PopVar
To make progress in breeding, populations should have a favorable mean and high genetic variance (Bernardo 2010). These two parameters can be combined into a single measure called the usefulness criterion (Schnell and Utz 1975), visualized in Figure 1.
Ideally, breeders would identify the set of parent combinations that, when realized in a cross, would give rise to populations meeting these requirements. PopVar
is a package that uses phenotypic and genomewide marker data on a set of candidate parents to predict the mean, genetic variance, and superior progeny mean in bi-parental or multi-parental populations. Thre package also contains functionality for performing cross-validation to determine the suitability of different statistical models. More details are available in Mohammadi, Tiede, and Smith (2015). A dataset think_barley
is included for reference and examples.
You can install the released version of PopVar from CRAN with:
And the development version from GitHub with:
Below is a description of the functions provided in PopVar
:
Function | Description |
---|---|
pop.predict |
Uses simulations to make predictions in recombinant inbred line populations; can internally perform cross-validation for model selections; can be quite slow. |
pop.predict2 |
Uses deterministic equations to make predictions in populations of complete or partial selfing and with or without the induction of doubled haploids; is much faster than pop.predict ; does not perform cross-validation or model selection internally. |
pop_predict2 |
Has the same functionality as pop.predict2 , but accepts genomewide marker data in a simpler matrix format. |
x.val |
Performs cross-validation to estimate model performance. |
mppop.predict |
Uses deterministic equations to make predictions in 2- or 4-way populations of complete or partial selfing and with or without the induction of doubled haploids; does not perform cross-validation or model selection internally. |
mpop_predict2 |
Has the same functionality as mppop.predict , but accepts genomewide marker data in a simpler matrix format. |
Below are some example uses of the functions in PopVar
:
The code below simulates a single population of 1000 individuals for each of 150 crosses. For the sake of speed, the marker effects are predicted using RR-BLUP and no cross-validation is performed.
out <- pop.predict(G.in = G.in_ex, y.in = y.in_ex, map.in = map.in_ex,
crossing.table = cross.tab_ex,
nInd = 1000, nSim = 1,
nCV.iter = 1, models = "rrBLUP")
The function returns a list, one element of which is called predictions.
This element is itself a list of matrices containing the predictions for each trait. They can be combined as such:
predictions1 <- lapply(X = out$predictions, FUN = function(x) {
x1 <- as.data.frame(apply(X = x, MARGIN = 2, FUN = unlist), stringsAsFactors = FALSE)
cbind(x1[,c("Par1", "Par2")], sapply(X = x1[,-1:-2], as.numeric))
})
# Display the first few lines of the predictions for grain yield
knitr::kable(head(predictions1$Yield_param.df))
Par1 | Par2 | midPar.Pheno | midPar.GEBV | pred.mu | pred.mu_sd | pred.varG | pred.varG_sd | mu.sp_low | mu.sp_high | low.resp_FHB | low.resp_DON | low.resp_Height | high.resp_FHB | high.resp_DON | high.resp_Height | cor_w/_FHB | cor_w/_DON | cor_w/_Height |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FEG66-08 | MN97-125 | 99.200 | 100.65607 | 100.58065 | NA | 7.564859 | NA | 95.81135 | 105.2983 | 23.16470 | 23.84100 | 78.78625 | 25.01624 | 25.13016 | 75.91027 | 0.2572561 | 0.2422184 | -0.3199704 |
MN99-71 | FEG90-31 | NaN | 99.17635 | 99.12126 | NA | 5.255394 | NA | 95.36126 | 103.0920 | 21.57383 | 23.55555 | 77.93688 | 24.66107 | 25.09007 | 75.62009 | 0.4670046 | 0.1604766 | -0.1805932 |
MN96-141 | FEG183-52 | NaN | 101.28761 | 101.24542 | NA | 5.664738 | NA | 97.12738 | 105.3532 | 23.74467 | 23.78425 | 79.70719 | 27.32846 | 28.44027 | 76.12451 | 0.7288072 | 0.7473355 | -0.5407719 |
MN99-02 | FEG183-52 | NaN | 100.78451 | 100.71886 | NA | 10.085053 | NA | 95.33375 | 106.1531 | 25.71896 | 23.94873 | 74.93540 | 26.41312 | 26.65181 | 73.33489 | 0.1153523 | 0.3903699 | -0.1438686 |
FEG99-10 | FEG148-56 | NaN | 98.68505 | 98.78295 | NA | 4.046123 | NA | 95.36134 | 102.2904 | 19.56935 | 20.26895 | 85.53316 | 23.07361 | 24.19603 | 80.09071 | 0.5620461 | 0.6152524 | -0.5809222 |
MN99-62 | MN01-46 | 105.775 | 102.29724 | 102.27109 | NA | 5.045291 | NA | 98.53626 | 106.0721 | 26.09207 | 28.39819 | 73.20279 | 26.39339 | 28.49207 | 74.12016 | 0.2088950 | -0.1179521 | 0.3326492 |
Generating predictions via simulated populations can become computationally burdensome when many thousands or hundreds of thousands of crosses are possible. Fortunately, deterministic equations are available to generate equivalent predictions in a fraction of the time. These equations are provided in the pop.predict2
and pop_predict2
functions.
