
Package ‘SpaDES.core’
August 19, 2022

Type Package

Title Core Utilities for Developing and Running Spatially Explicit
Discrete Event Models

Description Provides the core framework for a discrete event system (DES) to
implement a complete data-to-decisions, reproducible workflow.
The core DES components facilitate modularity, and easily enable the user
to include additional functionality by running user-built modules.
Includes conditional scheduling, restart after interruption, packaging of
reusable modules, tools for developing arbitrary automated workflows,
automated interweaving of modules of different temporal resolution,
and tools for visualizing and understanding the DES project.
The suggested package 'NLMR' can be installed with
'install.packages(``NLMR'', repos = ``https://PredictiveEcology.r-universe.dev'')'.

URL https://spades-core.predictiveecology.org/,

https://github.com/PredictiveEcology/SpaDES.core

Date 2022-08-13

Version 1.1.0

Depends R (>= 4.0), quickPlot (>= 0.1.4), reproducible (>= 1.2.9)

Imports crayon, data.table (>= 1.11.0), fastdigest, igraph (>= 1.0.1),
lobstr, methods, qs (>= 0.21.1), raster (>= 2.5-8), Require (>=
0.0.7), stats, utils, whisker

Suggests codetools, covr, DiagrammeR (>= 0.8.2), dplyr, future,
future.callr, ggplot2, googledrive, httr, knitr, logging,
magrittr, NLMR (>= 1.1.1), pkgload, png, RColorBrewer (>=
1.1-2), rgdal, rmarkdown, roxygen2, rstudioapi, sp,
SpaDES.tools (>= 0.2.0), tcltk, terra, testthat (>= 1.0.2)

Additional_repositories https://predictiveecology.r-universe.dev/

Encoding UTF-8

Language en-CA

License GPL-3

VignetteBuilder knitr, rmarkdown

1

https://spades-core.predictiveecology.org/
https://github.com/PredictiveEcology/SpaDES.core
https://predictiveecology.r-universe.dev/

2 R topics documented:

BugReports https://github.com/PredictiveEcology/SpaDES.core/issues

ByteCompile yes

Collate 'Plots.R' 'module-dependencies-class.R' 'misc-methods.R'
'environment.R' 'helpers.R' 'simList-class.R' 'cache.R'
'check.R' 'priority.R' 'checkpoint.R' 'code-checking.R'
'convertToPackage.R' 'copy.R' 'debugging.R' 'downloadData.R'
'simulation-parseModule.R' 'simulation-simInit.R' 'load.R'
'memory-leaks.R' 'memory.R' 'modActiveBinding.R'
'module-define.R' 'module-dependencies-methods.R'
'module-repository.R' 'module-template.R' 'moduleCoverage.R'
'moduleMetadata.R' 'objectSynonyms.R' 'options.R' 'times.R'
'simList-accessors.R' 'plotting-diagrams.R' 'plotting.R'
'progress.R' 'project-template.R' 'reexports.R' 'restart.R'
'save.R' 'saveLoadSimList.R' 'simulation-spades.R'
'spades-classes.R' 'spades-core-deprecated.R'
'spades-core-package.R' 'suppliedElsewhere.R' 'zzz.R'

RoxygenNote 7.2.1

NeedsCompilation no

Author Alex M Chubaty [aut, cre] (<https://orcid.org/0000-0001-7146-8135>),
Eliot J B McIntire [aut] (<https://orcid.org/0000-0002-6914-8316>),
Yong Luo [ctb],
Steve Cumming [ctb],
Ceres Barros [ctb] (<https://orcid.org/0000-0003-4036-977X>),
Her Majesty the Queen in Right of Canada, as represented by the

Minister of Natural Resources Canada [cph]

Maintainer Alex M Chubaty <achubaty@for-cast.ca>

Repository CRAN

Date/Publication 2022-08-19 13:20:05 UTC

R topics documented:
SpaDES.core-package . 5
.addChangedAttr,simList-method . 13
.addTagsToOutput,simList-method . 14
.cacheMessage,simList-method . 15
.checkCacheRepo,list-method . 15
.fileExtensions . 16
.findSimList . 17
.parseElems,simList-method . 18
.preDigestByClass,simList-method . 18
.prepareOutput,simList-method . 19
.quickCheck . 20
.robustDigest,simList-method . 20
.tagsByClass,simList-method . 21
all.equal.simList . 22

https://github.com/PredictiveEcology/SpaDES.core/issues
https://orcid.org/0000-0001-7146-8135
https://orcid.org/0000-0002-6914-8316
https://orcid.org/0000-0003-4036-977X

R topics documented: 3

anyPlotting . 22
append_attr . 23
bindrows . 24
checkModule . 24
checkModuleLocal . 25
checkObject . 26
checkParams . 27
checksums . 27
classFilter . 28
clearCache,simList-method . 30
convertToPackage . 32
Copy,simList-method . 34
copyModule . 35
createsOutput . 36
defineEvent . 37
defineModule . 38
defineParameter . 40
depsEdgeList . 42
depsGraph . 43
dhour . 43
doEvent.checkpoint . 45
downloadData . 46
downloadModule . 49
envir . 51
eventDiagram . 52
events . 53
expectsInput . 55
experiment . 56
extractURL . 57
fileName . 57
getModuleVersion . 58
globals . 59
initialize,simList-method . 60
inputObjects . 60
inputs . 62
inSeconds . 65
loadPackages . 67
loadSimList . 68
makeMemoisable.simList . 69
maxTimeunit . 70
memoryUseThisSession . 70
minTimeunit . 71
moduleCodeFiles . 72
moduleCoverage . 72
moduleDefaults . 73
moduleDiagram . 74
moduleGraph . 75
moduleMetadata . 76

4 R topics documented:

moduleParams . 78
modules . 79
moduleVersion . 80
newModule . 82
newModuleCode . 83
newModuleDocumentation . 84
newModuleTests . 85
newProgressBar . 86
newProject . 86
newProjectCode . 87
objectDiagram . 88
objectSynonyms . 89
objs . 90
objSize.simList . 91
openModules . 92
outputs . 93
packages . 96
paramCheckOtherMods . 97
params . 98
paths . 100
Plot,simList-method . 103
Plots . 105
priority . 108
progressInterval . 108
rasterCreate . 110
rasterToMemory . 111
remoteFileSize . 112
restartR . 112
restartSpades . 114
rndstr . 115
saveFiles . 116
saveSimList . 118
scheduleConditionalEvent . 120
scheduleEvent . 122
show,simList-method . 123
simFile . 124
simInit . 124
simInitAndSpades . 130
simList-class . 133
spades . 135
spadesClasses . 140
spadesOptions . 141
suppliedElsewhere . 142
times . 143
updateList . 146
use_gha . 147
writeEventInfo . 147
writeRNGInfo . 148

SpaDES.core-package 5

zipModule . 148

Index 150

SpaDES.core-package Categorized overview of the ‘SpaDES.core‘ package

Description

This package allows implementation a variety of simulation-type models, with a focus on spatially
explicit models. The core simulation components are built upon a discrete event simulation frame-
work that facilitates modularity, and easily enables the user to include additional functionality by
running user-built simulation modules. Included are numerous tools to visualize various spatial data
formats, as well as non-spatial data. Much work has been done to speed up the core of the DES, with
current benchmarking as low as 56 microseconds overhead for each event (including scheduling,
sorting event queue, spawning event etc.) or 38 microseconds if there is no sorting (i.e., no sorting
occurs under simple conditions). Under most event conditions, therefore, the DES itself will con-
tribute very minimally compared to the content of the events, which may often be milliseconds to
many seconds each event.

Bug reports: <https://github.com/PredictiveEcology/SpaDES.core/issues>

Module repository: <https://github.com/PredictiveEcology/SpaDES-modules>

Wiki: <https://github.com/PredictiveEcology/SpaDES/wiki>

——————————————————————————————

1 Spatial discrete event simulation (‘SpaDES‘)

A collection of top-level functions for doing spatial discrete event simulation.

1.1 Simulations: There are two workhorse functions that initialize and run a simulation, and
third function for doing multiple spades runs:

[simInit()] Initialize a new simulation
[spades()] Run a discrete event simulation
‘experiment‘ In ‘SpaDES.experiment‘ package. Run multiple [spades()] calls
‘experiment2‘ In ‘SpaDES.experiment‘ package. Run multiple [spades()] calls

1.2 Events: Within a module, important simulation functions include:

[scheduleEvent()] Schedule a simulation event
[scheduleConditionalEvent()] Schedule a conditional simulation event
‘removeEvent‘ Remove an event from the simulation queue (not yet implemented)

6 SpaDES.core-package

2 The ‘simList‘ object class

The principle exported object class is the ‘simList‘. All ‘SpaDES‘ simulations operate on this object
class.

[simList()] The ’simList’ class

——————————————————————————————

3 ‘simList‘ methods

Collections of commonly used functions to retrieve or set slots (and their elements) of a [simList()]
object are summarized further below.

3.1 Simulation parameters:

[globals()] List of global simulation parameters.
[params()] Nested list of all simulation parameter.
[P()] Namespaced version of [params()] (i.e., do not have to specify module name).

3.2 loading from disk, saving to disk:

[inputs()] List of loaded objects used in simulation. (advanced)
[outputs()] List of objects to save during simulation. (advanced)

3.3 objects in the ‘simList‘:

[ls()], [objects()] Names of objects referenced by the simulation environment.
[ls.str()] List the structure of the simList objects.
[objs()] List of objects referenced by the simulation environment.

3.4 Simulation paths: Accessor functions for the ‘paths‘ slot and its elements.

[cachePath()] Global simulation cache path.
[modulePath()] Global simulation module path.
[inputPath()] Global simulation input path.
[outputPath()] Global simulation output path.
[rasterPath()] Global simulation temporary raster path.
[paths()] Global simulation paths (cache, modules, inputs, outputs, rasters).

3.5 Simulation times: Accessor functions for the ‘simtimes‘ slot and its elements.

[time()] Current simulation time, in units of longest module.
[start()] Simulation start time, in units of longest module.
[end()] Simulation end time, in units of longest module.

SpaDES.core-package 7

[times()] List of all simulation times (current, start, end), in units of longest module..

3.6 Simulation event queues: Accessor functions for the ‘events‘ and ‘completed‘ slots. By
default, the event lists are shown when the ‘simList‘ object is printed, thus most users will not
require direct use of these methods.

[events()] Scheduled simulation events (the event queue). (advanced)
[current()] Currently executing event. (advanced)
[completed()] Completed simulation events. (advanced)
[elapsedTime()] The amount of clock time that modules & events use

3.7 Modules, dependencies, packages: Accessor functions for the ‘depends‘, ‘modules‘, and
‘.loadOrder‘ slots. These are included for advanced users.

[depends()] List of simulation module dependencies. (advanced)
[modules()] List of simulation modules to be loaded. (advanced)
[packages()] Vector of required R libraries of all modules. (advanced)

3.8 ‘simList‘ environment: The [simList()] has a slot called ‘.xData‘ which is an environment.
All objects in the ‘simList‘ are actually in this environment, i.e., the ‘simList‘ is not a ‘list‘. In
R, environments use pass-by-reference semantics, which means that copying a ‘simList‘ object
using normal R assignment operation (e.g., ‘sim2 <- sim1‘), will not copy the objects contained
within the ‘.xData‘ slot. The two objects (‘sim1‘ and ‘sim2‘) will share identical objects within
that slot. Sometimes, this not desired, and a true copy is required.

[envir()] Access the environment of the simList directly (advanced)
[copy()] Deep copy of a simList. (advanced)

3.9 Checkpointing:

Accessor method Module Description
[checkpointFile()] ‘checkpoint‘ Name of the checkpoint file. (advanced)
[checkpointInterval()] ‘checkpoint‘ The simulation checkpoint interval. (advanced)

3.10 Progress Bar:

[progressType()] ‘.progress‘ Type of graphical progress bar used. (advanced)
[progressInterval()] ‘.progress‘ Interval for the progress bar. (advanced)

——————————————————————————————

8 SpaDES.core-package

4 Module operations

4.1 Creating, distributing, and downloading modules: Modules are the basic unit of ‘SpaDES‘.
These are generally created and stored locally, or are downloaded from remote repositories, in-
cluding our [SpaDES-modules](https://github.com/PredictiveEcology/SpaDES-modules) reposi-
tory on GitHub.

[checksums()] Verify (and optionally write) checksums for a module’s data files.
[downloadModule()] Open all modules nested within a base directory.
[getModuleVersion()] Get the latest module version # from module repository.
[newModule()] Create new module from template.
[newModuleDocumentation()] Create empty documentation for a new module.
[openModules()] Open all modules nested within a base directory.
[moduleMetadata()] Shows the module metadata.
[zipModule()] Zip a module and its associated files.

4.2 Module metadata: Each module requires several items to be defined. These comprise the
metadata for that module (including default parameter specifications, inputs and outputs), and are
currently written at the top of the module’s ‘.R‘ file.

[defineModule()] Define the module metadata
[defineParameter()] Specify a parameter’s name, value and set a default
[expectsInput()] Specify an input object’s name, class, description, ‘sourceURL‘ and other specifications
[createsOutput()] Specify an output object’s name, class, description and other specifications

There are also accessors for many of the metadata entries:

[timeunit()] Accesses metadata of same name
[citation()] Accesses metadata of same name
[documentation()] Accesses metadata of same name
[reqdPkgs()] Accesses metadata of same name
[inputObjects()] Accesses metadata of same name
[outputObjects()] Accesses metadata of same name

4.3 Module dependencies: Once a set of modules have been chosen, the dependency infor-
mation is automatically calculated once simInit is run. There are several functions to assist with
dependency information:

[depsEdgeList()] Build edge list for module dependency graph
[depsGraph()] Build a module dependency graph using ‘igraph‘

——————————————————————————————

SpaDES.core-package 9

5 Module functions

*A collection of functions that help with making modules can be found in the suggested ‘SpaDES.tools‘
package, and are summarized below.*

5.1 Spatial spreading/distances methods: Spatial contagion is a key phenomenon for spatially
explicit simulation models. Contagion can be modelled using discrete approaches or continuous
approaches. Several ‘SpaDES.tools‘ functions assist with these:

[SpaDES.tools::adj()] An optimized (i.e., faster) version of [raster::adjacent()]
[SpaDES.tools::cir()] Identify pixels in a circle around a [‘SpatialPoints*()‘][sp::SpatialPoints-class] object
[‘directionFromEachPoint()‘][SpaDES.tools::distanceFromEachPoint] Fast calculation of direction and distance surfaces
[SpaDES.tools::distanceFromEachPoint()] Fast calculation of distance surfaces
[SpaDES.tools::rings()] Identify rings around focal cells (e.g., buffers and donuts)
[SpaDES.tools::spokes()] Identify outward radiating spokes from initial points
[SpaDES.tools::spread()] Contagious cellular automata
[SpaDES.tools::spread2()] Contagious cellular automata, different algorithm, more robust
[SpaDES.tools::wrap()] Create a torus from a grid

5.2 Spatial agent methods: Agents have several methods and functions specific to them:

[SpaDES.tools::crw()] Simple correlated random walk function
[SpaDES.tools::heading()] Determines the heading between ‘SpatialPoints*‘
[quickPlot::makeLines()] Makes ‘SpatialLines‘ object for, e.g., drawing arrows
[‘move()‘][SpaDES.tools::crw] A meta function that can currently only take "crw"
[‘specificNumPerPatch()‘][SpaDES.tools::specnumperpatch-probs] Initiate a specific number of agents per patch

5.3 GIS operations: In addition to the vast amount of GIS operations available in R (mostly from
contributed packages such as ‘sp‘, ‘raster‘, ‘maps‘, ‘maptools‘ and many others), we provide the
following GIS-related functions:

[equalExtent()] Assess whether a list of extents are all equal

5.4 ’Map-reduce’–type operations: These functions convert between reduced and mapped
representations of the same data. This allows compact representation of, e.g., rasters that have
many individual pixels that share identical information.

[SpaDES.tools::rasterizeReduced()] Convert reduced representation to full raster.

5.5 Colors in ‘Raster*‘ objects: We likely will not want the default colours for every map. Here
are several helper functions to add to, set and get colors of ‘Raster*‘ objects:

[‘setColors()‘][quickPlot::getSetColors] Set colours for plotting ‘Raster*‘ objects
[getColors()] Get colours in a ‘Raster*‘ objects
[divergentColors()] Create a colour palette with diverging colours around a middle

10 SpaDES.core-package

5.6 Random Map Generation: It is often useful to build dummy maps with which to build
simulation models before all data are available. These dummy maps can later be replaced with
actual data maps.

[SpaDES.tools::gaussMap()] Creates a random map using Gaussian random fields
[SpaDES.tools::randomPolygons()] Creates a random polygon with specified number of classes

5.7 Checking for the existence of objects: ‘SpaDES‘ modules will often require the existence
of objects in the ‘simList‘. These are helpers for assessing this:

[checkObject()] Check for a existence of an object within a ‘simList‘
[Require::checkPath()] Checks the specified filepath for formatting consistencies

5.8 SELES-type approach to simulation: These functions are essentially skeletons and are not
fully implemented. They are intended to make translations from SELES (https://www.gowlland.ca/).
You must know how to use SELES for these to be useful:

[‘agentLocation()‘][SpaDES.tools::SELESagentLocation] Agent location
[SpaDES.tools::initiateAgents()] Initiate agents into a ‘SpatialPointsDataFrame‘
[‘numAgents()‘][SpaDES.tools::SELESnumAgents] Number of agents
[‘probInit()‘][SpaDES.tools::SELESprobInit] Probability of initiating an agent or event
[‘transitions()‘][SpaDES.tools::SELEStransitions] Transition probability

5.9 Miscellaneous: Functions that may be useful within a ‘SpaDES‘ context:

[SpaDES.tools::inRange()] Test whether a number lies within range [a,b]
[layerNames()] Get layer names for numerous object classes
[numLayers()] Return number of layers
[paddedFloatToChar()] Wrapper for padding (e.g., zeros) floating numbers to character

——————————————————————————————

6 Caching simulations and simulation components

Simulation caching uses the ‘reproducible‘ package.

Caching can be done in a variety of ways, most of which are up to the module developer. However,
the one most common usage would be to cache a simulation run. This might be useful if a simulation
is very long, has been run once, and the goal is just to retrieve final results. This would be an
alternative to manually saving the outputs.

See example in [spades()], achieved by using ‘cache = TRUE‘ argument.

[reproducible::Cache()] Caches a function, but often accessed as arg in [spades()]
[‘showCache()‘][reproducible::cache-tools] Shows information about the objects in the cache
[‘clearCache()‘][reproducible::cache-tools] Removes objects from the cache
[‘keepCache()‘][reproducible::cache-tools] Keeps only the objects described

SpaDES.core-package 11

A module developer can build caching into their module by creating cached versions of their func-
tions.

——————————————————————————————

7 Plotting

Much of the underlying plotting functionality is provided by quickPlot.
There are several user-accessible plotting functions that are optimized for modularity and speed of
plotting:

Commonly used:

[Plot()] The workhorse plotting function

Simulation diagrams:

[eventDiagram()] Gantt chart representing the events in a completed simulation.
[moduleDiagram()] Network diagram of simplified module (object) dependencies.
[objectDiagram()] Sequence diagram of detailed object dependencies.

