PeakSegOptimal: Optimal Segmentation Subject to Up-Down Constraints

Computes optimal changepoint models using the Poisson likelihood for non-negative count data, subject to the PeakSeg constraint: the first change must be up, second change down, third change up, etc. For more info about the models and algorithms, read "A log-linear time algorithm for constrained changepoint detection" <arXiv:1703.03352> by TD Hocking et al.

Version: 2018.05.25
Depends: R (≥ 2.10)
Imports: penaltyLearning
Suggests: PeakSegDP (≥ 2016.08.06), ggplot2, testthat, data.table (≥ 1.9.8)
Published: 2018-05-25
Author: Toby Dylan Hocking
Maintainer: Toby Dylan Hocking <toby.hocking at r-project.org>
License: GPL-3
NeedsCompilation: yes
Materials: NEWS
CRAN checks: PeakSegOptimal results

Documentation:

Reference manual: PeakSegOptimal.pdf

Downloads:

Package source: PeakSegOptimal_2018.05.25.tar.gz
Windows binaries: r-devel: PeakSegOptimal_2018.05.25.zip, r-release: PeakSegOptimal_2018.05.25.zip, r-oldrel: PeakSegOptimal_2018.05.25.zip
macOS binaries: r-release (arm64): PeakSegOptimal_2018.05.25.tgz, r-oldrel (arm64): PeakSegOptimal_2018.05.25.tgz, r-release (x86_64): PeakSegOptimal_2018.05.25.tgz, r-oldrel (x86_64): PeakSegOptimal_2018.05.25.tgz
Old sources: PeakSegOptimal archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=PeakSegOptimal to link to this page.