The pop.predict2
function takes arguments in the same format as pop.predict
. We have eliminated the arguments for marker filtering and imputation and cross-validation, as the pop.predict2
function does not support these steps. (You may continue to conduct cross-validation using the x.val
function.) Therefore, the genotype data input for pop.predict2
must not contain any missing data. Further, these predictions assume fully inbred parents, so marker genotypes must only be coded as -1 or 1. The data G.in_ex_imputed
contains genotype data that is formatted properly.
Below is an example of using the pop.predict2
function:
out2 <- pop.predict2(G.in = G.in_ex_imputed, y.in = y.in_ex, map.in = map.in_ex,
crossing.table = cross.tab_ex, models = "rrBLUP")
knitr::kable(head(subset(out2, trait == "Yield")))
parent1 | parent2 | trait | pred_mu | pred_varG | pred_musp_low | pred_musp_high | cor_w_FHB | cor_w_DON | cor_w_Yield | cor_w_Height | pred_cor_musp_low_FHB | pred_cor_musp_low_DON | pred_cor_musp_low_Yield | pred_cor_musp_low_Height | pred_cor_musp_high_FHB | pred_cor_musp_high_DON | pred_cor_musp_high_Yield | pred_cor_musp_high_Height | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | FEG66-08 | MN97-125 | Yield | 100.41166 | 7.768361 | 95.52021 | 105.3031 | 0.3412831 | 0.3303378 | NA | -0.4004154 | 22.27035 | 23.76433 | NA | 78.84012 | 24.96750 | 25.91641 | NA | 75.11838 |
7 | MN99-71 | FEG90-31 | Yield | 98.98546 | 5.298104 | 94.94591 | 103.0250 | 0.4959745 | 0.2776666 | NA | -0.1612311 | 21.86563 | 23.41697 | NA | 77.04669 | 24.85938 | 25.18159 | NA | 75.75153 |
11 | MN96-141 | FEG183-52 | Yield | 101.07137 | 5.571654 | 96.92884 | 105.2139 | 0.6132612 | 0.6961326 | NA | -0.4603399 | 24.36629 | 23.67733 | NA | 79.59345 | 27.88028 | 28.40806 | NA | 75.16009 |
15 | MN99-02 | FEG183-52 | Yield | 100.82967 | 9.499736 | 95.42053 | 106.2388 | 0.0249962 | 0.4211875 | NA | -0.1929275 | 26.15174 | 23.73807 | NA | 74.76672 | 26.29180 | 26.60344 | NA | 72.86270 |
19 | FEG99-10 | FEG148-56 | Yield | 98.01593 | 4.121802 | 94.45292 | 101.5789 | 0.5959335 | 0.6401323 | NA | -0.5080571 | 19.67552 | 19.58928 | NA | 85.81854 | 23.38585 | 24.23917 | NA | 80.69997 |
23 | MN99-62 | MN01-46 | Yield | 102.51094 | 4.673196 | 98.71709 | 106.3048 | 0.0755600 | -0.0827658 | NA | 0.4010907 | 26.07342 | 28.37124 | NA | 72.67125 | 26.20580 | 28.16102 | NA | 74.51340 |
Note that the output of
pop.predict2
is no longer a list, but a data frame containing the combined predictions for all traits.