Other useful plotting functions:

[clearPlot()] Helpful for resolving many errors
[clickValues()] Extract values from a raster object at the mouse click location(s)
[clickExtent()] Zoom into a raster or polygon map that was plotted with [Plot()]
[clickCoordinates()] Get the coordinates, in map units, under mouse click
[dev()] Specify which device to plot on, making a non-RStudio one as default
[newPlot()] Open a new default plotting device
[rePlot()] Replots all elements of device for refreshing or moving plot

——————————————————————————————

8 File operations

In addition to R’s file operations, we have added several here to aid in bulk loading and saving of
files for simulation purposes:

[loadFiles()] Load simulation objects according to a filelist
[rasterToMemory()] Read a raster from file to RAM
[saveFiles()] Save simulation objects according to outputs and params

12 SpaDES.core-package

——————————————————————————————

9 Sample modules included in package

Several dummy modules are included for testing of functionality. These can be found with ‘file.path(find.package("SpaDES.core"),
"sampleModules")‘.

‘randomLandscapes‘ Imports, updates, and plots several raster map layers
‘caribouMovement‘ A simple agent-based (a.k.a., individual-based) model
‘fireSpread‘ A simple model of a spatial spread process

——————————————————————————————

10 Package options

‘SpaDES‘ packages use the following [options()] to configure behaviour:

• ‘spades.browserOnError‘: If ‘TRUE‘, the default, then any error rerun the same event with
‘debugonce‘ called on it to allow editing to be done. When that browser is continued (e.g.,
with ’c’), then it will save it reparse it into the simList and rerun the edited version. This may
allow a spades call to be recovered on error, though in many cases that may not be the correct
behaviour. For example, if the simList gets updated inside that event in an iterative manner,
then each run through the event will cause that iteration to occur. When this option is ‘TRUE‘,
then the event will be run at least 3 times: the first time makes the error, the second time has
‘debugonce‘ and the third time is after the error is addressed. ‘TRUE‘ is likely somewhat
slower.

• ‘reproducible.cachePath‘: The default local directory in which to cache simulation outputs.
Default is a temporary directory (typically ‘/tmp/RtmpXXX/SpaDES/cache‘).

• ‘spades.inputPath‘: The default local directory in which to look for simulation inputs. Default
is a temporary directory (typically ‘/tmp/RtmpXXX/SpaDES/inputs‘).

• ‘spades.debug‘: The default debugging value ‘debug‘ argument in ‘spades()‘. Default is
‘TRUE‘.

• ‘spades.lowMemory‘: If true, some functions will use more memory efficient (but slower)
algorithms. Default ‘FALSE‘.

• ‘spades.moduleCodeChecks‘: Should the various code checks be run during ‘simInit‘. These
are passed to codetools::checkUsage. Default is given by the function, plus these :‘list(suppressParamUnused
= FALSE, suppressUndefined = TRUE, suppressPartialMatchArgs = FALSE, suppressNoLo-
calFun = TRUE, skipWith = TRUE)‘.

• ‘spades.modulePath‘: The default local directory where modules and data will be downloaded
and stored. Default is a temporary directory (typically ‘/tmp/RtmpXXX/SpaDES/modules‘).

• ‘spades.moduleRepo‘: The default GitHub repository to use when downloading modules via
‘downloadModule‘. Default ‘"PredictiveEcology/SpaDES-modules"‘.

• ‘spades.nCompleted‘: The maximum number of completed events to retain in the ‘completed‘
event queue. Default ‘1000L‘.

• ‘spades.outputPath‘: The default local directory in which to save simulation outputs. Default
is a temporary directory (typically ‘/tmp/RtmpXXX/SpaDES/outputs‘).

.addChangedAttr,simList-method 13

• ‘spades.recoveryMode‘: If this a numeric > 0 or TRUE, then the discrete event simulator will
take a snapshot of the objects in the simList that might change (based on metadata ‘outputO-
bjects‘ for that module), prior to initiating every event. This will allow the user to be able to
recover in case of an error or manual interruption (e.g., ‘Esc‘). If this is numeric, a copy of
that number of "most recent events" will be maintained so that the user can recover and restart
> 1 event in the past, i.e., redo some of the "completed" events. Default is ‘TRUE‘, i.e., it
will keep the state of the ‘simList‘ at the start of the current event. This can be recovered with
‘restartSpades‘ and the differences can be seen in a hidden object in the stashed ‘simList.‘
There is a message which describes how to find that.

• ‘spades.switchPkgNamespaces‘: Should the search path be modified to ensure a module’s
required packages are listed first? Default ‘FALSE‘ to keep computational overhead down.
If ‘TRUE‘, there should be no name conflicts among package objects, but it is much slower,
especially if the events are themselves fast.

• ‘spades.tolerance‘: The default tolerance value used for floating point number comparisons.
Default ‘.Machine$double.eps^0.5‘.

• ‘spades.useragent‘: The default user agent to use for downloading modules from GitHub.com.
Default ‘"https://github.com/PredictiveEcology/SpaDES"‘.

Author(s)

Maintainer: Alex M Chubaty <achubaty@for-cast.ca> (ORCID)

Authors:

• Eliot J B McIntire <eliot.mcintire@nrcan-rncan.gc.ca> (ORCID)

Other contributors:

• Yong Luo <Yong.Luo@gov.bc.ca> [contributor]

• Steve Cumming <Steve.Cumming@sbf.ulaval.ca> [contributor]

• Ceres Barros <cbarros@mail.ubc.ca> (ORCID) [contributor]

• Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Re-
sources Canada [copyright holder]

See Also

[spadesOptions()]

.addChangedAttr,simList-method

.addChangedAttr for simList objects

Description

This will evaluate which elements in the simList object changed following this Cached function
call. It will add a named character string as an attribute attr(x, ".Cache")$changed, indicating
which ones changed. When this function is subsequently called again, only these changed objects
will be returned. All other simList objects will remain unchanged.

https://orcid.org/0000-0001-7146-8135
https://orcid.org/0000-0002-6914-8316
https://orcid.org/0000-0003-4036-977X

14 .addTagsToOutput,simList-method

Usage

S4 method for signature 'simList'
.addChangedAttr(object, preDigest, origArguments, ...)

Arguments

object Any R object returned from a function
preDigest The full, element by element hash of the input arguments to that same function,

e.g., from .robustDigest

origArguments These are the actual arguments (i.e., the values, not the names) that were the
source for preDigest

... Anything passed to methods.

See Also

reproducible::.addChangedAttr.

reproducible::.addChangedAttr

.addTagsToOutput,simList-method

.addTagsToOutput for simList objects

Description

See reproducible::.addTagsToOutput.

Usage

S4 method for signature 'simList'
.addTagsToOutput(object, outputObjects, FUN, preDigestByClass)

Arguments

object Any R object.
outputObjects Optional character vector indicating which objects to return. This is only rele-

vant for list, environment (or similar) objects
FUN A function
preDigestByClass

A list, usually from .preDigestByClass

Author(s)

Eliot McIntire

See Also

reproducible::.addTagsToOutput

.cacheMessage,simList-method 15

.cacheMessage,simList-method

.cacheMessage for simList objects

Description

See reproducible::.cacheMessage.

Usage

S4 method for signature 'simList'
.cacheMessage(
object,
functionName,
fromMemoise = getOption("reproducible.useMemoise", TRUE)

)

Arguments

object Any R object.

functionName A character string indicating the function name

fromMemoise Logical. If TRUE, the message will be about recovery from memoised copy

See Also

reproducible::.cacheMessage

.checkCacheRepo,list-method

.checkCacheRepo for simList objects

Description

See reproducible::.checkCacheRepo.

Usage

S4 method for signature 'list'
.checkCacheRepo(object, create = FALSE)

Arguments

object An R object

create Logical. If TRUE, then it will create the path for cache.

16 .fileExtensions

See Also

reproducible::.checkCacheRepo

.fileExtensions File extensions map

Description

How to load various types of files in R.

This function has two roles: 1) to proceed with the loading of files that are in a simList or 2) as a
short cut to simInit(inputs = filelist). Generally not to be used by a user.

A data.frame with information on how to load various types of files in R, containing the columns:

• exts: the file extension;

• fun: the function to use for files with this file extension;

• package: the package from which to load fun.

Usage

.fileExtensions()

loadFiles(sim, filelist, ...)

S4 method for signature 'simList,missing'
loadFiles(sim, filelist, ...)

S4 method for signature 'missing,ANY'
loadFiles(sim, filelist, ...)

S4 method for signature 'missing,missing'
loadFiles(sim, filelist, ...)

.saveFileExtensions()

Arguments

sim simList object.

filelist list or data.frame to call loadFiles directly from the filelist as described
in Details

... Additional arguments.

Author(s)

Eliot McIntire and Alex Chubaty

.findSimList 17

See Also

inputs()

Examples

Not run:

Load random maps included with package
filelist <- data.frame(

files = dir(system.file("maps", package = "quickPlot"),
full.names = TRUE, pattern = "tif"),

functions = "rasterToMemory", package = "quickPlot"
)
sim1 <- loadFiles(filelist = filelist)
clearPlot()
if (interactive()) Plot(sim1$DEM)

Second, more sophisticated. All maps loaded at time = 0, and the last one is reloaded
at time = 10 and 20 (via "intervals").
Also, pass the single argument as a list to all functions...
specifically, when add "native = TRUE" as an argument to the raster function
files = dir(system.file("maps", package = "quickPlot"),

full.names = TRUE, pattern = "tif")
arguments = I(rep(list(native = TRUE), length(files)))
filelist = data.frame(

files = files,
functions = "raster::raster",
objectName = NA,
arguments = arguments,
loadTime = 0,
intervals = c(rep(NA, length(files)-1), 10)

)

sim2 <- loadFiles(filelist = filelist)

if we extend the end time and continue running, it will load an object scheduled
at time = 10, and it will also schedule a new object loading at 20 because
interval = 10
end(sim2) <- 20
sim2 <- spades(sim2) # loads the percentPine map 2 more times, once at 10, once at 20

End(Not run)

.findSimList Find simList in a nested list

Description

This is recursive, so it will find the all simLists even if they are deeply nested.

18 .preDigestByClass,simList-method

Usage

.findSimList(x)

Arguments

x any object, used here only when it is a list with at least one simList in it

.parseElems,simList-method

.parseElems for simList class objects

Description

See quickPlot::.parseElems.

Usage

S4 method for signature 'simList'
.parseElems(tmp, elems, envir)

Arguments

tmp A evaluated object

elems A character string to be parsed

envir An environment

See Also

quickPlot::.parseElems

.preDigestByClass,simList-method

Pre-digesting method for simList

Description

Takes a snapshot of simList objects.

Usage

S4 method for signature 'simList'
.preDigestByClass(object)

Arguments

object Any R object.

.prepareOutput,simList-method 19

Details

See reproducible::.preDigestByClass.

Author(s)

Eliot McIntire

See Also

reproducible::.preDigestByClass

.prepareOutput,simList-method

.prepareOutput for simList objects

Description

See reproducible::.prepareOutput.

Usage

S4 method for signature 'simList'
.prepareOutput(object, cacheRepo, ...)

Arguments

object Any R object

cacheRepo A repository used for storing cached objects. This is optional if Cache is used
inside a SpaDES module.

... Arguments passed to FUN

See Also

reproducible::.prepareOutput

20 .robustDigest,simList-method

.quickCheck The SpaDES.core variable to switch between quick and robust check-
ing

Description

A variable that can be use by module developers and model users to switch between a quick check
of functions like downloadData, Cache. The module developer must actually use this in their code.

Usage

.quickCheck

Format

An object of class logical of length 1.

.robustDigest,simList-method

.robustDigest for simList objects

Description

This is intended to be used within the Cache function, but can be used to evaluate what a simList
would look like once it is converted to a repeatably digestible object.

Usage

S4 method for signature 'simList'
.robustDigest(object, .objects, length, algo, quick, classOptions)

Arguments

object an object to digest.

.objects Character vector of objects to be digested. This is only applicable if there is
a list, environment (or similar) with named objects within it. Only this/these
objects will be considered for caching, i.e., only use a subset of the list, environ-
ment or similar objects. In the case of nested list-type objects, this will only be
applied outermost first.

length Numeric. If the element passed to Cache is a Path class object (from e.g.,
asPath(filename)) or it is a Raster with file-backing, then this will be passed
to digest::digest, essentially limiting the number of bytes to digest (for speed).
This will only be used if quick = FALSE. Default is getOption("reproducible.length"),
which is set to Inf.

.tagsByClass,simList-method 21

algo The algorithms to be used; currently available choices are md5, which is also
the default, sha1, crc32, sha256, sha512, xxhash32, xxhash64, murmur32,
spookyhash and blake3.

quick Logical or character. If TRUE, no disk-based information will be assessed, i.e.,
only memory content. See Details section about quick in Cache.

classOptions Optional list. This will pass into .robustDigest for specific classes. Should be
options that the .robustDigest knows what to do with.

Details

See reproducible::.robustDigest(). This method strips out stuff from a simList class object
that would make it otherwise not reproducibly digestible between sessions, operating systems, or
machines. This will likely still not allow identical digest results across R versions.

Author(s)

Eliot McIntire

See Also

reproducible::.robustDigest()

.tagsByClass,simList-method

.tagsByClass for simList objects

Description

See reproducible::.tagsByClass. Adds current moduleName, eventType, eventTime, and function:spades
as userTags.

Usage

S4 method for signature 'simList'
.tagsByClass(object)

Arguments

object Any R object.

Author(s)

Eliot McIntire

See Also

reproducible::.tagsByClass

22 anyPlotting

all.equal.simList All equal method for simLists

Description

This function removes a few attributes that are added internally by SpaDES.core and are not relevant
to the all.equal. One key element removed is any time stamps, as these are guaranteed to be
different.

Usage

S3 method for class 'equal.simList'
all(target, current, ...)

Arguments

target R object.

current other R object, to be compared with target.

... further arguments for different methods, notably the following two, for numeri-
cal comparison:

Value

See base::all.equal()

anyPlotting Test whether there should be any plotting from .plot parameter

Description

This will do all the various tests needed to determine whether plotting of one sort or another will
occur. Testing any of the types as listed in Plots() argument types. Only the first 3 letters of the
type are required.

Usage

anyPlotting(.plots)

Arguments

.plots Usually will be the P(sim)$.plots is used within a module.

append_attr 23

append_attr Add a module to a moduleList

Description

Ordinary base lists and vectors do not retain their attributes when subsetted or appended. This
function appends items to a list while preserving the attributes of items in the list (but not of the list
itself).

Usage

append_attr(x, y)

S4 method for signature 'list,list'
append_attr(x, y)

Arguments

x, y A list of items with optional attributes.

Details

Similar to updateList but does not require named lists.

Value

An updated list with attributes.

Author(s)

Alex Chubaty and Eliot McIntire

Examples

library(igraph) # igraph exports magrittr's pipe operator
tmp1 <- list("apple", "banana") %>% lapply(., `attributes<-`, list(type = "fruit"))
tmp2 <- list("carrot") %>% lapply(., `attributes<-`, list(type = "vegetable"))
append_attr(tmp1, tmp2)
rm(tmp1, tmp2)

24 checkModule

bindrows Simple wrapper around data.table::rbindlist

Description

This simply sets defaults to fill = TRUE, and use.names = TRUE

Usage

bindrows(...)

Arguments

... 1 or more data.frame, data.table, or list objects

checkModule Check for the existence of a remote module

Description

Looks in the remote repo for a module named name.

Usage

checkModule(name, repo)

S4 method for signature 'character,character'
checkModule(name, repo)

S4 method for signature 'character,missing'
checkModule(name)

Arguments

name Character string giving the module name.

repo GitHub repository name. Default is "PredictiveEcology/SpaDES-modules",
which is specified by the global option spades.moduleRepo.

Author(s)

Eliot McIntire and Alex Chubaty

checkModuleLocal 25

checkModuleLocal Check for the existence of a module locally

Description

Looks the module path for a module named name, and checks for existence of all essential module
files listed below.

Usage

checkModuleLocal(name, path, version)

S4 method for signature 'character,character,character'
checkModuleLocal(name, path, version)

S4 method for signature 'character,ANY,ANY'
checkModuleLocal(name, path, version)

Arguments

name Character string giving the module name.

path Local path to modules directory. Default is specified by the global option spades.modulePath.

version Character specifying the desired module version.

Details

• ‘data/CHECKSUMS.txt’

• ‘name.R’

Value

Logical indicating presence of the module (invisibly).

Author(s)

Alex Chubaty

26 checkObject

checkObject Check for existence of object(s) referenced by a objects slot of a
simList object

Description

Check that a named object exists in the provide simList environment slot, and optionally has
desired attributes.

Usage

checkObject(sim, name, object, layer, ...)

S4 method for signature 'simList,missing,Raster,character'
checkObject(sim, name, object, layer, ...)

S4 method for signature 'simList,missing,ANY,missing'
checkObject(sim, name, object, layer, ...)

S4 method for signature 'simList,character,missing,missing'
checkObject(sim, name, object, layer, ...)

S4 method for signature 'simList,character,missing,character'
checkObject(sim, name, object, layer, ...)

S4 method for signature 'missing,ANY,missing,ANY'
checkObject(sim, name, object, layer, ...)

Arguments

sim A simList() object.

name A character string specifying the name of an object to be checked.

object An object. This is mostly used internally, or with layer, because it will fail if the
object does not exist.

layer Character string, specifying a layer name in a Raster, if the name is a Raster*
object.

... Additional arguments. Not implemented.

Value

Invisibly return TRUE indicating object exists; FALSE if not.

Author(s)

Alex Chubaty and Eliot McIntire

checkParams 27

See Also

library().

checkParams Check use and existence of params passed to simulation.

Description

Checks that all parameters passed are used in a module, and that all parameters used in a module
are passed.

Usage

checkParams(sim, coreParams, ...)

S4 method for signature 'simList,list'
checkParams(sim, coreParams, ...)

Arguments

sim A simList simulation object.

coreParams List of default core parameters.

... Additional arguments. Not implemented.

Value

Invisibly return TRUE indicating object exists; FALSE if not. Sensible messages are be produced
identifying missing parameters.

Author(s)

Alex Chubaty

checksums Calculate checksum for a module’s data files

Description

Verify (and optionally write) checksums for data files in a module’s ‘data/’ subdirectory. The
file ‘data/CHECKSUMS.txt’ contains the expected checksums for each data file. Checksums are
computed using reproducible:::.digest, which is simply a wrapper around digest::digest.

Usage

checksums(module, path, ...)

28 classFilter

Arguments

module Character string giving the name of the module.

path Character string giving the path to the module directory.

... Passed to reproducible::Checksums(), notably, write, quickCheck, checksumFile
and files.

Details

Modules may require data that for various reasons cannot be distributed with the module source
code. In these cases, the module developer should ensure that the module downloads and extracts
the data required. It is useful to not only check that the data files exist locally but that their check-
sums match those expected.

Note

In version 1.2.0 and earlier, two checksums per file were required because of differences in the
checksum hash values on Windows and Unix-like platforms. Recent versions use a different (faster)
algorithm and only require one checksum value per file. To update your ‘CHECKSUMS.txt’ files
using the new algorithm:

1. specify your module (moduleName <- "my_module");

2. use a temp dir to ensure all modules get fresh copies of the data (tmpdir <- file.path(tempdir(),
"SpaDES_modules"));

3. download your module’s data to the temp dir (downloadData(moduleName, tmpdir));

4. initialize a dummy simulation to ensure any ’data prep’ steps in the .inputObjects section
are run (simInit(modules = moduleName));

5. recalculate your checksums and overwrite the file (checksums(moduleName, tmpdir, write
= TRUE));

6. copy the new checksums file to your working module directory (the one not in the temp dir)
(file.copy(from = file.path(tmpdir, moduleName, 'data', 'CHECKSUMS.txt'), to = file.path('path/to/my/moduleDir',
moduleName, 'data', 'CHECKSUMS.txt'), overwrite = TRUE)).

classFilter Filter objects by class

Description

Based on https://stackoverflow.com/a/5158978/1380598.

https://stackoverflow.com/a/5158978/1380598

classFilter 29

Usage

classFilter(x, include, exclude, envir)

S4 method for signature 'character,character,character,environment'
classFilter(x, include, exclude, envir)

S4 method for signature 'character,character,character,missing'
classFilter(x, include, exclude)

S4 method for signature 'character,character,missing,environment'
classFilter(x, include, envir)

S4 method for signature 'character,character,missing,missing'
classFilter(x, include)

Arguments

x Character vector of object names to filter, possibly from ls.

include Class(es) to include, as a character vector.

exclude Optional class(es) to exclude, as a character vector.

envir The environment ins which to search for objects. Default is the calling environ-
ment.

