
Package ‘RcppHNSW’
July 18, 2022

Title 'Rcpp' Bindings for 'hnswlib', a Library for Approximate Nearest
Neighbors

Version 0.4.1

Description 'Hnswlib' is a C++ library for Approximate Nearest Neighbors. This
package provides a minimal R interface by relying on the 'Rcpp' package. See
<https://github.com/nmslib/hnswlib> for more on 'hnswlib'. 'hnswlib' is
released under Version 2.0 of the Apache License.

License GPL (>= 3)

URL https://github.com/jlmelville/rcpphnsw

BugReports https://github.com/jlmelville/rcpphnsw/issues

Encoding UTF-8

Imports methods, Rcpp (>= 0.11.3)

LinkingTo Rcpp

RoxygenNote 7.2.0

Suggests testthat, covr

NeedsCompilation yes

Author James Melville [aut, cre],
Aaron Lun [ctb],
Samuel Granjeaud [ctb],
Dmitriy Selivanov [ctb],
Yuxing Liao [ctb]

Maintainer James Melville <jlmelville@gmail.com>

Repository CRAN

Date/Publication 2022-07-18 07:20:02 UTC

R topics documented:
RcppHnsw-package . 2
hnsw_build . 2
hnsw_knn . 3
hnsw_search . 5

1

https://github.com/nmslib/hnswlib
https://github.com/jlmelville/rcpphnsw
https://github.com/jlmelville/rcpphnsw/issues

2 hnsw_build

Index 7

RcppHnsw-package Rcpp bindings for the hnswlib C++ library for approximate nearest
neighbors.

Description

hnswlib is a library implementing the Hierarchical Navigable Small World method for approximate
nearest neighbor search.

Details

Details about hnswlib are available at the reference listed below.

Author(s)

James Melville for the R interface; Yury Malkov for hnswlib itself.

Maintainer: James Melville <jlmelville@gmail.com>

References

https://github.com/nmslib/hnswlib

Malkov, Y. A., & Yashunin, D. A. (2016). Efficient and robust approximate nearest neighbor search
using Hierarchical Navigable Small World graphs. arXiv preprint arXiv:1603.09320.

hnsw_build Build an hnswlib nearest neighbor index

Description

Build an hnswlib nearest neighbor index

Usage

hnsw_build(
X,
distance = "euclidean",
M = 16,
ef = 200,
verbose = FALSE,
progress = "bar",
n_threads = 0,
grain_size = 1

)

https://github.com/nmslib/hnswlib

hnsw_knn 3

Arguments

X a numeric matrix of data to add. Each of the n rows is an item in the index.

distance Type of distance to calculate. One of:

• "l2" Squared L2, i.e. squared Euclidean.
• "euclidean" Euclidean.
• "cosine" Cosine.
• "ip" Inner product: 1 - sum(ai * bi), i.e. the cosine distance where the

vectors are not normalized. This can lead to negative distances and other
non-metric behavior.

M Controls the number of bi-directional links created for each element during in-
dex construction. Higher values lead to better results at the expense of memory
consumption. Typical values are 2 - 100, but for most datasets a range of 12 -
48 is suitable. Can’t be smaller than 2.

ef Size of the dynamic list used during construction. A larger value means a better
quality index, but increases build time. Should be an integer value between 1
and the size of the dataset.

verbose If TRUE, log messages to the console.

progress If "bar" (the default), also log a progress bar when verbose = TRUE. There is a
small but noticeable overhead (a few percent of run time) to tracking progress.
Set progress = NULL to turn this off. Has no effect if verbose = FALSE.

n_threads Maximum number of threads to use. The exact number is determined by grain_size.

grain_size Minimum amount of work to do (rows in X to add) per thread. If the number
of rows in X isn’t sufficient, then fewer than n_threads will be used. This is
useful in cases where the overhead of context switching with too many threads
outweighs the gains due to parallelism.

Value

an instance of a HnswL2, HnswCosine or HnswIp class.

Examples

irism <- as.matrix(iris[, -5])
ann <- hnsw_build(irism)
iris_nn <- hnsw_search(irism, ann, k = 5)

hnsw_knn Find Nearest Neighbors and Distances

Description

A k-nearest neighbor algorithm using the hnswlib library (https://github.com/nmslib/hnswlib).

https://github.com/nmslib/hnswlib

4 hnsw_knn

Usage

hnsw_knn(
X,
k = 10,
distance = "euclidean",
M = 16,
ef_construction = 200,
ef = 10,
verbose = FALSE,
progress = "bar",
n_threads = 0,
grain_size = 1

)

Arguments

X a numeric matrix of data to search Each of the n rows is an item in the index.
k Number of neighbors to return.
distance Type of distance to calculate. One of:

• "l2" Squared L2, i.e. squared Euclidean.
• "euclidean" Euclidean.
• "cosine" Cosine.
• "ip" Inner product: 1 - sum(ai * bi), i.e. the cosine distance where the

vectors are not normalized. This can lead to negative distances and other
non-metric behavior.