The formatting requirements of G.in
for pop.predict
and pop.predict2
are admittedly confusing. Marker genotype data is commonly stored as a n x p matrix, where n is the number of entries and p the number of markers. The function pop_predict2
accommodates this general marker data storage. Here is an example:
out3 <- pop_predict2(M = G.in_ex_mat, y.in = y.in_ex, map.in = map.in_ex,
crossing.table = cross.tab_ex, models = "rrBLUP")
knitr::kable(head(subset(out2, trait == "Yield")))
parent1 | parent2 | trait | pred_mu | pred_varG | pred_musp_low | pred_musp_high | cor_w_FHB | cor_w_DON | cor_w_Yield | cor_w_Height | pred_cor_musp_low_FHB | pred_cor_musp_low_DON | pred_cor_musp_low_Yield | pred_cor_musp_low_Height | pred_cor_musp_high_FHB | pred_cor_musp_high_DON | pred_cor_musp_high_Yield | pred_cor_musp_high_Height | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | FEG66-08 | MN97-125 | Yield | 100.41166 | 7.768361 | 95.52021 | 105.3031 | 0.3412831 | 0.3303378 | NA | -0.4004154 | 22.27035 | 23.76433 | NA | 78.84012 | 24.96750 | 25.91641 | NA | 75.11838 |
7 | MN99-71 | FEG90-31 | Yield | 98.98546 | 5.298104 | 94.94591 | 103.0250 | 0.4959745 | 0.2776666 | NA | -0.1612311 | 21.86563 | 23.41697 | NA | 77.04669 | 24.85938 | 25.18159 | NA | 75.75153 |
11 | MN96-141 | FEG183-52 | Yield | 101.07137 | 5.571654 | 96.92884 | 105.2139 | 0.6132612 | 0.6961326 | NA | -0.4603399 | 24.36629 | 23.67733 | NA | 79.59345 | 27.88028 | 28.40806 | NA | 75.16009 |
15 | MN99-02 | FEG183-52 | Yield | 100.82967 | 9.499736 | 95.42053 | 106.2388 | 0.0249962 | 0.4211875 | NA | -0.1929275 | 26.15174 | 23.73807 | NA | 74.76672 | 26.29180 | 26.60344 | NA | 72.86270 |
19 | FEG99-10 | FEG148-56 | Yield | 98.01593 | 4.121802 | 94.45292 | 101.5789 | 0.5959335 | 0.6401323 | NA | -0.5080571 | 19.67552 | 19.58928 | NA | 85.81854 | 23.38585 | 24.23917 | NA | 80.69997 |
23 | MN99-62 | MN01-46 | Yield | 102.51094 | 4.673196 | 98.71709 | 106.3048 | 0.0755600 | -0.0827658 | NA | 0.4010907 | 26.07342 | 28.37124 | NA | 72.67125 | 26.20580 | 28.16102 | NA | 74.51340 |
The code below compares the functions pop.predict
and pop.predict2
with respect to computation time and results:
time1 <- system.time({
capture.output(pop.predict.out <- pop.predict(
G.in = G.in_ex_imputed, y.in = y.in_ex, map.in = map.in_ex, crossing.table = cross.tab_ex,
nInd = 1000, nSim = 1, nCV.iter = 1, models = "rrBLUP"))
})
time2 <- system.time({pop.predict2.out <- pop.predict2(
G.in = G.in_ex_imputed, y.in = y.in_ex, map.in = map.in_ex,
crossing.table = cross.tab_ex,model = "rrBLUP")})