Value

Vector of object names matching the class filter.

Note

inherits() is used internally to check the object class, which can, in some cases, return results
inconsistent with is. See https://stackoverflow.com/a/27923346/1380598. These (known)
cases are checked manually and corrected.

Author(s)

Alex Chubaty

Examples

Not run:
from global environment
a <- list(1:10) # class `list`
b <- letters # class `character`
d <- stats::runif(10) # class `numeric`
f <- sample(1L:10L) # class `numeric`, `integer`
g <- lm(jitter(d) ~ d) # class `lm`
h <- glm(jitter(d) ~ d) # class `lm`, `glm`
classFilter(ls(), include=c("character", "list"))
classFilter(ls(), include = "numeric")

https://stackoverflow.com/a/27923346/1380598

30 clearCache,simList-method

classFilter(ls(), include = "numeric", exclude = "integer")
classFilter(ls(), include = "lm")
classFilter(ls(), include = "lm", exclude = "glm")
rm(a, b, d, f, g, h)

End(Not run)

from local (e.g., function) environment
local({

e <- environment()
a <- list(1:10) # class `list`
b <- letters # class `character`
d <- stats::runif(10) # class `numeric`
f <- sample(1L:10L) # class `numeric`, `integer`
g <- lm(jitter(d) ~ d) # class `lm`
h <- glm(jitter(d) ~ d) # class `lm`, `glm`
classFilter(ls(), include=c("character", "list"), envir = e)
classFilter(ls(), include = "numeric", envir = e)
classFilter(ls(), include = "numeric", exclude = "integer", envir = e)
classFilter(ls(), include = "lm", envir = e)
classFilter(ls(), include = "lm", exclude = "glm", envir = e)
rm(a, b, d, e, f, g, h)

})

from another environment
e = new.env(parent = emptyenv())
e$a <- list(1:10) # class `list`
e$b <- letters # class `character`
e$d <- stats::runif(10) # class `numeric`
e$f <- sample(1L:10L) # class `numeric`, `integer`
e$g <- lm(jitter(e$d) ~ e$d) # class `lm`
e$h <- glm(jitter(e$d) ~ e$d) # class `lm`, `glm`
classFilter(ls(e), include=c("character", "list"), envir = e)
classFilter(ls(e), include = "numeric", envir = e)
classFilter(ls(e), include = "numeric", exclude = "integer", envir = e)
classFilter(ls(e), include = "lm", envir = e)
classFilter(ls(e), include = "lm", exclude = "glm", envir = e)
rm(a, b, d, f, g, h, envir = e)
rm(e)

clearCache,simList-method

clearCache for simList objects

Description

This will take the cachePath(object) and pass

This will take the cachePath(object) and pass

This will take the cachePath(object) and pass

clearCache,simList-method 31

Usage

S4 method for signature 'simList'
clearCache(
x,
userTags = character(),
after = NULL,
before = NULL,
ask = getOption("reproducible.ask"),
useCloud = FALSE,
cloudFolderID = getOption("reproducible.cloudFolderID", NULL),
drv = getOption("reproducible.drv", RSQLite::SQLite()),
conn = getOption("reproducible.conn", NULL),
...

)

S4 method for signature 'simList'
showCache(
x,
userTags = character(),
after = NULL,
before = NULL,
drv = getOption("reproducible.drv", RSQLite::SQLite()),
conn = getOption("reproducible.conn", NULL),
...

)

S4 method for signature 'simList'
keepCache(
x,
userTags = character(),
after = NULL,
before = NULL,
ask = getOption("reproducible.ask"),
drv = getOption("reproducible.drv", RSQLite::SQLite()),
conn = getOption("reproducible.conn", NULL),
...

)

Arguments

x A simList or a directory containing a valid Cache repository. Note: For compat-
ibility with Cache argument, cacheRepo can also be used instead of x, though x
will take precedence.

userTags Character vector. If used, this will be used in place of the after and before.
Specifying one or more userTag here will clear all objects that match those
tags. Matching is via regular expression, meaning partial matches will work
unless strict beginning (^) and end ($) of string characters are used. Matching
will be against any of the 3 columns returned by showCache(), i.e., artifact,

32 convertToPackage

tagValue or tagName. Also, length userTags > 1, then matching is by ‘and‘.
For ‘or‘ matching, use | in a single character string. See examples.

after A time (POSIX, character understandable by data.table). Objects cached after
this time will be shown or deleted.

before A time (POSIX, character understandable by data.table). Objects cached before
this time will be shown or deleted.

ask Logical. If FALSE, then it will not ask to confirm deletions using clearCache or
keepCache. Default is TRUE

useCloud Logical. If TRUE, then every object that is deleted locally will also be deleted in
the cloudFolderID, if it is non-NULL

cloudFolderID A googledrive dribble of a folder, e.g., using drive_mkdir(). If left as NULL,
the function will create a cloud folder with name from last two folder lev-
els of the cacheRepo path, : paste0(basename(dirname(cacheRepo)), "_",
basename(cacheRepo)). This cloudFolderID will be added to options("reproducible.cloudFolderID"),
but this will not persist across sessions. If this is a character string, it will treat
this as a folder name to create or use on GoogleDrive.

drv an object that inherits from DBIDriver, or an existing DBIConnection object
(in order to clone an existing connection).

conn A DBIConnection object, as returned by dbConnect().
... Other arguments. Currently, regexp, a logical, can be provided. This must be

TRUE if the use is passing a regular expression. Otherwise, userTags will need
to be exact matches. Default is missing, which is the same as TRUE. If there
are errors due to regular expression problem, try FALSE. For cc, it is passed to
clearCache, e.g., ask, userTags

convertToPackage Convert standard module code into an R package

Description

EXPERIMENTAL – USE WITH CAUTION. This function will only create the necessary source files
so that all the code can be used (and installed) like an R package. This function does not install any-
thing (e.g., devtools::install). After running this function, simInit will automatically detect
that this is now a package and will load the functions (via pkgload::load_all) from the source
files. This will have the effect that it emulates the "non-package" behaviour of a SpaDES module
exactly. After running this function, current tests show no impact on module behaviour, other than
event-level and module-level Caching will show changes and will be rerun. Function-level Caching
appears unaffected. In other words, this should cause no changes to running the module code via
simInit and spades.

Usage

convertToPackage(
module = NULL,
path = getOption("spades.modulePath"),
buildDocuments = TRUE

)

convertToPackage 33

Arguments

module Character string of module name, without path

path Character string of modulePath. Defaults to getOption("spades.modulePath")

buildDocuments A logical. If TRUE, the default, then the documentation will be built, if any exists,
using roxygen2::roxygenise

Details

This will move all functions that are not already in an .R file in the R folder into that folder, one
function per file, including the doEvent.xxx function. It will not touch any other functions already
in the "R" folder. It will also create and fill a minimal DESCRIPTION file. This will leave the
defineModule function call as the only code in the main module file. This defineModule and a
doEvent.xxx are the only 2 elements that are required for an R package to be considered a SpaDES
module. With these changes, the module should still function normally, but will be able to act
like an R package, e.g., for writing function documentation with roxygen2, using the testthat
infrastructure, etc.

This function is intended to be run once for a module that was created using the "standard" SpaDES
module structure (e.g., from a newModule call). There is currently no way to "revert" the changes
from R (though it can be done using version control utilities if all files are under version control, e.g.,
GitHub). Currently SpaDES.core identifies a module as being a package if it has a DESCRIPTION
file, or if it has been installed to the .libPaths() e.g., via devtools::install or the like. So one
can simply remove the package from .libPaths and delete the DESCRIPTION file and SpaDES.core
will treat it as a normal module.

Value

This is run for its side effects. There will be a new or modified DESCRIPTION file in the root directory
of the module. Any functions that were in the main module script (i.e., the .R file whose filename
is the name of the module and is in the root directory of the module) will be moved to individual
.R files in the R folder. Any function with a dot prefix will have the dot removed in its respective
filename, but the function name is unaffected.

Currently, SpaDES.core does not install the package under any circumstances. It will load it via
pkgdown::load_all, and optionally (option("spades.moduleDocument" = TRUE)) build docu-
mentation via roxygen2::roxygenise within the simInit call. This means that any modifications
to source code will be read in during the simInit call, as is the practice when a module is not a
package.

Exported functions

The only function that will be exported by default is the doEvent.xxx, where xxx is the module
name. If any other module is to be exported, it must be explicitly exported with e.g., @export, and
then building the NAMESPACE file, e.g., via devtools::document(moduleRootPath). NOTE: as
long as all the functions are being used inside each other, and they all can be traced back to a call in
doEvent.xxx, then there is no need to export anything else.

34 Copy,simList-method

DESCRIPTION

The DESCRIPTION file that is created (destroying any existing DESCRIPTION file) with this function
will have several elements that a user may wish to change. Notably, all packages that were in
reqdPkgs in the SpaDES module metadata will be in the Imports section of the DESCRIPTION.
To accommodate the need to see these functions, a new R script, imports.R will be created with
@import for each package in reqdPkgs of the module metadata. However, if a module already
has used @importFrom for importing a function from a package, then the generic @import will
be omitted for that (those) package(s). So, a user should likely follow standard R package best
practices and use @importFrom to identify the specific functions that are required within external
packages, thereby limiting function name collisions (and the warnings that come with them).

Other elements of a standard DESCRIPTION file that will be missing or possibly inappropriately short
are Title, Description, URL, BugReports.

Installing as a package

There is no need to "install" the source code as a package because simInit will load it on the fly.
But, there may be reasons to install it, e.g., to have access to individual functions, help manual,
running tests etc. To do this, simply use the devtools::install(pathToModuleRoot). Even if it
is installed, simInit will nevertheless run pkgload::load_all to ensure the spades call will be
using the current source code.

Copy,simList-method Copy for simList class objects

Description

Because a simList works with an environment to hold all objects, all objects within that slot are pass-
by-reference. That means it is not possible to simply copy an object with an assignment operator:
the two objects will share the same objects. As one simList object changes so will the other. when
this is not the desired behaviour, use this function. NOTE: use capital C, to limit confusion with
data.table::copy() See reproducible::Copy().

Usage

S4 method for signature 'simList'
Copy(object, objects, queues, ...)

Arguments

object An R object (likely containing environments) or an environment.

objects Whether the objects contained within the simList environment should be copied.
Default TRUE, which may be slow.

queues Logical. Should the events queues (events, current, completed) be deep
copied via data.table::copy

... Only used for custom Methods

copyModule 35

Details

simList objects can contain a lot of information, much of which could be in pass-by-reference
objects (e.g., data.table class), and objects that are file-backed, such as some Raster*-class
objects. For all the objects that are file-backed, it is likely very important to give unique file-backed
directories. This should be passed here, which gets passed on to the many methods of Copy in
reproducible.

Author(s)

Eliot McIntire

See Also

reproducible::Copy()

copyModule Create a copy of an existing module

Description

Create a copy of an existing module

Usage

copyModule(from, to, path, ...)

S4 method for signature 'character,character,character'
copyModule(from, to, path, ...)

S4 method for signature 'character,character,missing'
copyModule(from, to, path, ...)

Arguments

from The name of the module to copy.

to The name of the copy.

path The path to a local module directory. Defaults to the path set by the spades.modulePath
option. See setPaths().

... Additional arguments to file.copy, e.g., overwrite = TRUE.

Value

Invisible logical indicating success (TRUE) or failure (FALSE).

Author(s)

Alex Chubaty

36 createsOutput

Examples

Not run: copyModule(from, to)

createsOutput Define an output object of a module

Description

Used to specify an output object’s name, class, description and other specifications.

Usage

createsOutput(objectName, objectClass, desc, ...)

S4 method for signature 'ANY,ANY,ANY'
createsOutput(objectName, objectClass, desc, ...)

S4 method for signature 'character,character,character'
createsOutput(objectName, objectClass, desc, ...)

Arguments

objectName Character string to define the output object’s name.
objectClass Character string to specify the output object’s class.
desc Text string providing a brief description of the output object. If there are extra

spaces or carriage returns, these will be stripped, allowing for multi-line charac-
ter strings without using paste or multiple quotes.

... Other specifications of the output object.

Value

A data.frame suitable to be passed to outputObjects in a module’s metadata.

Author(s)

Yong Luo

Examples

outputObjects <- bindrows(
createsOutput(objectName = "outputObject1", objectClass = "character",

desc = "this is for example"),
createsOutput(objectName = "outputObject2", objectClass = "numeric",

desc = "this is for example",
otherInformation = "I am the second output object")

)

defineEvent 37

defineEvent Alternative way to define events in SpaDES.core

Description

There are two ways to define what occurs during an event: defining a function called doEvent.moduleName,
where moduleName is the actual module name. This approach is the original approach used in
SpaDES.core, and it must have an explicit switch statement branching on eventType. The newer
approach (still experimental) uses defineEvent. Instead of creating the function called, doEvent.XXXX,
where XXXX is the module name, it creates one function for each event, each with the name
doEvent.XXXX.YYYY, where YYYY is the event name. This may be a little bit cleaner, but both with
still work.

Usage

defineEvent(sim, eventName = "init", code, moduleName = NULL, envir)

Arguments

sim A simList

eventName Character string of the desired event name to define. Default is "init"

code An expression that defines the code to execute during the event. This will be
captured, and pasted into a new function (doEvent.XXXX.YYYY), where XXXX is
the moduleName and YYYY is the eventName, remaining unevaluated until that
new function is called.

moduleName Character string of the name of the module. If this function is used within a
module, then it will try to find the module name.

envir An optional environment to specify where to put the resulting function. The
default will place a function called doEvent.moduleName.eventName in the
module function location, i.e., sim$.mods[[moduleName]]. However, if this
location does not exist, then it will place it in the parent.frame(), with a mes-
sage. Normally, especially, if used within SpaDES module code, this should be
left missing.

See Also

defineModule(), simInit(), scheduleEvent()

Examples

sim <- simInit()

these put the functions in the parent.frame() which is .GlobalEnv for an interactive user
defineEvent(sim, "init", moduleName = "thisTestModule", code = {

sim <- Init(sim) # initialize
Now schedule some different event for "current time", i.e., will
be put in the event queue to run *after* this current event is finished

38 defineModule

sim <- scheduleEvent(sim, time(sim), "thisTestModule", "grow")
}, envir = envir(sim))

defineEvent(sim, "grow", moduleName = "thisTestModule", code = {
sim <- grow(sim) # grow
Now schedule this same event for "current time plus 1", i.e., a "loop"
sim <- scheduleEvent(sim, time(sim) + 1, "thisTestModule", "grow") # for "time plus 1"

})

Init <- function(sim) {
sim$messageToWorld <- "Now the sim has an object in it that can be accessed"
sim$size <- 1 # initializes the size object --> this can be anything, Raster, list, whatever
message(sim$messageToWorld)
return(sim) # returns all the things you added to sim as they are in the simList

}

grow <- function(sim) {
sim$size <- sim$size + 1 # increments the size
message(sim$size)
return(sim)

}

schedule that first "init" event
sim <- scheduleEvent(sim, 0, "thisTestModule", "init")
Look at event queue
events(sim) # shows the "init" we just added
Not run:

this is skipped when running in automated tests; it is fine in interactive use
out <- spades(sim)

End(Not run)

defineModule Define a new module.

Description

Specify a new module’s metadata as well as object and package dependencies. Packages are loaded
during this call. Any or all of these can be missing, with missing values set to defaults

Usage

defineModule(sim, x)

S4 method for signature 'simList,list'
defineModule(sim, x)

defineModule 39

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

x A list with a number of named elements, referred to as the metadata. See details.

Value

Updated simList object.

Required metadata elements

name Module name. Must match the filename (without the .R extension). This is currently not parsed by SpaDES; it is for human readers only.
description Brief description of the module. This is currently not parsed by SpaDES; it is for human readers only.
keywords Author-supplied keywords. This is currently not parsed by SpaDES; it is for human readers only.
childModules If this contains any character vector, then it will be treated as a parent module. If this is a parent module, then only this list entry will be read. For normal, i.e., ’child modules’, this should be character(0) or NA. If a character vector is provided, then these must be the names of the modules located in the same file path as this parent module that will be loaded during the simInit.
authors Module author information (as a vector of person() objects. This is currently not parsed by SpaDES; it is for human readers only.
version Module version number (will be coerced to numeric_version() if a character or numeric are supplied). The module developer should update manually this with each change that is made to the module. See https://semver.org/ for a widely accepted standard for version numbering.
spatialExtent The spatial extent of the module supplied via raster::extent. This is currently unimplemented. Once implemented, this should define what spatial region this module is scientifically reasonable to be used in.
timeframe Vector (length 2) of POSIXt dates specifying the temporal extent of the module. Currently unimplemented. Once implemented, this should define what time frame this module is scientifically reasonable to be used for.
timeunit Time scale of the module (e.g., "day", "year"). If this is not specified, then .timeunitDefault() will be used. It indicates what ’1’ unit of time means for this module. SpaDES interprets this and if modules have different timeunit values then it will correctly schedule each module, using the smallest (currently the default) timeunit as the ’model’ timeunit in the spades call.
citation List of character strings specifying module citation information. Alternatively, a list of filenames of .bib or similar files. This is currently not parsed by SpaDES; it is for human readers only.
documentation List of filenames referring to module documentation sources. This is currently not parsed by SpaDES; it is for human readers only.

reqdPkgs List of R package names required by the module. These packages will be loaded when simInit is called. Require::Require() will be used internally to load if available, and install if not available. Because Require::Require() can also download from GitHub.com, these packages can specify package names stored on GitHub, e.g., "PredictiveEcology/SpaDES.core@development".
parameters A data.frame specifying the parameters used in the module. Usually produced by rbind-ing the outputs of multiple defineParameter() calls. These parameters indicate the default values that will be used unless a module user overrides them with the params argument in the simInit() call. The minimum and maximum are currently used by the SpaDES.shiny::shine function and the POM function, and they should indicate the range of values that are reasonable scientifically.
inputObjects A data.frame specifying the data objects expected as inputs to the module, with columns objectName (class character), objectClass (class character), sourceURL (class character), and other (currently spades does nothing with this column). This data.frame identifies the objects that are expected, but does not do any loading of that object into the simList. The sourceURL gives the developer the opportunity to identify the source of a data file that can be used with the model. This URL will be used if the user calls downloadData (or downloadModule(..., data = TRUE). If the raw data must be modified, the developer can use create a function called .inputObjects in their module. That function will be run during the simInit call. The developer should ensure that if the object is supplied by the module user as an argument in the simInit, then the .inputObjects should not be run, i.e., use an (is.null(sim$xxx))).
outputObjects A data.frame specifying the data objects output by the module, with columns identical to those in inputObjects. Like inputObjects above, this only identifies the objects that this module will output into the simList. The module developer must create the necessary functions that will cause these objects to be put into the simList.