M Controls the number of bi-directional links created for each element during in-
dex construction. Higher values lead to better results at the expense of memory
consumption. Typical values are 2 - 100, but for most datasets a range of 12 -
48 is suitable. Can’t be smaller than 2.

ef_construction

Size of the dynamic list used during construction. A larger value means a better
quality index, but increases build time. Should be an integer value between 1
and the size of the dataset.

ef Size of the dynamic list used during search. Higher values lead to improved
recall at the expense of longer search time. Can take values between k and
the size of the dataset and may be greater or smaller than ef_construction.
Typical values are 100 - 2000.

verbose If TRUE, log messages to the console.
progress If "bar" (the default), also log a progress bar when verbose = TRUE. There is a

small but noticeable overhead (a few percent of run time) to tracking progress.
Set progress = NULL to turn this off. Has no effect if verbose = FALSE.

n_threads Maximum number of threads to use. The exact number is determined by grain_size.
grain_size Minimum amount of work to do (rows in X to add or search for) per thread. If

the number of rows in X isn’t sufficient, then fewer than n_threads will be used.
This is useful in cases where the overhead of context switching with too many
threads outweighs the gains due to parallelism.

hnsw_search 5

Value

a list containing:

• idx an n by k matrix containing the nearest neighbor indices.

• dist an n by k matrix containing the nearest neighbor distances.

Every item in the dataset is considered to be a neighbor of itself, so the first neighbor of item i
should always be i itself. If that isn’t the case, then any of M, ef_construction and ef may need
increasing.

Hnswlib Parameters

Some details on the parameters used for index construction and search, based on https://github.
com/nmslib/hnswlib/blob/master/ALGO_PARAMS.md:

• M Controls the number of bi-directional links created for each element during index construc-
tion. Higher values lead to better results at the expense of memory consumption, which is
around M * 8-10 bytes per bytes per stored element. High intrinsic dimensionalities will re-
quire higher values of M. A range of 2 - 100 is typical, but 12 - 48 is ok for most use cases.

• ef_construction Size of the dynamic list used during construction. A larger value means
a better quality index, but increases build time. Should be an integer value between 1 and
the size of the dataset. A typical range is 100 - 2000. Beyond a certain point, increasing
ef_construction has no effect. A sufficient value of ef_construction can be determined
by searching with ef = ef_construction, and ensuring that the recall is at least 0.9.

• ef Size of the dynamic list used during index search. Can differ from ef_construction and
be any value between k (the number of neighbors sought) and the number of elements in the
index being searched.

References

Malkov, Y. A., & Yashunin, D. A. (2016). Efficient and robust approximate nearest neighbor search
using Hierarchical Navigable Small World graphs. arXiv preprint arXiv:1603.09320.

Examples

iris_nn_data <- hnsw_knn(as.matrix(iris[, -5]), k = 10)

hnsw_search Search an hnswlib nearest neighbor index

Description

Search an hnswlib nearest neighbor index

https://github.com/nmslib/hnswlib/blob/master/ALGO_PARAMS.md
https://github.com/nmslib/hnswlib/blob/master/ALGO_PARAMS.md

6 hnsw_search

Usage

hnsw_search(
X,
ann,
k,
ef = 10,
verbose = FALSE,
progress = "bar",
n_threads = 0,
grain_size = 1

)

Arguments

X A numeric matrix of data to search for neighbors.

ann an instance of a HnswL2, HnswCosine or HnswIp class.

k Number of neighbors to return. This can’t be larger than the number of items that
were added to the index ann. To check the size of the index, call ann$size().

ef Size of the dynamic list used during search. Higher values lead to improved
recall at the expense of longer search time. Can take values between k and the
size of the dataset. Typical values are 100 - 2000.

verbose If TRUE, log messages to the console.

progress If "bar" (the default), also log a progress bar when verbose = TRUE. There is a
small but noticeable overhead (a few percent of run time) to tracking progress.
Set progress = NULL to turn this off. Has no effect if verbose = FALSE.

n_threads Maximum number of threads to use. The exact number is determined by grain_size.

grain_size Minimum amount of work to do (rows in X to search) per thread. If the number
of rows in X isn’t sufficient, then fewer than n_threads will be used. This is
useful in cases where the overhead of context switching with too many threads
outweighs the gains due to parallelism.

Value

a list containing:

• idx an n by k matrix containing the nearest neighbor indices.

• dist an n by k matrix containing the nearest neighbor distances.

Every item in the dataset is considered to be a neighbor of itself, so the first neighbor of item i
should always be i itself. If that isn’t the case, then any of M, ef_construction and ef may need
increasing.

Examples

irism <- as.matrix(iris[, -5])
ann <- hnsw_build(irism)
iris_nn <- hnsw_search(irism, ann, k = 5)

Index

hnsw_build, 2
hnsw_knn, 3
hnsw_search, 5
HnswCosine (RcppHnsw-package), 2
HnswIp (RcppHnsw-package), 2
HnswL2 (RcppHnsw-package), 2

Rcpp_HnswCosine-class
(RcppHnsw-package), 2

Rcpp_HnswIp-class (RcppHnsw-package), 2
Rcpp_HnswL2-class (RcppHnsw-package), 2
RcppHnsw-package, 2

7

	RcppHnsw-package
	hnsw_build
	hnsw_knn
	hnsw_search
	Index