# Print the time (seconds) required for each function.
c(pop.predict = time1[[3]], pop.predict2 = time2[[3]])
#> pop.predict pop.predict2
#> 23.60 0.45
Plot results
predictions1 <- lapply(X = pop.predict.out$predictions, FUN = function(x) {
x1 <- as.data.frame(apply(X = x, MARGIN = 2, FUN = unlist), stringsAsFactors = FALSE)
cbind(x1[,c("Par1", "Par2")], sapply(X = x1[,-1:-2], as.numeric))
})
pop.predict.out1 <- predictions1$Yield_param.df[,c("Par1", "Par2", "pred.varG")]
pop.predict2.out1 <- subset(pop.predict2.out, trait == "Yield", c(parent1, parent2, pred_varG))
toplot <- merge(pop.predict.out1, pop.predict2.out1, by.x = c("Par1", "Par2"),
by.y = c("parent1", "parent2"))
plot(pred.varG ~ pred_varG, toplot,
xlab = "pop.predict2", ylab = "pop.predict",
main = "Comparsion of predicted genetic variance")
PopVar
also includes functions for predicting the mean, genetic variance, and superior progeny mean of multi-parent populations. The mppop.predict
function takes the same inputs as pop.predict
or pop.predict2
, and the mppop_predict2
function takes the same inputs as pop_predict2
. Both require the additional argument n.parents
, which will determine whether the populations are formed by 2- or 4-way matings (support for 8-way populations is forthcoming.)
Below is an example of using the mppop.predict
function:
# Generate predictions for all possible 4-way crosses of 10 sample parents
sample_parents <- sample(unique(unlist(cross.tab_ex)), 10)
mp_out <- mppop.predict(G.in = G.in_ex_imputed, y.in = y.in_ex, map.in = map.in_ex,
parents = sample_parents, n.parents = 4, models = "rrBLUP")
knitr::kable(head(subset(mp_out, trait == "Yield")))
parent1 | parent2 | parent3 | parent4 | trait | pred_mu | pred_varG | pred_musp_low | pred_musp_high | FHB | DON | Yield | Height | pred_cor_musp_low_FHB | pred_cor_musp_low_DON | pred_cor_musp_low_Yield | pred_cor_musp_low_Height | pred_cor_musp_high_FHB | pred_cor_musp_high_DON | pred_cor_musp_high_Yield | pred_cor_musp_high_Height | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | FEG141-18 | FEG148-56 | FEG66-06 | FEG69-38 | Yield | 98.40493 | 11.28119 | 92.51038 | 104.2995 | 0.4833239 | 0.5444313 | NA | -0.5193930 | 19.06880 | 19.25397 | NA | 82.43910 | 22.97332 | 23.63755 | NA | 77.23833 |
7 | FEG141-18 | FEG148-56 | FEG66-06 | FEG96-10 | Yield | 99.94246 | 10.31859 | 94.30501 | 105.5799 | 0.5540532 | 0.5974667 | NA | -0.4508954 | 17.88810 | 17.65336 | NA | 82.11881 | 22.24685 | 22.70391 | NA | 77.89269 |
11 | FEG141-18 | FEG148-56 | FEG66-06 | MN01-60 | Yield | 100.72094 | 11.78423 | 94.69641 | 106.7455 | 0.6228535 | 0.6181337 | NA | -0.5962415 | 18.82493 | 19.21492 | NA | 80.25695 | 24.36994 | 24.57592 | NA | 74.25710 |
15 | FEG141-18 | FEG148-56 | FEG66-06 | MN96-155 | Yield | 101.29767 | 13.99540 | 94.73221 | 107.8631 | 0.6418433 | 0.6859015 | NA | -0.5939293 | 19.28857 | 19.74097 | NA | 80.67510 | 25.14533 | 25.67244 | NA | 74.84535 |