Author(s)

Alex Chubaty

See Also

moduleDefaults defineEvent()

Examples

Not run:
a default version of the defineModule is created with a call to newModule
newModule("test", path = tempdir(), open = FALSE)

view the resulting module file
if (interactive()) file.edit(file.path(tempdir(), "test", "test.R"))

https://semver.org/

40 defineParameter

End(Not run)

defineParameter Define a parameter used in a module

Description

Used to specify a parameter’s name, value, and set a default. The min and max arguments are ignored
by simInit or spades; they are for human use only. To ensure that a user cannot set parameters
outside of a range of values, the module developer should use assertions in their module code.

Usage

defineParameter(name, class, default, min, max, desc, ...)

S4 method for signature 'character,character,ANY,ANY,ANY,character'
defineParameter(name, class, default, min, max, desc, ...)

S4 method for signature 'character,character,ANY,missing,missing,character'
defineParameter(name, class, default, min, max, desc, ...)

S4 method for signature 'missing,missing,missing,missing,missing,missing'
defineParameter()

Arguments

name Character string giving the parameter name.

class Character string giving the parameter class.

default The default value to use when none is specified by the user. Non-standard eval-
uation is used for the expression.

min With max, used to define a suitable range of values. Non-standard evaluation
is used for the expression. These are not tested by simInit or spades. These
are primarily for human use, i.e., to tell a module user what values the module
expects.

max With min, used to define a suitable range of values. Non-standard evaluation
is used for the expression. These are not tested by simInit or spades. These
are primarily for human use, i.e., to tell a module user what values the module
expects.

desc Text string providing a brief description of the parameter. If there are extra
spaces or carriage returns, these will be stripped, allowing for multi-line charac-
ter strings without using paste or multiple quotes.

... A convenience that allows writing a long desc without having to use paste; any
character strings after desc will be pasted together with desc.

defineParameter 41

Value

data.frame

Note

Be sure to use the correct NA type: logical (NA), integer (NA_integer_), real (NA_real_), complex
(NA_complex_), or character (NA_character_). See NA().

Author(s)

Alex Chubaty and Eliot McIntire

See Also

P(), params() for accessing these parameters in a module.

Examples

parameters = rbind(
defineParameter("lambda", "numeric", 1.23, desc = "intrinsic rate of increase"),
defineParameter("P", "numeric", 0.2, 0, 1, "probability of attack"),

multi-line desc without quotes on each line -- spaces and carriage returns are stripped
defineParameter("rate", "numeric", 0.2, 0, 1,

"rate of arrival. This is in individuals
per day. This can be modified
by the user"),

multi-line desc with quotes on each line
defineParameter("times", "numeric", 0.2, 0, 1,

desc = "The times during the year ",
"that events will occur ",
"with possibility of random arrival times")

)

Not run:
Create a new module, then access parameters using `P`
tmpdir <- file.path(tempdir(), "test")
checkPath(tmpdir, create = TRUE)

creates a new, "empty" module -- it has defaults for everything that is required
newModule("testModule", tmpdir, open = FALSE)

Look at new module code -- see defineParameter
if (interactive()) file.edit(file.path(tmpdir, "testModule", "testModule.R"))

initialize the simList
mySim <- simInit(modules = "testModule",

paths = list(modulePath = tmpdir))

Access one of the parameters -- because this line is not inside a module
function, we must specify the module name. If used within a module,

42 depsEdgeList

we can omit the module name
P(mySim, "testModule")$.useCache

End(Not run)

depsEdgeList Build edge list for module dependency graph

Description

Build edge list for module dependency graph

Usage

depsEdgeList(sim, plot)

S4 method for signature 'simList,logical'
depsEdgeList(sim, plot)

S4 method for signature 'simList,missing'
depsEdgeList(sim, plot)

Arguments

sim A simList object.

plot Logical indicating whether the edgelist (and subsequent graph) will be used for
plotting. If TRUE, duplicated rows (i.e., multiple object dependencies between
modules) are removed so that only a single arrow is drawn connecting the mod-
ules. Default is FALSE.

Value

A data.table whose first two columns give a list of edges and remaining columns the attributes of
the dependency objects (object name, class, etc.).

Author(s)

Alex Chubaty

depsGraph 43

depsGraph Build a module dependency graph

Description

Build a module dependency graph

Usage

depsGraph(sim, plot)

S4 method for signature 'simList,logical'
depsGraph(sim, plot)

S4 method for signature 'simList,missing'
depsGraph(sim)

Arguments

sim A simList object.

plot Logical indicating whether the edgelist (and subsequent graph) will be used for
plotting. If TRUE, duplicated rows (i.e., multiple object dependencies between
modules) are removed so that only a single arrow is drawn connecting the mod-
ules. Default is FALSE.

Value

An igraph() object.

Author(s)

Alex Chubaty

dhour SpaDES time units

Description

SpaDES modules commonly use approximate durations that divide with no remainder among them-
selves. For example, models that simulate based on a "week" timestep, will likely want to fall in
lock step with a second module that is a "year" timestep. Since, weeks, months, years don’t really
have this behaviour because of: leap years, leap seconds, not quite 52 weeks in a year, months that
are of different duration, etc. We have generated a set of units that work well together that are based
on the astronomical or "Julian" year. In an astronomical year, leap years are added within each year
with an extra 1/4 day, (i.e., 1 year == 365.25 days); months are defined as year/12, and weeks as
year/52.

44 dhour

Usage

dhour(x)

dday(x)

dyears(x)

S4 method for signature 'numeric'
dyears(x)

dmonths(x)

S4 method for signature 'numeric'
dmonths(x)

dweeks(x)

S4 method for signature 'numeric'
dweeks(x)

dweek(x)

dmonth(x)

dyear(x)

dsecond(x)

dNA(x)

S4 method for signature 'ANY'
dNA(x)

Arguments

x numeric. Number of the desired units

Details

When these units are not correct, a module developer can create their own time unit, and create a
function to calculate the number of seconds in that unit using the "d" prefix (for duration), following
the lubridate package standard: ddecade <- function(x) lubridate::duration(dyear(10)).
Then the module developer can use "decade" as the module’s time unit.

Value

Number of seconds within each unit

doEvent.checkpoint 45

Author(s)

Eliot McIntire

doEvent.checkpoint Simulation checkpoints.

Description

Save and reload the current state of the simulation, including the state of the random number gen-
erator, by scheduling checkpoint events.

Usage

doEvent.checkpoint(sim, eventTime, eventType, debug = FALSE)

checkpointLoad(file)

.checkpointSave(sim, file)

checkpointFile(sim)

S4 method for signature 'simList'
checkpointFile(sim)

checkpointFile(sim) <- value

S4 replacement method for signature 'simList'
checkpointFile(sim) <- value

checkpointInterval(sim)

S4 method for signature 'simList'
checkpointInterval(sim)

checkpointInterval(sim) <- value

S4 replacement method for signature 'simList'
checkpointInterval(sim) <- value

Arguments

sim A simList simulation object.

eventTime A numeric specifying the time of the next event.

eventType A character string specifying the type of event: one of either "init", "load",
or "save".

46 downloadData

debug Optional logical flag determines whether sim debug info will be printed (default
debug = FALSE).

file The checkpoint file.

value The parameter value to be set (in the corresponding module and param).

Details

RNG save code adapted from: http://www.cookbook-r.com/Numbers/Saving_the_state_of_
the_random_number_generator/ and https://stackoverflow.com/q/13997444/1380598

Value

Returns the modified simList object.

Author(s)

Alex Chubaty

See Also

.Random.seed().

Other functions to access elements of a ’simList’ object: .addDepends(), envir(), events(),
globals(), inputs(), modules(), objs(), packages(), params(), paths(), progressInterval(),
times()

downloadData Download module data

Description

Download external data for a module if not already present in the module directory, or if there is a
checksum mismatch indicating that the file is not the correct one.

Usage

downloadData(
module,
path,
quiet,
quickCheck = FALSE,
overwrite = FALSE,
files = NULL,
checked = NULL,
urls = NULL,
children = NULL,
...

)

http://www.cookbook-r.com/Numbers/Saving_the_state_of_the_random_number_generator/
http://www.cookbook-r.com/Numbers/Saving_the_state_of_the_random_number_generator/
https://stackoverflow.com/q/13997444/1380598

downloadData 47

S4 method for signature 'character,character,logical'
downloadData(
module,
path,
quiet,
quickCheck = FALSE,
overwrite = FALSE,
files = NULL,
checked = NULL,
urls = NULL,
children = NULL,
...

)

S4 method for signature 'character,missing,missing'
downloadData(module, quickCheck, overwrite, files, checked, urls, children)

S4 method for signature 'character,missing,logical'
downloadData(
module,
quiet,
quickCheck,
overwrite,
files,
checked,
urls,
children

)

S4 method for signature 'character,character,missing'
downloadData(
module,
path,
quickCheck,
overwrite,
files,
checked,
urls,
children

)

Arguments

module Character string giving the name of the module.

path Character string giving the path to the module directory.

quiet Logical. This is passed to download.file. Default is FALSE.

48 downloadData

quickCheck Logical. If TRUE, then the check with local data will only use file.size instead
of digest::digest. This is faster, but potentially much less robust.

overwrite Logical. Should local data files be overwritten in case they exist? Default is
FALSE.

files A character vector of length 1 or more if only a subset of files should be checked
in the ‘CHECKSUMS.txt’ file.

checked The result of a previous checksums call. This should only be used when there
is no possibility that the file has changed, i.e., if downloadData is called from
inside another function.

urls Character vector of urls from which to get the data. This is automatically found
from module metadata when this function invoked with SpaDES.core::downloadModule(...,
data = TRUE). See also prepInputs().

children The character vector of child modules (without path) to also run downloadData
on

... Passed to reproducible::preProcess(), e.g., purge

Details

downloadData requires a checksums file to work, as it will only download the files specified therein.
Hence, module developers should make sure they have manually downloaded all the necessary data
and ran checksums to build a checksums file.

There is an experimental attempt to use the googledrive package to download data from a shared
(publicly or with individual users) file. To try this, put the Google Drive URL in sourceURL ar-
gument of expectsInputs in the module metadata, and put the filename once downloaded in the
objectName argument. If using RStudio Server, you may need to use "out of band" authentica-
tion by setting options(httr_oob_default = TRUE). To avoid caching of Oauth credentials, set
options(httr_oauth_cache = TRUE).

There is also an experimental option for the user to make a new ‘CHECKSUMS.txt’ file if there is a
sourceURL but no entry for that file. This is experimental and should be used with caution.

Value

Invisibly, a list of downloaded files.

Author(s)

Alex Chubaty & Eliot McIntire

See Also

prepInputs(), checksums(), and downloadModule() for downloading modules and building a
checksums file.

downloadModule 49

Examples

Not run:
For a Google Drive example
In metadata:
expectsInputs("theFilename.zip", "NA", "NA",

sourceURL = "https://drive.google.com/open?id=1Ngb-jIRCSs1G6zcuaaCEFUwldbkI_K8Ez")
create the checksums file
checksums("thisModule", "there", write = TRUE)
downloadData("thisModule", "there", files = "theFilename.zip")

End(Not run)

downloadModule Download a module from a SpaDES module GitHub repository

Description

Download a .zip file of the module and extract (unzip) it to a user-specified location.

Usage

downloadModule(
name,
path,
version,
repo,
data,
quiet,
quickCheck = FALSE,
overwrite = FALSE

)

S4 method for signature
'character,character,character,character,logical,logical,ANY,logical'
downloadModule(
name,
path,
version,
repo,
data,
quiet,
quickCheck = FALSE,
overwrite = FALSE

)

S4 method for signature

50 downloadModule

'character,missing,missing,missing,missing,missing,ANY,ANY'
downloadModule(name, quickCheck, overwrite)

S4 method for signature 'character,ANY,ANY,ANY,ANY,ANY,ANY,ANY'
downloadModule(
name,
path,
version,
repo,
data,
quiet,
quickCheck = FALSE,
overwrite = FALSE

)

Arguments

name Character string giving the module name.

path Character string giving the location in which to save the downloaded module.

version The module version to download. (If not specified, or NA, the most recent version
will be retrieved.)

repo GitHub repository name, specified as "username/repo". Default is "PredictiveEcology/SpaDES-modules",
which is specified by the global option spades.moduleRepo. Only master
branches can be used at this point.

data Logical. If TRUE, then the data that is identified in the module metadata will be
downloaded, if possible. Default FALSE.

quiet Logical. This is passed to download.file (default FALSE).

quickCheck Logical. If TRUE, then the check with local data will only use file.size instead
of digest::digest. This is faster, but potentially much less robust.

overwrite Logical. Should local module files be overwritten in case they exist? Default
FALSE.

Details

Currently only works with GitHub repositories where modules are located in a modules directory
in the root tree on the master branch. Module .zip files’ names should contain the version number
and be inside their respective module folders (see zipModule() for zip compression of modules).

Value

A list of length 2. The first element is a character vector containing a character vector of extracted
files for the module. The second element is a tbl with details about the data that is relevant for the
function, including whether it was downloaded or not, and whether it was renamed (because there
was a local copy that had the wrong file name).

envir 51

Note

downloadModule uses the GITHUB_PAT environment variable if a value is set. This alleviates 403
errors caused by too-frequent downloads. Generate a GitHub personal access token with no addi-
tional permissions at https://github.com/settings/tokens, and add this key to ‘.Renviron’
as GITHUB_PAT=<your-github-pat-here>.

The default is to overwrite any existing files in the case of a conflict.

Author(s)

Alex Chubaty

See Also

zipModule() for creating module .zip folders.

envir Simulation environment

Description

Accessor functions for the .xData slot, which is the default virtual slot for an S4 class object that
inherits from an S3 object (specifically, the simList inherits from environment) in a simList
object. These are included for advanced users.

Usage

envir(sim)

S4 method for signature 'simList'
envir(sim)

envir(sim) <- value

S4 replacement method for signature 'simList'
envir(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The object to be stored at the slot.

Details

Currently, only get and set methods are defined. Subset methods are not.

https://github.com/settings/tokens

52 eventDiagram

Value

Returns or sets the value of the slot from the simList object.

Author(s)

Alex Chubaty

See Also

SpaDES.core-package(), specifically the section 1.2.8 on simList environment.

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
events(), globals(), inputs(), modules(), objs(), packages(), params(), paths(), progressInterval(),
times()

eventDiagram Simulation event diagram

Description

Create a Gantt Chart representing the events in a completed simulation. This event diagram is
constructed using the completed event list To change the number of events shown, provide an n
argument.

Usage

eventDiagram(sim, n, startDate, ...)

S4 method for signature 'simList,numeric,character'
eventDiagram(sim, n, startDate, ...)

S4 method for signature 'simList,missing,character'
eventDiagram(sim, n, startDate, ...)

S4 method for signature 'simList,missing,missing'
eventDiagram(sim, n, startDate, ...)

Arguments

sim A simList object (typically corresponding to a completed simulation).

n The number of most recently completed events to plot.

startDate A character representation of date in YYYY-MM-DD format.

... Additional arguments passed to mermaid. Useful for specifying height and
width.

events 53

Details

Simulation time is presented on the x-axis, starting at date ’startDate’. Each module appears in
a color-coded row, within which each event for that module is displayed corresponding to the se-
quence of events for that module. Note that only the start time of the event is meaningful is these
figures: the width of the bar associated with a particular module’s event DOES NOT correspond to
an event’s "duration".

Based on this StackOverflow answer: https://stackoverflow.com/a/29999300/1380598.

Value

Plots an event diagram as Gantt Chart, invisibly returning a mermaid object.

Note

A red vertical line corresponding to the current date may appear on the figure. This is useful for
Gantt Charts generally but can be considered a ’bug’ here.

Author(s)

Alex Chubaty

See Also

DiagrammeR::mermaid.

events Simulation event lists

Description

Accessor functions for the events and completed slots of a simList object. These path functions
will extract the values that were provided to the simInit function in the path argument.

Usage

events(sim, unit)

S4 method for signature 'simList,character'
events(sim, unit)

S4 method for signature 'simList,missing'
events(sim, unit)

events(sim) <- value

S4 replacement method for signature 'simList'
events(sim) <- value

https://stackoverflow.com/a/29999300/1380598

54 events

conditionalEvents(sim, unit)

S4 method for signature 'simList,character'
conditionalEvents(sim, unit)

S4 method for signature 'simList,missing'
conditionalEvents(sim, unit)

current(sim, unit)

S4 method for signature 'simList,character'
current(sim, unit)

S4 method for signature 'simList,missing'
current(sim, unit)

current(sim) <- value

S4 replacement method for signature 'simList'
current(sim) <- value

completed(sim, unit, times = TRUE)

S4 method for signature 'simList,character'
completed(sim, unit, times = TRUE)

S4 method for signature 'simList,missing'
completed(sim, unit, times = TRUE)

completed(sim) <- value

S4 replacement method for signature 'simList'
completed(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

unit Character. One of the time units used in SpaDES.

value The object to be stored at the slot.

times Logical. Should this function report the clockTime

Details

By default, the event lists are shown when the simList object is printed, thus most users will not
require direct use of these methods.

events Scheduled simulation events (the event queue).

expectsInput 55

completed Completed simulation events.

Currently, only get and set methods are defined. Subset methods are not.

Value

Returns or sets the value of the slot from the simList object.

Note

Each event is represented by a data.table() row consisting of:

• eventTime: The time the event is to occur.

• moduleName: The module from which the event is taken.

• eventType: A character string for the programmer-defined event type.

See Also

SpaDES.core-package(), specifically the section 1.2.6 on Simulation event queues.

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
envir(), globals(), inputs(), modules(), objs(), packages(), params(), paths(), progressInterval(),
times()

expectsInput Define an input object that the module expects.

Description

Used to specify an input object’s name, class, description, source url and other specifications.

Usage

expectsInput(objectName, objectClass, desc, sourceURL, ...)

S4 method for signature 'ANY,ANY,ANY,ANY'
expectsInput(objectName, objectClass, desc, sourceURL, ...)

S4 method for signature 'character,character,character,character'
expectsInput(objectName, objectClass, desc, sourceURL, ...)

S4 method for signature 'character,character,character,missing'
expectsInput(objectName, objectClass, desc, sourceURL, ...)

56 experiment

Arguments

objectName Character string to define the input object’s name.
objectClass Character string to specify the input object’s class.
desc Text string providing a brief description of the input object. If there are extra

spaces or carriage returns, these will be stripped, allowing for multi-line charac-
ter strings without using paste or multiple quotes.

sourceURL Character string to specify an URL to reach the input object, default is NA.
... Other specifications of the input object.

Value

A data.frame suitable to be passed to inputObjects in a module’s metadata.

Author(s)

Yong Luo

Examples

inputObjects <- bindrows(
expectsInput(objectName = "inputObject1", objectClass = "character",

desc = "this is for example", sourceURL = "not available"),
expectsInput(objectName = "inputObject2", objectClass = "numeric",

desc = "this is for example", sourceURL = "not available",
otherInformation = "I am the second input object")

)

experiment Deprecated functions

Description

These functions have been moved to SpaDES.experiment package.

Usage

experiment(...)

experiment2(...)

POM(...)

simInitAndExperiment(...)

Arguments

... Unused.

extractURL 57

extractURL Extract a url from module metadata

Description

This will get the sourceURL for the object named.

Usage

extractURL(objectName, sim, module)

S4 method for signature 'character,missing'
extractURL(objectName, sim, module)

S4 method for signature 'character,simList'
extractURL(objectName, sim, module)

Arguments

objectName A character string of the object name in the metadata.

sim A simList object from which to extract the sourceURL

module An optional character string of the module name whose metadata is to be used.
If omitted, the function will use the currentModule(sim), if defined.

