SBMSplitMerge: Inference for a Generalised SBM with a Split Merge Sampler
Inference in a Bayesian framework for a generalised stochastic block model. The generalised stochastic block model (SBM) can capture group structure in network data without requiring conjugate priors on the edge-states. Two sampling methods are provided to perform inference on edge parameters and block structure: a split-merge Markov chain Monte Carlo algorithm and a Dirichlet process sampler. Green, Richardson (2001) <doi:10.1111/1467-9469.00242>; Neal (2000) <doi:10.1080/10618600.2000.10474879>; Ludkin (2019) <arXiv:1909.09421>.
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=SBMSplitMerge
to link to this page.