19 | FEG141-18 | FEG148-56 | FEG66-06 | MN96-186 | Yield | 101.83161 | 11.53709 | 95.87058 | 107.7926 | 0.6502867 | 0.6718568 | NA | -0.6147056 | 18.62670 | 19.29492 | NA | 80.69938 | 24.34667 | 25.22889 | NA | 74.68221 |
23 | FEG141-18 | FEG148-56 | FEG66-06 | MN97-28 | Yield | 100.41829 | 9.53555 | 94.99895 | 105.8376 | 0.6111788 | 0.6572907 | NA | -0.5632576 | 18.92810 | 19.54156 | NA | 80.49933 | 24.15649 | 25.20063 | NA | 75.29882 |
Below is an example of using the mppop_predict2
function:
# Generate predictions for all possible 4-way crosses of 10 sample parents
mp_out2 <- mppop_predict2(M = G.in_ex_mat, y.in = y.in_ex, map.in = map.in_ex,
parents = sample_parents, n.parents = 4, models = "rrBLUP")
knitr::kable(head(subset(mp_out2, trait == "Yield")))
parent1 | parent2 | parent3 | parent4 | trait | pred_mu | pred_varG | pred_musp_low | pred_musp_high | FHB | DON | Yield | Height | pred_cor_musp_low_FHB | pred_cor_musp_low_DON | pred_cor_musp_low_Yield | pred_cor_musp_low_Height | pred_cor_musp_high_FHB | pred_cor_musp_high_DON | pred_cor_musp_high_Yield | pred_cor_musp_high_Height | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | FEG141-18 | FEG148-56 | FEG66-06 | FEG69-38 | Yield | 98.40493 | 11.28119 | 92.51038 | 104.2995 | 0.4833239 | 0.5444313 | NA | -0.5193930 | 19.06880 | 19.25397 | NA | 82.43910 | 22.97332 | 23.63755 | NA | 77.23833 |
7 | FEG141-18 | FEG148-56 | FEG66-06 | FEG96-10 | Yield | 99.94246 | 10.31859 | 94.30501 | 105.5799 | 0.5540532 | 0.5974667 | NA | -0.4508954 | 17.88810 | 17.65336 | NA | 82.11881 | 22.24685 | 22.70391 | NA | 77.89269 |
11 | FEG141-18 | FEG148-56 | FEG66-06 | MN01-60 | Yield | 100.72094 | 11.78423 | 94.69641 | 106.7455 | 0.6228535 | 0.6181337 | NA | -0.5962415 | 18.82493 | 19.21492 | NA | 80.25695 | 24.36994 | 24.57592 | NA | 74.25710 |
15 | FEG141-18 | FEG148-56 | FEG66-06 | MN96-155 | Yield | 101.29767 | 13.99540 | 94.73221 | 107.8631 | 0.6418433 | 0.6859015 | NA | -0.5939293 | 19.28857 | 19.74097 | NA | 80.67510 | 25.14533 | 25.67244 | NA | 74.84535 |
19 | FEG141-18 | FEG148-56 | FEG66-06 | MN96-186 | Yield | 101.83161 | 11.53709 | 95.87058 | 107.7926 | 0.6502867 | 0.6718568 | NA | -0.6147056 | 18.62670 | 19.29492 | NA | 80.69938 | 24.34667 | 25.22889 | NA | 74.68221 |
23 | FEG141-18 | FEG148-56 | FEG66-06 | MN97-28 | Yield | 100.41829 | 9.53555 | 94.99895 | 105.8376 | 0.6111788 | 0.6572907 | NA | -0.5632576 | 18.92810 | 19.54156 | NA | 80.49933 | 24.15649 | 25.20063 | NA | 75.29882 |
Bernardo, Rex. 2010. Breeding for Quantitative Traits in Plants. 2nd ed. Woodbury, Minnesota: Stemma Press.
Mohammadi, Mohsen, Tyler Tiede, and Kevin P. Smith. 2015. “PopVar: A Genome-Wide Procedure for Predicting Genetic Variance and Correlated Response in Biparental Breeding Populations.” Crop Science 55 (5): 2068–77. https://doi.org/10.2135/cropsci2015.01.0030.
Schnell, F. W., and H. F. Utz. 1975. “F1-leistung und elternwahl euphyder züchtung von selbstbefruchtern.” In Bericht über Die Arbeitstagung Der Vereinigung Österreichischer Pflanzenzüchter, 243–48. Gumpenstein, Austria: BAL Gumpenstein.