Value

The url.

Author(s)

Eliot McIntire

fileName Extract filename (without extension) of a file

Description

Extract filename (without extension) of a file

Usage

fileName(x)

Arguments

x List or character vector

58 getModuleVersion

Value

A character vector.

Author(s)

Eliot McIntire

getModuleVersion Find the latest module version from a SpaDES module repository

Description

Modified from https://stackoverflow.com/a/25485782/1380598.

Usage

getModuleVersion(name, repo)

S4 method for signature 'character,character'
getModuleVersion(name, repo)

S4 method for signature 'character,missing'
getModuleVersion(name)

Arguments

name Character string giving the module name.
repo GitHub repository name, specified as "username/repo". Default is "PredictiveEcology/SpaDES-modules",

which is specified by the global option spades.moduleRepo. Only master
branches can be used at this point.

Details

getModuleVersion extracts a module’s most recent version by looking at the module ‘.zip’ files
contained in the module directory. It takes the most recent version, based on the name of the zip
file.

See the modules vignette for details of module directory structure (https://spades-core.predictiveecology.
org/articles/ii-modules.html#module-directory-structure-modulename), and see our SpaDES-
modules repo for details of module repository structure (https://github.com/PredictiveEcology/
SpaDES-modules).

Author(s)

Alex Chubaty

See Also

zipModule() for creating module ‘.zip’ folders.

https://stackoverflow.com/a/25485782/1380598
https://spades-core.predictiveecology.org/articles/ii-modules.html#module-directory-structure-modulename
https://spades-core.predictiveecology.org/articles/ii-modules.html#module-directory-structure-modulename
https://github.com/PredictiveEcology/SpaDES-modules
https://github.com/PredictiveEcology/SpaDES-modules

globals 59

globals Get and set global simulation parameters

Description

globals, and the alias G, accesses or sets the "globals" in the simList. This currently is not an
explicit slot in the simList, but it is a .globals element in the params slot of the simList.

Usage

globals(sim)

S4 method for signature 'simList'
globals(sim)

globals(sim) <- value

S4 replacement method for signature 'simList'
globals(sim) <- value

G(sim)

S4 method for signature 'simList'
G(sim)

G(sim) <- value

S4 replacement method for signature 'simList'
G(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The parameter value to be set (in the corresponding module and param).

See Also

SpaDES.core-package(), specifically the section 1.2.1 on Simulation Parameters.

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
envir(), events(), inputs(), modules(), objs(), packages(), params(), paths(), progressInterval(),
times()

60 inputObjects

initialize,simList-method

Generate a simList object

Description

Given the name or the definition of a class, plus optionally data to be included in the object, new
returns an object from that class.

Given the name or the definition of a class, plus optionally data to be included in the object, new
returns an object from that class.

Usage

S4 method for signature 'simList'
initialize(.Object, ...)

S4 method for signature 'simList_'
initialize(.Object, ...)

Arguments

.Object A simList object.

... Optional Values passed to any or all slot

inputObjects Metadata accessors

Description

These accessors extract the metadata for a module (if specified) or all modules in a simList if not
specified.

Usage

inputObjects(sim, module, path)

S4 method for signature 'simList'
inputObjects(sim, module, path)

S4 method for signature 'missing'
inputObjects(sim, module, path)

outputObjects(sim, module, path)

S4 method for signature 'simList'

inputObjects 61

outputObjects(sim, module, path)

S4 method for signature 'missing'
outputObjects(sim, module, path)

outputObjectNames(sim, module)

S4 method for signature 'simList'
outputObjectNames(sim, module)

reqdPkgs(sim, module, modulePath)

S4 method for signature 'simList'
reqdPkgs(sim, module, modulePath)

S4 method for signature 'missing'
reqdPkgs(sim, module, modulePath)

documentation(sim, module)

S4 method for signature 'simList'
documentation(sim, module)

citation(package, lib.loc = NULL, auto = NULL, module = character())

S4 method for signature 'simList'
citation(package, lib.loc = NULL, auto = NULL, module = character())

S4 method for signature 'character'
citation(package, lib.loc = NULL, auto = NULL, module = character())

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

module Character vector of module name(s)

path The path to the module., i.e., the modulePath. Only relevant if sim not supplied.

modulePath That path where module can be found. If set already using setPaths, it will use
that. This will be ignored if sim is supplied and is required if sim not supplied

package For compatibility with utils::citation(). This can be a simList or a char-
acter string for a package name.

lib.loc a character vector with path names of R libraries, or the directory containing the
source for package, or NULL. The default value of NULL corresponds to all li-
braries currently known. If the default is used, the loaded packages are searched
before the libraries.

auto a logical indicating whether the default citation auto-generated from the package
‘DESCRIPTION’ metadata should be used or not, or NULL (default), indicating that

62 inputs

a ‘CITATION’ file is used if it exists, or an object of class "packageDescription"
with package metadata (see below).

Examples

Not run:
To pre-install and pre-load all packages prior to `simInit`.

set modulePath
setPaths(modulePath = system.file("sampleModules", package = "SpaDES.core"))
use Require and reqdPkgs
if (!interactive()) chooseCRANmirror(ind = 1) #
pkgs <- reqdPkgs(module = c("caribouMovement", "randomLandscapes", "fireSpread"))
pkgs <- unique(unlist(pkgs))
Require(pkgs)

End(Not run)

inputs Simulation inputs

Description

Accessor functions for the inputs slots in a simList object.

Usage

inputs(sim)

S4 method for signature 'simList'
inputs(sim)

inputs(sim) <- value

S4 replacement method for signature 'simList'
inputs(sim) <- value

inputArgs(sim)

S4 method for signature 'simList'
inputArgs(sim)

inputArgs(sim) <- value

S4 replacement method for signature 'simList'
inputArgs(sim) <- value

inputs 63

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The object to be stored at the slot. See Details.

Details

These functions are one of three mechanisms to add the information about which input files to load
in a spades call.

1. As arguments to a simInit call. Specifically, inputs or outputs. See ?simInit.

2. With the outputs(simList) function call.

3. By adding a function called .inputObjects inside a module, which will be executed during
the simInit call. This last way is the most "modular" way to create default data sets for your
model.

See below for more details.

Value

Returns or sets the value(s) of the input or output slots in the simList object.

inputs function or argument in simInit

inputs accepts a data.frame, with up to 7 columns. Columns are:

file required, a character string indicating the file path. There is no default.
objectName optional, character string indicating the name of the object that the loaded file will be assigned to in the simList. This object can therefore be accessed with sim$xxx in any module, where objectName = "xxx". Defaults to the filename without file extension or directory information.
fun optional, a character string indicating the function to use to load that file. Defaults to the known extensions in SpaDES (found by examining .fileExtensions()). The package and fun can be jointly specified here as "packageName::functionName", e.g., "raster::raster".
package optional character string indicating the package in which to find the fun);
loadTime optional numeric, indicating when in simulation time the file should be loaded. The default is the highest priority at start(sim), i.e., at the very start.
interval optional numeric, indicating at what interval should this same exact file be reloaded from disk, e.g,. 10 would mean every 10 time units. The default is NA or no interval, i.e, load the file only once as described in loadTime
arguments is a list of lists of named arguments, one list for each fun. For example, if fun="raster", arguments = list(native = TRUE) will pass the argument "native = TRUE" to raster. If there is only one list, then it is assumed to apply to all files and will be recycled as per normal R rules of recycling for each fun.

Currently, only file is required. All others will be filled with defaults if not specified.

See the modules vignette for more details (browseVignettes("SpaDES.core")).

.inputObjects function placed inside module

Any code placed inside a function called .inputObjects will be run during simInit() for the pur-
pose of creating any objects required by this module, i.e., objects identified in the inputObjects
element of defineModule. This is useful if there is something required before simulation to pro-
duce the module object dependencies, including such things as downloading default datasets, e.g.,
downloadData('LCC2005', modulePath(sim)). Nothing should be created here that does not
create an named object in inputObjects. Any other initiation procedures should be put in the "init"
eventType of the doEvent function. Note: the module developer can use ’sim$.userSuppliedObjNames’

64 inputs

inside the function to selectively skip unnecessary steps because the user has provided those in-
putObjects in the simInit call. e.g., the following code would look to see if the user had passed
defaultColor into during simInit. If the user had done this, then this function would not override
that value with ’red’. If the user has not passed in a value for defaultColor, then the module will
get it here:

if (!('defaultColor' %in% sim$.userSuppliedObjNames)) { sim$defaultColor <- 'red' }

See Also

SpaDES.core-package(), specifically the section 1.2.2 on loading and saving.

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
envir(), events(), globals(), modules(), objs(), packages(), params(), paths(), progressInterval(),
times()

Examples

#######################
inputs
#######################

Start with a basic empty simList
sim <- simInit()

test <- 1:10
library(igraph) # for %>%
library(reproducible) # for checkPath
tmpdir <- file.path(tempdir(), "inputs") %>% checkPath(create = TRUE)
tmpFile <- file.path(tmpdir, "test.rds")
saveRDS(test, file = tmpFile)
inputs(sim) <- data.frame(file = tmpFile) # using only required column, "file"
inputs(sim) # see that it is not yet loaded, but when it is scheduled to be loaded
simOut <- spades(sim)
inputs(simOut) # confirm it was loaded
simOut$test

can put data.frame for inputs directly inside simInit call
allTifs <- dir(system.file("maps", package = "quickPlot"),

full.names = TRUE, pattern = "tif")

next: .objectNames are taken from the filenames (without the extension)
This will load all 5 tifs in the SpaDES sample directory, using
the raster fuction in the raster package, all at time = 0
if (require("rgdal", quietly = TRUE)) {

sim <- simInit(
inputs = data.frame(

files = allTifs,
functions = "raster",
package = "raster",
loadTime = 0,
stringsAsFactors = FALSE)

)

inSeconds 65

##############################
#A fully described inputs object, including arguments:
files <- dir(system.file("maps", package = "quickPlot"),

full.names = TRUE, pattern = "tif")
arguments must be a list of lists. This may require I() to keep it as a list
once it gets coerced into the data.frame.
arguments = I(rep(list(native = TRUE), length(files)))
filelist = data.frame(

objectName = paste0("Maps", 1:5),
files = files,
functions = "raster::raster",
arguments = arguments,
loadTime = 0,
intervals = c(rep(NA, length(files) - 1), 10)

)
inputs(sim) <- filelist
spades(sim)

}

Example showing loading multiple objects from global environment onto the
same object in the simList, but at different load times
a1 <- 1
a2 <- 2
Note arguments must be a list of NROW(inputs), with each element itself being a list,
which is passed to do.call(fun[x], arguments[[x]]), where x is row number, one at a time
args <- lapply(1:2, function(x) {

list(x = paste0("a", x),
envir = environment()) # may be necessary to specify in which envir a1, a2

are located, if not in an interactive sessino
})

inputs <- data.frame(objectName = "a", loadTime = 1:2, fun = "base::get", arguments = I(args))
a <- simInit(inputs = inputs, times = list(start = 0, end = 1))
a <- spades(a)
identical(a1, a$a)

end(a) <- 3
a <- spades(a) # different object (a2) loaded onto a$a
identical(a2, a$a)

Clean up after
unlink(tmpdir, recursive = TRUE)

inSeconds Convert time units

Description

Current pre-defined units are found within the spadesTimes() function. The user can define a new
unit. The unit name can be anything, but the function definition must be of the form "dunitName",

66 inSeconds

e.g., dyear or dfortnight. The unit name is the part without the d and the function name definition
includes the d. This new function, e.g., dfortnight <- function(x) lubridate::duration(dday(14))
can be placed anywhere in the search path or in a module (you will need to declare "lubridate"
in your pkgDeps in the metadata).

This function takes a numeric with a "unit" attribute and converts it to another numeric with a
different time attribute. If the units passed to argument units are the same as attr(time, "unit"),
then it simply returns input time.

Usage

inSeconds(unit, envir, skipChecks = FALSE)

convertTimeunit(time, unit, envir, skipChecks = FALSE)

.spadesTimes

spadesTimes()

checkTimeunit(unit, envir)

S4 method for signature 'character,missing'
checkTimeunit(unit, envir)

S4 method for signature 'character,environment'
checkTimeunit(unit, envir)

Arguments

unit Character. One of the time units used in SpaDES or user defined time unit, given
as the unit name only. See details.

envir An environment. This is where to look up the function definition for the time
unit. See details.

skipChecks For speed, the internal checks for classes and missingness can be skipped. De-
fault FALSE.

time Numeric. With a unit attribute, indicating the time unit of the input numeric.
See Details.

Format

An object of class character of length 12.

Details

Because of R scoping, if envir is a simList environment, then this function will search there first,
then up the current search() path. Thus, it will find a user defined or module defined unit before a
SpaDES unit. This means that a user can override the dyear given in SpaDES, for example, which
is 365.25 days, with dyear <- function(x) lubridate::duration(dday(365)).

If time has no unit attribute, then it is assumed to be seconds.

loadPackages 67

Value

A numeric vector of length 1, with unit attribute set to "seconds".

Author(s)

Alex Chubaty & Eliot McIntire

Eliot McIntire

loadPackages Load packages.

Description

Deprecated. Please use Require::Require()

Usage

loadPackages(packageList, install = FALSE, quiet = TRUE)

S4 method for signature 'character'
loadPackages(packageList, install = FALSE, quiet = TRUE)

S4 method for signature 'list'
loadPackages(packageList, install = FALSE, quiet = TRUE)

S4 method for signature '`NULL`'
loadPackages(packageList, install = FALSE, quiet = TRUE)

Arguments

packageList A list of character strings specifying the names of packages to be loaded.

install Logical flag. If required packages are not already installed, should they be in-
stalled?

quiet Logical flag. Should the final "packages loaded" message be suppressed?

Value

Specified packages are loaded and attached using require(), invisibly returning a logical vector of
successes.

Author(s)

Alex Chubaty

See Also

require().

68 loadSimList

Examples

Not run:
pkgs <- list("raster", "lme4")
loadPackages(pkgs) # loads packages if installed
loadPackages(pkgs, install = TRUE) # loads packages after installation (if needed)

End(Not run)

loadSimList Load a saved simList and ancillary files

Description

Loading a simList from file can be problematic as there are non-standard objects that must be
rebuilt. See description in saveSimList() for details.

unzipSimList is a convenience wrapper around unzip and loadSimList where all the files are
correctly identified and passed to loadSimList(..., otherFiles = xxx). See zipSimList for de-
tails.

Usage

loadSimList(filename, paths = getPaths(), otherFiles = "")

unzipSimList(zipfile, load = TRUE, paths = getPaths(), ...)

Arguments

filename Character giving the name of a saved simulation file. Currently, only file types
.qs or .rds are supported.

paths A list of character vectors for all the simList paths. When loading a simList,
this will replace the paths of everything to these new paths. Experimental still.

otherFiles A character vector of (absolute) file names locating each of the existing file-
backed Raster* files that are the real paths for the possibly incorrect paths in
Filenames(sim) if the the file being read in is from a different computer,
path, or drive. This could be the output from unzipSimList (which is calls
loadSimList internally, passing the unzipped filenames)

zipfile Filename of a zipped simList

load Logical. If TRUE, the default, then the simList will also be loaded into R.

... passed to unzip

Details

If cache is used, it is likely that it should be trimmed before zipping, to include only cache elements
that are relevant.

makeMemoisable.simList 69

Value

• loadSimList(): A simList object.

• unzipSimList(): Either a character vector of file names unzipped (if load = FALSE), or a
simList object.

See Also

saveSimList(), zipSimList()

makeMemoisable.simList

Make simList correctly work with memoise

Description

Because of the environment slot, simList objects don’t correctly memoise a simList. This method
for simList converts the object to a simList_ first.

Usage

S3 method for class 'simList'
makeMemoisable(x)

S3 method for class 'simList_'
unmakeMemoisable(x)

Arguments

x An object to make memoisable. See individual methods in other packages.

Value

A simList_ object or a simList, in the case of unmakeMemoisable.

See Also

reproducible::makeMemoisable()

70 memoryUseThisSession

maxTimeunit Determine the largest timestep unit in a simulation

Description

Determine the largest timestep unit in a simulation

Usage

maxTimeunit(sim)

S4 method for signature 'simList'
maxTimeunit(sim)

Arguments

sim A simList simulation object.

Value

The timeunit as a character string. This defaults to NA if none of the modules has explicit units.

Author(s)

Eliot McIntire and Alex Chubaty

memoryUseThisSession Estimate memory used with system("ps")

Description

This will give a slightly different estimate than pryr::mem_used, which uses gc() internally. The
purpose of this function is to allow continuous monitoring, external to the R session. Normally, this
is run in a different session.

This will only work if the user has specified before running the spades call, set the interval, in
seconds, that ps is run with options("spades.memoryUseInterval" = 0.5), will assess memory
use every 0.5 seconds. The default is 0, meaning no interval, "off".

Usage

memoryUseThisSession(thisPid)

memoryUse(sim, max = TRUE)

minTimeunit 71

Arguments

thisPid Numeric or integer, the PID of the process. If omitted, it will be found with
Sys.getpid()

sim A completed simList

max Logical. If TRUE, then it the return value will be summarized by module/event,
showing the maximum memory used. If FALSE, then the raw memory used
during each event will be shown.

See Also

The vignette("iv-modules")

minTimeunit Determine the smallest timeunit in a simulation

Description

When modules have different timeunit, SpaDES automatically takes the smallest (e.g., "second") as
the unit for a simulation.

Usage

minTimeunit(sim)

S4 method for signature 'simList'
minTimeunit(sim)

S4 method for signature 'list'
minTimeunit(sim)

Arguments

sim A simList simulation object.

Value

The timeunit as a character string. This defaults to "second" if none of the modules has explicit
units.

Author(s)

Eliot McIntire

72 moduleCoverage

moduleCodeFiles Extract the full file paths for R source code

Description

This can be used e.g., for Caching, to identify which files have changed.

Usage

moduleCodeFiles(paths, modules)

Arguments

paths An optional named list with up to 4 named elements, modulePath, inputPath,
outputPath, and cachePath. See details. NOTE: Experimental feature now
allows for multiple modulePaths to be specified in a character vector. The mod-
ules will be searched for sequentially in the first modulePath, then if it doesn’t
find it, in the second etc.

modules A named list of character strings specifying the names of modules to be loaded
for the simulation. Note: the module name should correspond to the R source
file from which the module is loaded. Example: a module named "caribou" will
be sourced form the file ‘caribou.R’, located at the specified modulePath(simList)
(see below).

moduleCoverage Calculate module coverage of unit tests

Description

Calculate the test coverage by unit tests for the module and its functions.

Usage

moduleCoverage(mod, modulePath = "..")

Arguments

mod Character string. The module’s name. Default is basename(getwd())

modulePath Character string. The path to the module directory (default is "..", i.e., one level
up from working directory).

moduleDefaults 73

Value

Return a list of two coverage objects and two data.table objects. The two coverage objects are named
moduleCoverage and functionCoverage. The moduleCoverage object contains the percent value
of unit test coverage for the module. The functionCoverage object contains percentage values for
unit test coverage for each function defined in the module. Please use covr::report() to view the
coverage information. Two data.tables give the information of all the tested and untested functions
in the module.

Note

When running this function, the test files must be strictly placed in the ‘tests/testthat/’ direc-
tory under module path. To automatically generate this folder, please set unitTests = TRUE when
creating a new module using newModule(). To accurately test your module, the test filename must
follow the format test-functionName.R.

