection)
#> $microarray
#>                    US60       US90      US210
#> 210226_at    0.82417544  0.9166931  0.7310784
#> 233516_s_at -0.27395188 -2.3695246  0.6511830
#> 202081_at    0.60477249  0.6599672 -0.1884742
#> 236719_at   -2.07284086 -0.3123747  0.1792494
#> 236019_at   -0.08175065 -0.3699708 -0.4315901
#> 1563563_at  -1.44513486  1.6869516 -0.4297297
#> 
#> $name
#> [1] "210226_at"   "233516_s_at" "202081_at"   "236719_at"  
#> [5] "236019_at"   "1563563_at" 
#> 
#> $gene_ID
#> [1] "210226_at"   "233516_s_at" "202081_at"   "236719_at"  
#> [5] "236019_at"   "1563563_at" 
#> 
#> $group
#> [1] 1 2 1 1 1 1
#> 
#> $start_time
#> [1] 1 2 1 1 1 1
#> 
#> $time
#> [1]  60  90 210 390
#> 
#> $subject
#> [1] 6

Summarize the final selection:

summary(Selection)
#>       US60               US90               US210        
#>  Min.   :-2.76841   Min.   :-2.369525   Min.   :-1.6147  
#>  1st Qu.:-0.18028   1st Qu.:-0.181425   1st Qu.: 0.1985  
#>  Median : 0.05675   Median :-0.001924   Median : 0.9886  
#>  Mean   : 0.05764   Mean   : 0.278275   Mean   : 0.9611  
#>  3rd Qu.: 0.22438   3rd Qu.: 0.664063   3rd Qu.: 1.6918  
#>  Max.   : 2.86440   Max.   : 4.284675   Max.   : 3.6727  
#>      US390               US60              US90         
#>  Min.   :-2.60480   Min.   :-2.7932   Min.   :-2.49245  
#>  1st Qu.:-0.03884   1st Qu.:-0.5547   1st Qu.:-0.01944  
#>  Median : 0.31766   Median :-0.3089   Median : 0.14977  
#>  Mean   : 0.26428   Mean   :-0.2917   Mean   : 0.33720  
#>  3rd Qu.: 0.57117   3rd Qu.:-0.1725   3rd Qu.: 0.48744  
#>  Max.   : 2.54704   Max.   : 2.0267   Max.   : 3.37588  
#>      US210              US390               US60         
#>  Min.   :-1.21606   Min.   :-1.74407   Min.   :-2.94444  
#>  1st Qu.: 0.07966   1st Qu.:-0.26548   1st Qu.:-0.23136  
#>  Median : 0.72019   Median : 0.03616   Median :-0.04761  
#>  Mean   : 0.73063   Mean   : 0.06753   Mean   : 0.22115  
#>  3rd Qu.: 1.26164   3rd Qu.: 0.32496   3rd Qu.: 0.33157  
#>  Max.   : 3.87950   Max.   : 2.83321   Max.   : 3.31723  
#>       US90             US210             US390        
#>  Min.   :-0.9721   Min.   :-1.9349   Min.   :-3.8418  
#>  1st Qu.:-0.1027   1st Qu.: 0.3254   1st Qu.:-0.1592  
#>  Median : 0.2548   Median : 1.2512   Median : 0.1538  
#>  Mean   : 0.6479   Mean   : 1.0485   Mean   : 0.1219  
#>  3rd Qu.: 1.0737   3rd Qu.: 1.8513   3rd Qu.: 0.6268  
#>  Max.   : 4.3604   Max.   : 4.4860   Max.   : 1.9886  
#>       US60               US90              US210         
#>  Min.   :-2.85438   Min.   :-0.90355   Min.   :-0.83324  
#>  1st Qu.:-0.06031   1st Qu.:-0.08464   1st Qu.: 0.07605  
#>  Median : 0.03601   Median : 0.17135   Median : 0.52176  
#>  Mean   : 0.14593   Mean   : 0.41929   Mean   : 0.62446  
#>  3rd Qu.: 0.24568   3rd Qu.: 0.75565   3rd Qu.: 1.07821  
#>  Max.   : 1.82903   Max.   : 3.60640   Max.   : 2.27744  
#>      US390               US60               US90         
#>  Min.   :-0.96834   Min.   :-1.38002   Min.   :-2.94444  
#>  1st Qu.: 0.01569   1st Qu.:-0.19910   1st Qu.:-0.01758  
#>  Median : 0.17370   Median :-0.07962   Median : 0.16080  
#>  Mean   : 0.23854   Mean   : 0.12972   Mean   : 0.37123  
#>  3rd Qu.: 0.45189   3rd Qu.: 0.26113   3rd Qu.: 0.61933  
#>  Max.   : 1.90880   Max.   : 2.31074   Max.   : 3.24454  
#>      US210             US390              US60         
#>  Min.   :-1.0271   Min.   :-1.3636   Min.   :-1.79176  
#>  1st Qu.: 0.1459   1st Qu.:-0.1386   1st Qu.:-0.09822  
#>  Median : 0.7430   Median : 0.1492   Median : 0.03378  
#>  Mean   : 0.7972   Mean   : 0.1271   Mean   : 0.27978  
#>  3rd Qu.: 1.3922   3rd Qu.: 0.4825   3rd Qu.: 0.33548  
#>  Max.   : 3.6213   Max.   : 1.5979   Max.   : 3.16035  
#>       US90              US210             US390         
#>  Min.   :-3.20791   Min.   :-1.4716   Min.   :-1.95883  
#>  1st Qu.:-0.03963   1st Qu.: 0.1292   1st Qu.:-0.04786  
#>  Median : 0.28261   Median : 0.8392   Median : 0.22472  
#>  Mean   : 0.52529   Mean   : 0.7903   Mean   : 0.21171  
#>  3rd Qu.: 1.03256   3rd Qu.: 1.4416   3rd Qu.: 0.42511  
#>  Max.   : 3.19975   Max.   : 2.8027   Max.   : 2.14903

plot of chunk microselection6plot of chunk microselection6plot of chunk microselection6

Plot the final selection:

plot(Selection)

plot of chunk microselection7plot of chunk microselection7plot of chunk microselection7plot of chunk microselection7plot of chunk microselection7plot of chunk microselection7plot of chunk microselection7plot of chunk microselection7

This process could be improved by retrieve a real gene_ID using the bitr function of the ClusterProfiler package or by performing independent filtering using jetset package to only keep at most only probeset (the best one, if there is one good enough) per gene_ID.

Examples of outputs

Infered F matrix of the network (General shape).
Infered coefficient matrix of the network (General shape).
Infered F matrix of the network (cascade shape).
Infered coefficient matrix of the network (cascade shape).
Reverse-engineered network.
Evolution of a reverse-engineered network with increasing cut-off values.
Plot of simulated data for cascade networks featuring cluster membership.
Plot of simulated data for cascade networks featuring subject membership.