Computes optimal changepoint models using the Poisson likelihood for non-negative count data, subject to the PeakSeg constraint: the first change must be up, second change down, third change up, etc. For more info about the models and algorithms, read "A log-linear time algorithm for constrained changepoint detection" <arXiv:1703.03352> by TD Hocking et al.
Version: | 2018.05.25 |
Depends: | R (≥ 2.10) |
Imports: | penaltyLearning |
Suggests: | PeakSegDP (≥ 2016.08.06), ggplot2, testthat, data.table (≥ 1.9.8) |
Published: | 2018-05-25 |
Author: | Toby Dylan Hocking |
Maintainer: | Toby Dylan Hocking <toby.hocking at r-project.org> |
License: | GPL-3 |
NeedsCompilation: | yes |
Materials: | NEWS |
CRAN checks: | PeakSegOptimal results |
Reference manual: | PeakSegOptimal.pdf |
Package source: | PeakSegOptimal_2018.05.25.tar.gz |
Windows binaries: | r-devel: PeakSegOptimal_2018.05.25.zip, r-release: PeakSegOptimal_2018.05.25.zip, r-oldrel: PeakSegOptimal_2018.05.25.zip |
macOS binaries: | r-release (arm64): PeakSegOptimal_2018.05.25.tgz, r-oldrel (arm64): PeakSegOptimal_2018.05.25.tgz, r-release (x86_64): PeakSegOptimal_2018.05.25.tgz, r-oldrel (x86_64): PeakSegOptimal_2018.05.25.tgz |
Old sources: | PeakSegOptimal archive |
Please use the canonical form https://CRAN.R-project.org/package=PeakSegOptimal to link to this page.