Author(s)

Yong Luo

See Also

newModule().

Examples

Not run:
tmpdir <- file.path(tempdir(), "coverage")
modulePath <- file.path(tmpdir, "Modules") %>% checkPath(create = TRUE)
moduleName <- "forestAge" # sample module to test
downloadModule(name = moduleName, path = modulePath) # download sample module
testResults <- moduleCoverage(name = moduleName, path = modulePath)
report(testResults$moduleCoverage)
report(testResults$functionCoverage)
unlink(tmpdir, recursive = TRUE)
mc1 <- moduleCoverage("Biomass_core", modulePath = "..")

End(Not run)

moduleDefaults Defaults values used in defineModule

Description

Where individual elements are missing in defineModule, these defaults will be used.

Usage

moduleDefaults

74 moduleDiagram

Format

An object of class list of length 12.

moduleDiagram Simulation module dependency diagram

Description

Create a network diagram illustrating the simplified module dependencies of a simulation. Of-
fers a less detailed view of specific objects than does plotting the depsEdgeList directly with
objectDiagram().

Usage

moduleDiagram(sim, type, showParents = TRUE, ...)

S4 method for signature 'simList,character,logical'
moduleDiagram(sim, type = "plot", showParents = TRUE, ...)

S4 method for signature 'simList,ANY,ANY'
moduleDiagram(sim, type, showParents = TRUE, ...)

Arguments

sim A simList object (typically corresponding to a completed simulation).

type Character string, either "rgl" for igraph::rglplot or "tk" for igraph::tkplot,
"Plot" to use quickPlot::Plot or "plot" to use base::plot, the default.

showParents Logical. If TRUE, then any children that are grouped into parent modules will
be grouped together by colored blobs. Internally, this is calling moduleGraph().
Default FALSE.

... Additional arguments passed to plotting function specified by type.

Value

Plots module dependency diagram.

Author(s)

Alex Chubaty

See Also

igraph(), moduleGraph() for a version that accounts for parent and children module structure.

moduleGraph 75

Examples

Not run:
Will use quickPlot::Plot
moduleDiagram(sim)
Can also use default base::plot
modDia <- depsGraph(sim, plot = TRUE)
See ?plot.igraph
plot(modDia, layout = layout_as_star)

Or for more control - here, change the label "_INPUT_" to "DATA"
edgeList <- depsEdgeList(sim)
edgeList <- edgeList[, list(from, to)]
edgeList[from == "_INPUT_", from := "Data"]
edgeList[to == "_INPUT_", to := "Data"]
edgeList <- unique(edgeList)
edge
ig <- igraph::graph_from_data_frame(edgeList[, list(from, to)])
plot(ig)

Or use qgraph package
library(qgraph)
qgraph(edgeList, shape = "rectangle", vsize = 12, vsize2 = 2

End(Not run)

moduleGraph Build a module dependency graph

Description

This is still experimental, but this will show the hierarchical structure of parent and children modules
and return a list with an igraph object and an igraph communities object, showing the groups.
Currently only tested with relatively simple structures.

Usage

moduleGraph(sim, plot, ...)

S4 method for signature 'simList,logical'
moduleGraph(sim, plot, ...)

S4 method for signature 'simList,missing'
moduleGraph(sim, plot, ...)

Arguments

sim A simList object.

76 moduleMetadata

plot Logical indicating whether the edgelist (and subsequent graph) will be used for
plotting. If TRUE, duplicated rows (i.e., multiple object dependencies between
modules) are removed so that only a single arrow is drawn connecting the mod-
ules. Default is FALSE.

... Arguments passed to Plot

Value

A list with 2 elements, an igraph() object and an igraph communities object.

Author(s)

Eliot McIntire

See Also

moduleDiagram

moduleMetadata Parse and extract module metadata

Description

Parse and extract module metadata

Usage

moduleMetadata(
sim,
module,
path = getOption("spades.modulePath", NULL),
defineModuleListItems = c("name", "description", "keywords", "childModules", "authors",
"version", "spatialExtent", "timeframe", "timeunit", "citation", "documentation",
"reqdPkgs", "parameters", "inputObjects", "outputObjects")

)

S4 method for signature 'missing,character,character'
moduleMetadata(module, path, defineModuleListItems)

S4 method for signature 'missing,character,missing'
moduleMetadata(module, defineModuleListItems)

S4 method for signature 'ANY,ANY,ANY'
moduleMetadata(
sim,
module,
path = getOption("spades.modulePath", NULL),

moduleMetadata 77

defineModuleListItems = c("name", "description", "keywords", "childModules", "authors",
"version", "spatialExtent", "timeframe", "timeunit", "citation", "documentation",
"reqdPkgs", "parameters", "inputObjects", "outputObjects")

)

Arguments

sim A simList simulation object, generally produced by simInit.
module Character string. Your module’s name.
path Character string specifying the file path to modules directory. Default is to use

the spades.modulePath option.
defineModuleListItems

A vector of metadata entries to return values about.

Value

A list of module metadata, matching the structure in defineModule().

Author(s)

Alex Chubaty

See Also

defineModule()

Examples

path <- system.file("sampleModules", package = "SpaDES.core")
sampleModules <- dir(path)
turn off code checking -- don't need it here
opts <- options("spades.moduleCodeChecks" = FALSE,

"spades.useRequire" = FALSE)

x <- moduleMetadata(sampleModules[3], path = path)

using simList
if (require("SpaDES.tools", quietly = TRUE)) {

mySim <- simInit(
times = list(start = 2000.0, end = 2001.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape")
),
modules = list("caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

)
moduleMetadata(sim = mySim)

}

turn code checking back on -- don't need it here
options(opts)

78 moduleParams

moduleParams Extract a module’s parameters, inputs, or outputs

Description

These are more or less wrappers around moduleMetadata, with the exception that extraneous spaces
and End-Of-Line characters will be removed from the desc arguments in defineParameters,
defineInputs, and defineOutputs

Usage

moduleParams(module, path)

S4 method for signature 'character,character'
moduleParams(module, path)

moduleInputs(module, path)

S4 method for signature 'character,character'
moduleInputs(module, path)

moduleOutputs(module, path)

S4 method for signature 'character,character'
moduleOutputs(module, path)

Arguments

module Character string. Your module’s name.

path Character string specifying the file path to modules directory. Default is to use
the spades.modulePath option.

Value

data.frame

Author(s)

Alex Chubaty

See Also

moduleMetadata()

modules 79

Examples

path <- system.file("sampleModules", package = "SpaDES.core")
sampleModules <- dir(path)

p <- moduleParams(sampleModules[3], path = path)
i <- moduleInputs(sampleModules[3], path = path)
o <- moduleOutputs(sampleModules[3], path = path)

#' \dontrun{
easily include these tables in Rmd files using knitr
knitr::kable(p)
knitr::kable(i)
knitr::kable(o)
#' }

modules Simulation modules and dependencies

Description

Accessor functions for the depends and modules slots in a simList object. These are included for
advanced users.

depends() List of simulation module dependencies. (advanced)
modules() List of simulation modules to be loaded. (advanced)
inputs() List of loaded objects used in simulation. (advanced)

Usage

modules(sim, hidden = FALSE)

S4 method for signature 'simList'
modules(sim, hidden = FALSE)

modules(sim) <- value

S4 replacement method for signature 'simList'
modules(sim) <- value

depends(sim)

S4 method for signature 'simList'
depends(sim)

depends(sim) <- value

80 moduleVersion

S4 replacement method for signature 'simList'
depends(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

hidden Logical. If TRUE, show the default core modules.

value The object to be stored at the slot.

Details

Currently, only get and set methods are defined. Subset methods are not.

Value

Returns or sets the value of the slot from the simList object.

Author(s)

Alex Chubaty

See Also

SpaDES.core-package(), specifically the section 1.2.7 on Modules and dependencies.

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
envir(), events(), globals(), inputs(), objs(), packages(), params(), paths(), progressInterval(),
times()

moduleVersion Parse and extract a module’s version

Description

Parse and extract a module’s version

Usage

moduleVersion(module, path, sim, envir = NULL)

S4 method for signature 'character,character,missing'
moduleVersion(module, path, envir)

S4 method for signature 'character,missing,missing'
moduleVersion(module, envir)

S4 method for signature 'character,missing,simList'
moduleVersion(module, sim, envir)

moduleVersion 81

Arguments

module Character string. Your module’s name.

path Character string specifying the file path to modules directory. Default is to use
the spades.modulePath option.

sim A simList simulation object, generally produced by simInit.

envir Optional environment in which to store parsed code. This may be useful if the
same file is being parsed multiple times. This function will check in that envir
for the parsed file before parsing again. If the envir is transient, then this will
have no effect.

Value

numeric_version indicating the module’s version.

Author(s)

Alex Chubaty

See Also

moduleMetadata()

Examples

using filepath
path <- system.file("sampleModules", package = "SpaDES.core")
moduleVersion("caribouMovement", path)

using simList
options("spades.useRequire" = FALSE)
if (require("SpaDES.tools", quietly = TRUE)) {

mySim <- simInit(
times = list(start = 2000.0, end = 2002.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")
),
modules = list("caribouMovement"),
paths = list(modulePath = path)

)
moduleVersion("caribouMovement", sim = mySim)

}

82 newModule

newModule Create new module from template

Description

Generate a skeleton for a new SpaDES module, a template for a documentation file, a citation
file, a license file, a ‘README.md’ file, and a folder that contains unit tests information. The
newModuleDocumentation will not generate the module file, but will create the other files.

Usage

newModule(name, path, ...)

S4 method for signature 'character,character'
newModule(name, path, ...)

S4 method for signature 'character,missing'
newModule(name, path, ...)

Arguments

name Character string specifying the name of the new module.

path Character string. Subdirectory in which to place the new module code file. The
default is the current working directory.

... Additional arguments. Currently, only the following are supported:

children Required when type = "parent". A character vector specifying the
names of child modules.

open Logical. Should the new module file be opened after creation? Default
TRUE.

type Character string specifying one of "child" (default), or "parent".
unitTests Logical. Should the new module include unit test files? Default

TRUE. Unit testing relies on the testthat package.
useGitHub Logical. Is module development happening on GitHub? Default

TRUE.

Details

All files will be created within a subdirectory named name within the path:

<path>/
|_ <name>/
|_ R/ # contains additional module R scripts
|_ data/ # directory for all included data

newModuleCode 83

|_ CHECKSUMS.txt # contains checksums for data files
|_ tests/ # contains unit tests for module code
|_ citation.bib # bibtex citation for the module
|_ LICENSE # describes module's legal usage
|_ README.md # provide overview of key aspects
|_ <name>.R # module code file (incl. metadata)
|_ <name>.Rmd # documentation, usage info, etc.

Value

Nothing is returned. The new module file is created at ‘path/name.R’, as well as ancillary files for
documentation, citation, ‘LICENSE’, ‘README’, and ‘tests’ directory.

Note

On Windows there is currently a bug in RStudio that prevents the editor from opening when
file.edit is called. Similarly, in RStudio on macOS, there is an issue opening files where they
are opened in an overlaid window rather than a new tab. file.edit does work if the user types it
at the command prompt. A message with the correct lines to copy and paste is provided.

Author(s)

Alex Chubaty and Eliot McIntire

See Also

Other module creation helpers: newModuleCode(), newModuleDocumentation(), newModuleTests()

Examples

Not run:
create a "myModule" module in the "modules" subdirectory.
newModule("myModule", "modules")

create a new parent module in the "modules" subdirectory.
newModule("myParentModule", "modules", type = "parent", children = c("child1", "child2"))

End(Not run)

newModuleCode Create new module code file

Description

Create new module code file

84 newModuleDocumentation

Usage

newModuleCode(name, path, open, type, children)

S4 method for signature 'character,character,logical,character,character'
newModuleCode(name, path, open, type, children)

Arguments

name Character string specifying the name of the new module.
path Character string. Subdirectory in which to place the new module code file. The

default is the current working directory.
open Logical. Should the new module file be opened after creation? Default TRUE in

an interactive session.
type Character string specifying one of "child" (default), or "parent".
children Required when type = "parent". A character vector specifying the names of

child modules.

Author(s)

Eliot McIntire and Alex Chubaty

See Also

Other module creation helpers: newModuleDocumentation(), newModuleTests(), newModule()

newModuleDocumentation

Create new module documentation

Description

Create new module documentation

Usage

newModuleDocumentation(name, path, open, type, children)

S4 method for signature 'character,character,logical,character,character'
newModuleDocumentation(name, path, open, type, children)

S4 method for signature 'character,missing,logical,ANY,ANY'
newModuleDocumentation(name, open)

S4 method for signature 'character,character,missing,ANY,ANY'
newModuleDocumentation(name, path)

S4 method for signature 'character,missing,missing,ANY,ANY'
newModuleDocumentation(name)

newModuleTests 85

Arguments

name Character string specifying the name of the new module.

path Character string. Subdirectory in which to place the new module code file. The
default is the current working directory.

open Logical. Should the new module file be opened after creation? Default TRUE in
an interactive session.

type Character string specifying one of "child" (default), or "parent".

children Required when type = "parent". A character vector specifying the names of
child modules.

Author(s)

Eliot McIntire and Alex Chubaty

See Also

Other module creation helpers: newModuleCode(), newModuleTests(), newModule()

newModuleTests Create template testing structures for new modules

Description

Create template testing structures for new modules

Usage

newModuleTests(name, path, open, useGitHub)

S4 method for signature 'character,character,logical,logical'
newModuleTests(name, path, open, useGitHub)

Arguments

name Character string specifying the name of the new module.

path Character string. Subdirectory in which to place the new module code file. The
default is the current working directory.

open Logical. Should the new module file be opened after creation? Default TRUE in
an interactive session.

useGitHub Logical indicating whether GitHub will be used. If TRUE (default), creates suit-
able configuration files (e.g., ‘.gitignore’) and configures basic GitHub ac-
tions for module code checking.

Author(s)

Eliot McIntire and Alex Chubaty

86 newProject

See Also

Other module creation helpers: newModuleCode(), newModuleDocumentation(), newModule()

newProgressBar Progress bar

Description

Shows a progress bar that is scaled to simulation end time.

Usage

newProgressBar(sim)

setProgressBar(sim)

Arguments

sim A simList simulation object.

Details

The progress bar object is stored in a separate environment, #’ .pkgEnv.

Author(s)

Alex Chubaty and Eliot McIntire

newProject Create new SpaDES project

Description

Initialize a project with subdirectories ‘cache/’, ‘modules/’, ‘inputs/’, ‘outputs/’, and setPaths
accordingly. If invoked from Rstudio, will also create a new Rstudio project file.

Usage

newProject(name, path, open)

S4 method for signature 'character,character,logical'
newProject(name, path, open)

S4 method for signature 'character,character,missing'
newProject(name, path, open)

newProjectCode 87

Arguments

name project name (name of project directory)

path path to directory in which to create the project directory

open Logical. Should the new project file be opened after creation? Default TRUE in
an interactive session.

Examples

myProjDir <- newProject("myProject", tempdir())

dir.exists(file.path(myProjDir, "cache"))
dir.exists(file.path(myProjDir, "inputs"))
dir.exists(file.path(myProjDir, "modules"))
dir.exists(file.path(myProjDir, "outputs"))
unlink(myProjDir, recursive = TRUE) ## cleanup

newProjectCode Create new module code file

Description

Create new module code file

Usage

newProjectCode(name, path, open)

S4 method for signature 'character,character,logical'
newProjectCode(name, path, open = interactive())

Arguments

name project name (name of project directory)

path path to directory in which to create the project directory

open Logical. Should the new project file be opened after creation? Default TRUE in
an interactive session.

Author(s)

Alex Chubaty

88 objectDiagram

objectDiagram Simulation object dependency diagram

Description

Create a sequence diagram illustrating the data object dependencies of a simulation. Offers a more
detailed view of specific objects than does plotting the depsEdgeList directly with moduleDiagram().

Usage

objectDiagram(sim, ...)

S4 method for signature 'simList'
objectDiagram(sim, ...)

Arguments

sim A simList object (typically corresponding to a completed simulation).

... Additional arguments passed to DiagrammeR::mermaid. Useful for specifying
height and width.

Value

Plots a sequence diagram, invisibly returning a DiagrammeR::mermaid object.

Author(s)

Alex Chubaty

See Also

DiagrammeR::mermaid.

Examples

Not run:
objectDiagram(sim)
if there are lots of objects, may need to increase width and/or height
objectDiagram(sim, height = 3000, width = 3000)

End(Not run)

objectSynonyms 89

objectSynonyms Identify synonyms in a simList

Description

This will create active bindings amongst the synonyms. To minimize copying, the first one that
exists in the character vector will become the "canonical" object. All others named in the character
vector will be activeBindings to that canonical one. This synonym list will be assigned to the
envir, as an object named objectSynonyms. That object will have an attribute called, bindings
indicating which one is the canonical one and which is/are the activeBindings. EXPERIMENTAL:
If the objects are removed during a spades call by, say, a module, then at the end of the event, the
spades call will replace the bindings. In other words, if a module deletes the object, it will "come
back". This may not always be desired.

Usage

objectSynonyms(envir, synonyms)

Arguments

envir An environment, which in the context of SpaDES.core is usually a simList to
find and/or place the objectSynonyms object.

synonyms A list of synonym character vectors, such as list(c("age", "ageMap", "age2"),
c("veg", "vegMap"))

Details

This is very experimental and only has minimal tests. Please report if this is not working, and under
what circumstances (e.g., please submit a reproducible example to our issues tracker)

This function will append any new objectSynonym to any pre-existing objectSynonym in the
envir. Similarly, this function assumes transitivity, i.e., if age and ageMap are synonyms, and
ageMap and timeSinceFire are synonyms, then age and timeSinceFire must be synonyms.

Value

Active bindings in the envir so that all synonyms point to the same canonical object, e.g., they
would be at envir[[synonym[[1]][1]]] and envir[[synonym[[1]][2]]], if a list of length one
is passed into synonyms, with a character vector of length two. See examples.

Examples

sim <- simInit()

sim$age <- 1:10;
sim <- objectSynonyms(sim, list(c("age", "ageMap")))

identical(sim$ageMap, sim$age)

90 objs

sim$age <- 4
identical(sim$ageMap, sim$age)
sim$ageMap <- 2:5
sim$ageMap[3] <- 11
identical(sim$ageMap, sim$age)

Also works to pass it in as an object
objectSynonyms <- list(c("age", "ageMap"))
sim <- simInit(objects = list(objectSynonyms = objectSynonyms))
identical(sim$ageMap, sim$age) # they are NULL at this point
sim$age <- 1:10
identical(sim$ageMap, sim$age) # they are not NULL at this point

More complicated, with 'updating' i.e., you can add new synonyms to previous
sim <- simInit()
os <- list(c("age", "ageMap"), c("vegMap", "veg"), c("studyArea", "studyArea2"))
os2 <- list(c("ageMap", "timeSinceFire", "tsf"),

c("systime", "systime2"),
c("vegMap", "veg"))

sim <- objectSynonyms(sim, os)
sim <- objectSynonyms(sim, os2)

check
sim$objectSynonyms

objs Extract or replace an object from the simulation environment

Description

The [[and $ operators provide "shortcuts" for accessing objects in the simulation environment. I.e.,
instead of using envir(sim)$object or envir(sim)[["object"]], one can simply use sim$object
or sim[["object"]].

Usage

objs(sim, ...)

S4 method for signature 'simList'
objs(sim, ...)

objs(sim) <- value

S4 replacement method for signature 'simList'
objs(sim) <- value

objSize.simList 91

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

... passed to ls

value objects to assign to the simList

Details

objs can take ... arguments passed to ls, allowing, e.g. all.names=TRUE objs<- requires takes
a named list of values to be assigned in the simulation environment.

Value

Returns or sets a list of objects in the simList environment.

See Also

SpaDES.core-package(), specifically the section 1.2.1 on Simulation Parameters.

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
envir(), events(), globals(), inputs(), modules(), packages(), params(), paths(), progressInterval(),
times()

objSize.simList Object size for simList

Description

Recursively, runs reproducible::objSize() on the simList environment, so it estimates the
correct size of functions stored there (e.g., with their enclosing environments) plus, it adds all other
"normal" elements of the simList, e.g., objSize(completed(sim)). The output is structured into
2 elements: the sim environment and all its objects, and the other slots in the simList (e.g., events,
completed, modules, etc.). The returned object also has an attribute, "total", which shows the total
size.

Usage

S3 method for class 'simList'
objSize(x, quick = TRUE, ...)

Arguments

x An object

quick Logical. If FALSE, then an attribute, "objSize" will be added to the returned
value, with each of the elements’ object size returned also.

... Additional arguments (currently unused), enables backwards compatible use.

92 openModules

Examples

a <- simInit(objects = list(d = 1:10, b = 2:20))
objSize(a)
utils::object.size(a)

openModules Open all modules nested within a base directory

Description

This is just a convenience wrapper for opening several modules at once, recursively. A module is
defined as any file that ends in .R or .r and has a directory name identical to its filename. Thus,
this must be case sensitive.

Usage

openModules(name, path)

S4 method for signature 'character,character'
openModules(name, path)

S4 method for signature 'missing,missing'
openModules()

S4 method for signature 'missing,character'
openModules(path)

S4 method for signature 'character,missing'
openModules(name)

S4 method for signature 'simList,missing'
openModules(name)

Arguments

name Character vector with names of modules to open. If missing, then all modules
will be opened within the basedir.

path Character string of length 1. The base directory within which there are only
module subdirectories.

Value

Nothing is returned. All file are open via file.edit.

outputs 93

Note

On Windows there is currently a bug in RStudio that prevents the editor from opening when
file.edit is called. file.edit does work if the user types it at the command prompt. A message
with the correct lines to copy and paste is provided.

Author(s)

Eliot McIntire

Examples

Not run: openModules("~/path/to/my/modules")

outputs Simulation outputs

Description

Accessor functions for the outputs slots in a simList object.

Usage

outputs(sim)

S4 method for signature 'simList'
outputs(sim)

outputs(sim) <- value

S4 replacement method for signature 'simList'
outputs(sim) <- value

outputArgs(sim)

S4 method for signature 'simList'
outputArgs(sim)

outputArgs(sim) <- value

S4 replacement method for signature 'simList'
outputArgs(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The object to be stored at the slot. See Details.

94 outputs

Details

These functions are one of three mechanisms to add information about which output files to save.

1. As arguments to a simInit call. Specifically, inputs or outputs. See ?simInit.

2. With the outputs(simList) function call.

3. By adding a function called .inputObjects inside a module, which will be executed during
the simInit call. This last way is the most "modular" way to create default data sets for your
model.

See below for more details.

outputs function or argument in simInit

outputs accepts a data.frame similar to the inputs data.frame, but with up to 6 columns.

objectName required, character string indicating the name of the object in the simList that will be saved to disk (without the sim$ prefix).
file optional, a character string indicating the file path to save to. The default is to concatenate objectName with the model timeunit and saveTime, separated by underscore, ’_’. So a default filename would be "Fires_year1.rds".
fun optional, a character string indicating the function to use to save that file. The default is saveRDS()
package optional character string indicating the package in which to find the fun);
saveTime optional numeric, indicating when in simulation time the file should be saved. The default is the lowest priority at end(sim), i.e., at the very end.
arguments is a list of lists of named arguments, one list for each fun. For example, if fun = "write.csv", arguments = list(row.names = TRUE) will pass the argument row.names = TRUE to write.csv If there is only one list, then it is assumed to apply to all files and will be recycled as per normal R rules of recycling for each fun.

See the modules vignette for more details (browseVignettes("SpaDES.core")).

Note

The automatic file type handling only adds the correct extension from a given fun and package. It
does not do the inverse, from a given extension find the correct fun and package.

Examples

#######################
outputs
#######################

library(igraph) # for %>%
tmpdir <- file.path(tempdir(), "outputs") %>% checkPath(create = TRUE)
tmpFile <- file.path(tmpdir, "temp.rds")
tempObj <- 1:10

Can add data.frame of outputs directly into simInit call
sim <- simInit(objects = c("tempObj"),

outputs = data.frame(objectName = "tempObj"),
paths = list(outputPath = tmpdir))

outputs(sim) # To see what will be saved, when, what filename
sim <- spades(sim)
outputs(sim) # To see that it was saved, when, what filename

Also can add using assignment after a simList object has been made

outputs 95

sim <- simInit(objects = c("tempObj"), paths = list(outputPath = tmpdir))
outputs(sim) <- data.frame(objectName = "tempObj", saveTime = 1:10)
sim <- spades(sim)
outputs(sim) # To see that it was saved, when, what filename.

can do highly variable saving
tempObj2 <- paste("val", 1:10)
df1 <- data.frame(col1 = tempObj, col2 = tempObj2)
sim <- simInit(objects = c("tempObj", "tempObj2", "df1"),

paths = list(outputPath = tmpdir))
outputs(sim) = data.frame(

objectName = c(rep("tempObj", 2), rep("tempObj2", 3), "df1"),
saveTime = c(c(1,4), c(2,6,7), end(sim)),
fun = c(rep("saveRDS", 5), "write.csv"),
package = c(rep("base", 5), "utils"),
stringsAsFactors = FALSE)

since write.csv has a default of adding a column, x, with rownames, must add additional
argument for 6th row in data.frame (corresponding to the write.csv function)
outputArgs(sim)[[6]] <- list(row.names = FALSE)
sim <- spades(sim)
outputs(sim)

read one back in just to test it all worked as planned
newObj <- read.csv(dir(tmpdir, pattern = "year10.csv", full.name = TRUE))
newObj

using saving with SpaDES-aware methods
To see current ones SpaDES can do
.saveFileExtensions()

library(raster)
if (require(rgdal)) {

ras <- raster(ncol = 4, nrow = 5)
ras[] <- 1:20

sim <- simInit(objects = c("ras"), paths = list(outputPath = tmpdir))
outputs(sim) = data.frame(
file = "test",
fun = "writeRaster",
package = "raster",
objectName = "ras",
stringsAsFactors = FALSE)

outputArgs(sim)[[1]] <- list(format = "GTiff") # see ?raster::writeFormats
simOut <- spades(sim)
outputs(simOut)
newRas <- raster(dir(tmpdir, full.name = TRUE, pattern = ".tif")[1])
all.equal(newRas, ras) # Should be TRUE

}
Clean up after
unlink(tmpdir, recursive = TRUE)

96 packages

packages Get module or simulation package dependencies

Description

Get module or simulation package dependencies

Usage

packages(sim, modules, paths, filenames, envir, clean = FALSE, ...)

S4 method for signature 'ANY'
packages(sim, modules, paths, filenames, envir, clean = FALSE, ...)

Arguments

sim A simList object.

modules Character vector, specifying the name or vector of names of module(s)

paths Character vector, specifying the name or vector of names of paths(s) for those
modules. If path not specified, it will be taken from getOption("spades.modulePath"),
which is set with setPaths)

filenames Character vector specifying filenames of modules (i.e. combined path & mod-
ule. If this is specified, then modules and path are ignored.

envir Optional environment in which to store parsed code. This may be useful if the
same file is being parsed multiple times. This function will check in that envir
for the parsed file before parsing again. If the envir is transient, then this will
have no effect.

clean Optional logical. If TRUE, it will scrub any references to github repositories, e.g.,
"PredictiveEcology/reproducible" will be returned as "reproducible"

... All simInit parameters.

Value

A sorted character vector of package names.

Author(s)

Alex Chubaty & Eliot McIntire

See Also

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
envir(), events(), globals(), inputs(), modules(), objs(), params(), paths(), progressInterval(),
times()

paramCheckOtherMods 97

paramCheckOtherMods Test and update a parameter against same parameter in other modules

Description

This function is intended to be part of module code and will test whether the value of a parameter
within the current module matches the value of the same parameter in other modules. This is a
test for parameters that might expect to be part of a params = list(.globals = list(someParam
= "test")) passed to the simInit

Usage

paramCheckOtherMods(
sim,
paramToCheck,
moduleToUse = "all",
ifSetButDifferent = c("error", "warning", "message", "silent")

)

Arguments

sim A simList

paramToCheck A character string, length one, of a parameter name to check and compare be-
tween the current module and one or more or all others

moduleToUse A character vector of module names to check against. This can be "all" which
will compare against all other modules.

ifSetButDifferent

A character string indicating whether to "error" the default, or send a "warning",
message or just silently continue (any other value).

Value

If the value of the paramToCheck in the current module is either NULL or "default", and there is
only one other value across all modules named in moduleToUse, then this will return a character
string with the value of the single parameter value in the other module(s). It will return the current
value if there are no other modules with the same parameter.

It is considered a "fail" under several conditions:

1. current module has a value that is not NULL or "default" and another module has a different
value;

2. there is more than one value for the paramToCheck in the other modules, so it is ambiguous
which one to return.

either the current module is different than other modules, unless it is "default" or NULL.

98 params

params Get and set simulation parameters

Description

params and P access the parameter slot in the simList. params has a replace method, so can be
used to update a parameter value.

Usage

params(sim)

S4 method for signature 'simList'
params(sim)

params(sim) <- value

S4 replacement method for signature 'simList'
params(sim) <- value

P(sim, param, module)

P(sim, param, module) <- value

parameters(sim, asDF = FALSE)

S4 method for signature 'simList'
parameters(sim, asDF = FALSE)

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The parameter value to be set (in the corresponding module and param).

param Optional character string indicating which parameter to choose.

module Optional character string indicating which module params should come from.

asDF Logical. For parameters, if TRUE, this will produce a single data.frame of all
model parameters. If FALSE, then it will return a data.frame with 1 row for each
parameter within nested lists, with the same structure as params.

Details

parameters will extract only the metadata with the metadata defaults, NOT the current values that
may be overwritten by a user. See examples.

params 99

Value

Returns or sets the value of the slot from the simList object.

Note

The differences between P, params and being explicit with passing arguments are mostly a question
of speed and code compactness. The computationally fastest way to get a parameter is to specify
moduleName and parameter name, as in: P(sim, "paramName", "moduleName") (replacing mod-
uleName and paramName with your specific module and parameter names), but it is more verbose
than P(sim)$paramName. Note: the important part for speed (e.g., 2-4x faster) is specifying the
moduleName. Specifying the parameter name is <5% faster.

See Also

SpaDES.core-package(), specifically the section 1.2.1 on Simulation parameters.

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
envir(), events(), globals(), inputs(), modules(), objs(), packages(), paths(), progressInterval(),
times()

Examples

if (require("NLMR", quietly = TRUE) &&
require("SpaDES.tools", quietly = TRUE)) {

modules <- list("randomLandscapes")
paths <- list(modulePath = system.file("sampleModules", package = "SpaDES.core"))
mySim <- simInit(modules = modules, paths = paths,

params = list(.globals = list(stackName = "landscape")))

update some parameters using assignment -- currently only params will work
params(mySim)$randomLandscapes$nx <- 200
params(mySim)$randomLandscapes$ny <- 200

parameters(mySim) # Does not contain these user overridden values

These next 2 are same here because they are not within a module
P(mySim) # Does contain the user overridden values
params(mySim) # Does contain the user overridden values

NOTE -- deleting a parameter will affect params and P, not parameters
params(mySim)$randomLandscapes$nx <- NULL
params(mySim)$randomLandscapes$ny <- NULL

parameters(mySim) # Shows nx and ny

These next 2 are same here because they are not within a module
P(mySim) # nx and ny are Gone
params(mySim) # nx and ny are Gone

}

100 paths

paths Specify paths for modules, inputs, outputs, and temporary rasters

Description

Accessor functions for the paths slot in a simList object.

dataPath will return file.path(modulePath(sim), currentModule(sim), "data"). dataPath,
like currentModule,is namespaced. This means that when it is used inside a module, then it will
return that model-specific information. For instance, if used inside a module called "movingAgent",
then currentModule(sim) will return "movingAgent", and dataPath(sim) will return file.path(modulePath(sim),
"movingAgent", "data")

Usage

paths(sim)

S4 method for signature 'simList'
paths(sim)

paths(sim) <- value

S4 replacement method for signature 'simList'
paths(sim) <- value

cachePath(sim)

S4 method for signature 'simList'
cachePath(sim)

cachePath(sim) <- value

S4 replacement method for signature 'simList'
cachePath(sim) <- value

inputPath(sim)

S4 method for signature 'simList'
inputPath(sim)

inputPath(sim) <- value

S4 replacement method for signature 'simList'
inputPath(sim) <- value

outputPath(sim)

paths 101

S4 method for signature 'simList'
outputPath(sim)

outputPath(sim) <- value

S4 replacement method for signature 'simList'
outputPath(sim) <- value

logPath(sim)

S4 method for signature 'simList'
logPath(sim)

modulePath(sim, module)

S4 method for signature 'simList'
modulePath(sim, module)

modulePath(sim) <- value

S4 replacement method for signature 'simList'
modulePath(sim) <- value

scratchPath(sim)

S4 method for signature 'simList'
scratchPath(sim)

scratchPath(sim) <- value

S4 replacement method for signature 'simList'
scratchPath(sim) <- value

rasterPath(sim)

S4 method for signature 'simList'
rasterPath(sim)

rasterPath(sim) <- value

S4 replacement method for signature 'simList'
rasterPath(sim) <- value

terraPath(sim)

S4 method for signature 'simList'
terraPath(sim)

102 paths

terraPath(sim) <- value

S4 replacement method for signature 'simList'
terraPath(sim) <- value

dataPath(sim)

S4 method for signature 'simList'
dataPath(sim)

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The parameter value to be set (in the corresponding module and param).

module The optional character string of the module(s) whose paths are desired. If omit-
ted, will return all modulePaths, if more than one exist.

Details

These are ways to add or access the file paths used by spades(). There are five file paths:
cachePath, modulePath, inputPath, outputPath, and rasterPath. Each has a function to get or
set the value in a simList object. If no paths are specified, the defaults are as follows:

• cachePath: getOption("reproducible.cachePath");

• inputPath: getOption("spades.modulePath");

• modulePath: getOption("spades.inputPath");

• outputPath: getOption("spades.outputPath");

• rasterPath: file.path(getOption("spades.scratchPath"), "raster");

• scratchPath: getOption("spades.scratchPath");

• terraPath: file.path(getOption("spades.scratchPath"), "terra")

Value

Returns or sets the value of the slot from the simList object.

See Also

SpaDES.core-package(), specifically the section 1.2.4 on Simulation Paths.

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
envir(), events(), globals(), inputs(), modules(), objs(), packages(), params(), progressInterval(),
times()

Plot,simList-method 103

Plot,simList-method Plot method for simList objects

Description

Extends quickPlot::Plot for simList objects.

Usage

S4 method for signature 'simList'
Plot(
...,
new = FALSE,
addTo = NULL,
gp = gpar(),
gpText = gpar(),
gpAxis = gpar(),
axes = FALSE,
speedup = 1,
size = 5,
cols = NULL,
col = NULL,
zoomExtent = NULL,
visualSqueeze = NULL,
legend = TRUE,
legendRange = NULL,
legendText = NULL,
pch = 19,
title = NULL,
na.color = "#FFFFFF00",
zero.color = NULL,
length = NULL,
arr = NULL,
plotFn = "plot"

)

Arguments

... A combination of spatialObjects or non-spatial objects. For many object
classes, there are specific Plot methods. Where there are no specific ones, the
base plotting will be used internally. This means that for objects with no specific
Plot methods, many arguments, such as addTo, will not work. See details.

new Logical. If TRUE, then the previous named plot area is wiped and a new one
made; if FALSE, then the ... plots will be added to the current device, adding or
rearranging the plot layout as necessary. Default is FALSE. This currently works
best if there is only one object being plotted in a given Plot call. However, it is
possible to pass a list of logicals to this, matching the length of the ... objects.

104 Plot,simList-method

Use clearPlot to clear the whole plotting device. NOTE if TRUE: Everything
that was there, including the legend and the end points of the colour palette, will
be removed and re-initiated.

addTo Character vector, with same length as This is for overplotting, when the
overplot is not to occur on the plot with the same name, such as plotting a
SpatialPoints* object on a RasterLayer.

gp A gpar object, created by gpar(), to change plotting parameters (see grid pack-
age).

gpText A gpar object for the title text. Default gpar(col = "black").

gpAxis A gpar object for the axes. Default gpar(col = "black").

axes Logical or "L", representing the left and bottom axes, over all plots.

speedup Numeric. The factor by which the number of pixels is divided by to plot rasters.
See Details.

size Numeric. The size, in points, for SpatialPoints symbols, if using a scalable
symbol.

cols (also col) Character vector or list of character vectors of colours. See details.

col (also cols) Alternative to cols to be consistent with plot. cols takes prece-
dence, if both are provided.

zoomExtent An Extent object. Supplying a single extent that is smaller than the rasters will
call a crop statement before plotting. Defaults to NULL. This occurs after any
downsampling of rasters, so it may produce very pixelated maps.

visualSqueeze Numeric. The proportion of the white space to be used for plots. Default is 0.75.

legend Logical indicating whether a legend should be drawn. Default is TRUE.

legendRange Numeric vector giving values that, representing the lower and upper bounds of
a legend (i.e., 1:10 or c(1,10) will give same result) that will override the data
bounds contained within the grobToPlot.

legendText Character vector of legend value labels. Defaults to NULL, which results in a
pretty numeric representation. If Raster* has a Raster Attribute Table (rat; see
raster package), this will be used by default. Currently, only a single vector
is accepted. The length of this must match the length of the legend, so this is
mostly useful for discrete-valued rasters.

pch see ?par.

title Logical or character string. If logical, it indicates whether to print the object
name as the title above the plot. If a character string, it will print this above the
plot. NOTE: the object name is used with addTo, not the title. Default NULL,
which means print the object name as title, if no other already exists on the plot,
in which case, keep the previous title.

na.color Character string indicating the colour for NA values. Default transparent.

zero.color Character string indicating the colour for zero values, when zero is the minimum
value, otherwise, zero is treated as any other colour. Default transparent.

length Numeric. Optional length, in inches, of the arrow head.

Plots 105

arr A vector of length 2 indicating a desired arrangement of plot areas indicating
number of rows, number of columns. Default NULL, meaning let Plot function
do it automatically.

plotFn An optional function name to do the plotting internally, e.g., "barplot" to get a
barplot() call. Default "plot".

Details

See quickPlot::Plot. This method strips out stuff from a simList class object that would make it
otherwise not reproducibly digestible between sessions, operating systems, or machines. This will
likely still not allow identical digest results across R versions.

See Also

quickPlot::Plot

Plots Plot wrapper intended for use in a SpaDES module

Description

This is a single function call that allows a user to change which format in which the plots will occur.
Specifically, the two common formats would be to "screen" or to disk as an image file, such as
"png". THIS CURRENTLY HAS BEEN TESTED WITH ggplot2, RasterLayer, and tmap objects.
The default (or change with e.g., fn = "print", usePlot = FALSE) uses Plot internally, so
individual plots may be rearranged. When saved to disk (e.g., via type = 'png'), then Plot will not
be used and the single object that is the result of this Plots call will be saved to disk. This function
requires at least 2 things: a plotting function and arguments passed to that function (which could
include data, but commonly would simply be named arguments required by fn). See below and
examples.

Usage

Plots(
data,
fn,
filename,
types = quote(params(sim)[[currentModule(sim)]]$.plots),
path = quote(file.path(outputPath(sim), "figures")),
.plotInitialTime = quote(params(sim)[[currentModule(sim)]]$.plotInitialTime),
ggsaveArgs = list(),
usePlot = getOption("spades.PlotsUsePlot", FALSE),
deviceArgs = list(),
...

)

106 Plots

Arguments

data An (optional) arbitrary data object. If supplied, it will be passed as the first argu-
ment to Plot function, and should contain all the data required for the inner plot-
ting. If passing a RasterLayer, it may be a good idea to set names(RasterLayer)
so that multiple layers can be plotted without overlapping each other. When a
custom fn is used and all arguments for fn are supplied and named, then this
can be omitted. See examples.

fn An arbitrary plotting function. If not provided, defaults to using quickPlot::Plot

filename A name that will be the base for the files that will be saved, i.e, do not supply
the file extension, as this will be determined based on types. If a user provides
this as an absolute path, it will override the path argument.

types Character vector, zero or more of types. If used within a module, this will be
deduced from the P(sim)$type and can be omitted. See below.

path Currently a single path for the saved objects on disk. If filename is supplied
as an absolute path, path will be set to dirname(filename), overriding this
argument value.

.plotInitialTime

A numeric. If NA then no visual on screen. Anything else will have visuals
plotted to screen device. This is here for backwards compatibility. A developer
should set in the module to the intended initial plot time and leave it, i.e., not NA.

ggsaveArgs An optional list of arguments passed to ggplot2::ggsave

usePlot Logical. If TRUE, the default, then the plot will occur with quickPlot::Plot,
so it will be arranged with previously existing plots.

deviceArgs An optional list of arguments passed to one of png, pdf, tiff, bmp, or jgeg.
This is useful when the plotting function is not creating a ggplot object, e.g.,
plotting a RasterLayer.

... Anything needed by fn, all named.

Details

• type

– "screen" – Will plot to the current device, normally a plot window

– "object" – Will save the plot object, e.g., ggplot object

– "raw" – Will save the raw data prior to plotting, e.g., the data argument

– "png" – or any other type save-able with ggsave

Recording of files saved

In cases where files are saved, and where Plots is used within a SpaDES module, the file(s) that
is/are saved will be appended to the outputs slot of the simList of the module. This will, therefore,
keep a record of figures saved within the simList

Plots 107

Note

THIS IS STILL EXPERIMENTAL and could change in the next release.

Plots now has experimental support for "just a Plot call", but with types specified. See example.
The devices to save on disk will have some different behaviours to the screen representation, since
"wiping" an individual plot on a device doesn’t exist for a file device.

This offers up to 4 different actions for a given plot:

• To screen device
• To disk as raw data (limited testing)
• To disk as a saved plot object (limited testing)
• To disk as a ‘.png’ or other image file, e.g., ‘.pdf’

To turn off plotting both to screen and disk, set both .plotInititalTime = NA and .plots = NA or
any other value that will not trigger a TRUE with a grepl with the types argument (e.g., "" will
omit all saving).

Examples

Not run:
Note: if this is used inside a SpaDES module, do not define this
function inside another function. Put it outside in a normal
module script. It will cause a memory leak, otherwise.
if (!require("ggplot2")) stop("please install ggplot2")
fn <- function(d)

ggplot(d, aes(a)) +
geom_histogram()

sim <- simInit()
sim$something <- data.frame(a = sample(1:10, replace = TRUE))

Plots(data = sim$something, fn = fn,
types = c("png"),
path = file.path("figures"),
filename = tempfile(),
.plotInitialTime = 1
)

plot to active device and to png
Plots(data = sim$something, fn = fn,

types = c("png", "screen"),
path = file.path("figures"),
filename = tempfile(),
.plotInitialTime = 1
)

Can also be used like quickPlot::Plot, but with control over output type
r <- raster::raster(extent(0,10,0,10), vals = sample(1:3, size = 100, replace = TRUE))
Plots(r, types = c("screen", "png"), deviceArgs = list(width = 700, height = 500))

End(Not run) # end of dontrun

108 progressInterval

priority Event priority

Description

Preset event priorities: 1 = first (highest); 5 = normal; 10 = last (lowest).

Usage

.first()

.highest()

.last()

.lowest()

.normal()

Value

A numeric.

Author(s)

Alex Chubaty

progressInterval Get and set simulation progress bar details

Description

The progress bar can be set in two ways in SpaDES. First, by setting values in the .progress list
element in the params list element passed to simInit(). Second, at the spades() call itself, which
can be simpler. See examples.

Usage

progressInterval(sim)

S4 method for signature 'simList'
progressInterval(sim)

progressInterval(sim) <- value

S4 replacement method for signature 'simList'

progressInterval 109

progressInterval(sim) <- value

progressType(sim)

S4 method for signature 'simList'
progressType(sim)

progressType(sim) <- value

S4 replacement method for signature 'simList'
progressType(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The parameter value to be set (in the corresponding module and param).

Details

Progress Bar: Progress type can be one of "text", "graphical", or "shiny". Progress interval
can be a numeric. These both can get set by passing a .progress = list(type = "graphical",
interval = 1) into the simInit call. See examples.

See Also

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
envir(), events(), globals(), inputs(), modules(), objs(), packages(), params(), paths(),
times()

Examples

Not run:
mySim <- simInit(

times = list(start=0.0, end=100.0),
params = list(.globals = list(stackName = "landscape"),
.progress = list(type = "text", interval = 10),
checkpoint = list(interval = 10, file = "chkpnt.RData")),
modules = list("randomLandscapes"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core")))

progress bar
progressType(mySim) # "text"
progressInterval(mySim) # 10

parameters
params(mySim) # returns all parameters in all modules

including .global, .progress, checkpoint
globals(mySim) # returns only global parameters

checkpoint

110 rasterCreate

checkpointFile(mySim) # returns the name of the checkpoint file
In this example, "chkpnt.RData"

checkpointInterval(mySim) # 10

End(Not run)

rasterCreate Simple wrapper to load any Raster* object This wraps either
raster::raster, raster::stack, or raster::brick, allowing a
single function to be used to create a new object of the same class
as a template.

Description

Simple wrapper to load any Raster* object This wraps either raster::raster, raster::stack,
or raster::brick, allowing a single function to be used to create a new object of the same class
as a template.

Usage

rasterCreate(x, ...)

Default S3 method:
rasterCreate(x, ...)

S3 method for class 'RasterBrick'
rasterCreate(x, ...)

S3 method for class 'RasterLayer'
rasterCreate(x, ...)

S3 method for class 'RasterStack'
rasterCreate(x, ...)

S3 method for class 'Raster'
rasterCreate(x, ...)

Arguments

x An object, notably a Raster* object. All others will simply be passed through
with no effect.

... Passed to raster::raster, raster::stack, or raster::brick

Details

A new (empty) object of same class as the original.

rasterToMemory 111

Methods (by class)

• rasterCreate(default): Simply passes through argument with no effect

• rasterCreate(RasterBrick): Uses raster::brick

• rasterCreate(RasterLayer): Uses raster::raster

• rasterCreate(RasterStack): Uses raster::stack

• rasterCreate(Raster): Uses raster::raster when one of the other, less commonly used
Raster* classes, e.g., RasterLayerSparse

rasterToMemory Read raster to memory

Description

Wrapper to the raster function, that creates the raster object in memory, even if it was read in from
file. There is the default method which is just a pass through, so this can be safely used on large
complex objects, recursively, e.g., a simList.

Usage

rasterToMemory(x, ...)

S4 method for signature 'Raster'
rasterToMemory(x, ...)

S4 method for signature 'list'
rasterToMemory(x, ...)

S4 method for signature 'ANY'
rasterToMemory(x, ...)

S4 method for signature 'simList'
rasterToMemory(x, ...)

Arguments

x An object passed directly to the function raster (e.g., character string of a file-
name).

... Additional arguments to raster::raster, raster::stack, or raster::brick.

Value

A raster object whose values are stored in memory.

Author(s)

Eliot McIntire and Alex Chubaty

112 restartR

See Also

raster().

remoteFileSize Determine the size of a remotely hosted file

Description

Deprecated.

Usage

remoteFileSize(url)

Arguments

url The url of the remote file.

Value

A numeric indicating the size of the remote file in bytes.

Author(s)

Eliot McIntire and Alex Chubaty

restartR Restart R programmatically

Description

This will attempt to restart the R session, reloading all packages, and saving and reloading the
simList. Currently, this is not intended for general use: it has many specialized pieces for using
inside a spades call. The main purpose for doing this is to clear memory leaks (possibly deep
in R https://github.com/r-lib/fastmap) that are not fully diagnosed. This is still very ex-
perimental. This should only be used if there are RAM limitations being hit with long running
simulations. It has been tested to work Linux within Rstudio and at a terminal R session. The way
to initiate restarting of R is simply setting the spades.restartRInterval or setting the equiv-
alent parameter in the restartR core module via: simInit(..., params = list(.restartR =
list(.restartRInterval = 1)), ...) greater than 0, which is the default, e.g., options("spades.restartRInterval"
= 100). This is only intended to restart a simulation in exactly the same place as it was (i.e., cannot
change machines), and because of the restart, the assignment of the spades call will be either to sim
or the user must make such an assignment manually, e.g., sim <- SpaDES.core:::.pkgEnv$.sim.
This is stated in a message.

https://github.com/r-lib/fastmap

restartR 113

Usage

restartR(
sim,
reloadPkgs = TRUE,
.First = NULL,
.RDataFile = getOption("spades.restartR.RDataFilename"),
restartDir = getOption("spades.restartR.restartDir", NULL)

)

Arguments

sim Required. A simList to be retained through the restart

reloadPkgs Logical. If TRUE, it will attempt to reload all the packages as they were in previ-
ous session, in the same order. If FALSE, it will load no packages beyond normal
R startup. Default TRUE

.First A function to save to ‘~/.qs’ which will be loaded at restart from ‘~/.qs’ and
run. Default is NULL, meaning it will use the non-exported SpaDES.core:::First.
If a user wants to make a custom First file, it should built off that one.

.RDataFile A filename for saving the simList. Defaults to getOption("spades.restartR.filename"),
and the directory will be in restartDir. The simulation time will be mid-
pended to this name, as in: basename(file), "_time", paddedFloatToChar(time(sim), padL = nchar(as.character(end(sim))))))

restartDir A character string indicating root directory to save simList and other ancillary
files during restart. Defaults to getOption("spades.restartR.restartDir",
NULL). If NULL, then it will try, in order, outputPath(sim), modulePath(sim),
inputPath(sim), cachePath(sim), taking the first one that is not inside the
tempdir(), which will disappear during restart of R. The actual directory for a
given spades call that is restarting will be: file.path(restartDir, "restartR",
paste0(sim$._startClockTime, "_", .rndString)). The random string is
to prevent parallel processes that started at the same clock time from colliding.

Details

The process responds to several options. Though under most cases, the default behaviour should
suffice. These are of 3 types: restartRInterval the arguments to restartR and the arguments
to saveSimList, these latter two using a dot to separate the function name and its argument. The
defaults for two key options are: options("spades.restartR.restartDir" = NULL, meaning use
file.path(restartDir, "restartR", paste0(sim$._startClockTime, "_", .rndString)) and
options("spades.saveSimList.fileBackend" = 0), which means don’t do anything with raster-
backed files. See specific functions for defaults and argument meanings. The only difference from
the default function values is with saveSimList argument fileBackend = FALSE during restartR
by default, because it is assumed that the file backends will still be intact after a restart, so no need
to move them all to memory.

Note

Because of the restarting, the object name of the original assignment of the spades call can not be
preserved. The spades call will be assigned to sim in the .GlobalEnv.

114 restartSpades

Because this function is focused on restarting during a spades call, it will remove all objects in the
.GlobalEnv, emulating q("no"). If the user wants to keep those objects, then they should be saved
to disk immediately before the spades call. This can then be recovered immediately after the return
from the spades call.

To keep the saved simList, use options("spades.restartR.clearFiles" = TRUE). The default
is to treat these files as temporary files and so will be removed.

restartSpades Restart an interrupted simulation

Description

This is very experimental and has not been thoroughly tested. Use with caution. This function
will reparse a single module (currently) into the simList where its source code should reside, and
then optionally restart a simulation that stopped on an error, presumably after the developer has
modified the source code of the module that caused the break. This will restart the simulation at the
next event in the event queue (i.e., returned by events(sim)). Because of this, this function will
not do anything if the event queue is empty.

Usage

restartSpades(sim = NULL, module = NULL, numEvents = Inf, restart = TRUE, ...)

Arguments

sim A simList. If not supplied (the default), this will take the sim from SpaDES.core:::.pkgEnv$.sim,
i.e., the one that was interrupted

module A character string length one naming the module that caused the error and whose
source code was fixed. This module will be reparsed and placed into the simList

numEvents Numeric. Default is Inf (i.e., all available). In the simList, if options('spades.recoveryMode')
is set to TRUE or a numeric, then there will be a list in the simList called
.recoverableObjs. These will be replayed backwards in time to reproduce
the initial state of the simList before the event that is numEvents back from the
first event in events(sim).

restart Logical. If TRUE, then the call to spades will be made, i.e., restarting the simu-
lation. If FALSE, then it will return a new simList with the module code parsed
into the simList

... Passed to spades, e.g., debug, .plotInitialTime

Details

This will only parse the source code from the named module. It will not affect any objects that are
in the mod or sim.

The random number seed will be reset to the state it was at the start of the earliest event recovered,
thereby returning to the exact stochastic simulation trajectory.

rndstr 115

Value

A simList as if spades had been called on a simList.

Note

This will only work reliably if the simList was not modified yet during the event which caused the
error. The simList will be in the state it was at the time of the error.

Examples

Not run:
options("spades.recoveryMode" = 1) # now the default
s <- simInit()
s <- spades(s) # if this is interrupted or fails
s <- restartSpades() # don't need to put simList

will take from SpaDES.core:::.pkgEnv$.sim automatically

End(Not run)

rndstr Generate random strings

Description

Generate a vector of random alphanumeric strings each of an arbitrary length.

Usage

rndstr(n, len, characterFirst)

S4 method for signature 'numeric,numeric,logical'
rndstr(n, len, characterFirst)

S4 method for signature 'numeric,numeric,missing'
rndstr(n, len)

S4 method for signature 'numeric,missing,logical'
rndstr(n, characterFirst)

S4 method for signature 'missing,numeric,logical'
rndstr(len, characterFirst)

S4 method for signature 'numeric,missing,missing'
rndstr(n)

S4 method for signature 'missing,numeric,missing'
rndstr(len)

116 saveFiles

S4 method for signature 'missing,missing,logical'
rndstr(characterFirst)

S4 method for signature 'missing,missing,missing'
rndstr(n, len, characterFirst)

Arguments

n Number of strings to generate (default 1). Will attempt to coerce to integer
value.

len Length of strings to generate (default 8). Will attempt to coerce to integer value.

characterFirst Logical, if TRUE, then a letter will be the first character of the string (useful if
being used for object names).

Value

Character vector of random strings.

Author(s)

Alex Chubaty and Eliot McIntire

Examples

set.seed(11)
rndstr()
rndstr(len = 10)
rndstr(characterFirst = FALSE)
rndstr(n = 5, len = 10)
rndstr(n = 5)
rndstr(n = 5, characterFirst = TRUE)
rndstr(len = 10, characterFirst = TRUE)
rndstr(n = 5, len = 10, characterFirst = TRUE)

saveFiles Save objects using ‘.saveObjects‘ in ‘params‘ slot of ‘simInit‘

Description

In the [simInit()] call, a parameter called ‘.saveObjects‘ can be provided in each module. This must
be a character string vector of all object names to save. These objects will then be saved whenever
a call to ‘saveFiles‘ is made.

Usage

saveFiles(sim)

saveFiles 117

Arguments

sim A ‘simList‘ simulation object.

Details

The file names will be equal to the object name plus ‘time(sim)‘ is appended at the end. The files
are saved as ‘.rds‘ files, meaning, only one object gets saved per file.

For objects saved using this function, the module developer must create save events that schedule a
call to ‘saveFiles‘.

If this function is used outside of a module, it will save all files in the outputs(sim) that are scheduled
to be saved at the current time in the simList.

There are 3 ways to save objects using ‘SpaDES‘.

1. Model-level saving

Using the ‘outputs‘ slot in the [simInit()] call. See example in [simInit()]. This can be convenient
because it gives overall control of many modules at a time, and it gets automatically scheduled
during the [simInit()] call.

2. Module-level saving

Using the ‘saveFiles‘ function inside a module. This must be accompanied by a ‘.saveObjects‘ list
element in the ‘params‘ slot in the [simList()]. Usually a module developer will create this method
for future users of their module.

3. Custom saving

A module developer can save any object at any time inside their module, using standard R functions
for saving R objects (e.g., ‘save‘ or ‘saveRDS‘). This is the least modular approach, as it will
happen whether a module user wants it or not.

Note

It is not possible to schedule separate saving events for each object that is listed in the ‘.saveObjects‘.

Author(s)

Eliot McIntire

Alex Chubaty

Examples

Not run:

This will save the "caribou" object at the save interval of 1 unit of time
in the outputPath location
outputPath <- file.path(tempdir(), "test_save")
times <- list(start = 0, end = 6, "month")
parameters <- list(

118 saveSimList

.globals = list(stackName = "landscape"),
caribouMovement = list(

.saveObjects = "caribou",

.saveInitialTime = 1, .saveInterval = 1
),
randomLandscapes = list(.plotInitialTime = NA, nx = 20, ny = 20))

modules <- list("randomLandscapes", "caribouMovement")
paths <- list(

modulePath = system.file("sampleModules", package = "SpaDES.core"),
outputPath = savePath

)
mySim <- simInit(times = times, params = parameters, modules = modules,

paths = paths)

The caribou module has a saveFiles(sim) call, so it will save caribou
spades(mySim)
dir(outputPath)

remove the files
file.remove(dir(savePath, full.names = TRUE))

End(Not run)

saveSimList Save a whole simList object to disk

Description

Saving a simList may not work using the standard approaches (e.g., save, saveRDS, and qs::qsave).
There are 2 primary reasons why this doesn’t work as expected: the activeBindings that are in
place within modules (these allow the mod and Par to exist), and file-backed rasters. Because
of these, a user should use saveSimList and loadSimList (and the zipSimList/unzipSimList
alternatives). The most robust way if there are file-backed Raster* objects seems to be to set
fileBackend = 2, though this may not be desirable if there are many large Raster* objects. When
using fileBackend = 0 or fileBackend = 1, and when errors are noticed, please file a bug report
on GitHub.

zipSimList will save the simList and file-backed Raster* objects, plus, optionally, files identified
in outputs(sim) and inputs(sim). This uses Copy under the hood, to not affect the original
simList. VERY experimental.

Usage

saveSimList(sim, filename, fileBackend = 0, filebackedDir = NULL, envir, ...)

zipSimList(sim, zipfile, ..., outputs = TRUE, inputs = TRUE, cache = FALSE)

saveSimList 119

Arguments

sim Either a simList or a character string of the name of a simList that can be
found in envir. Using a character string will assign that object name to the
saved simList, so when it is recovered it will be given that name.

filename Character string with the path for saving simList to or reading the simList
from. Currently, only .rds and .qs file types are supported.

fileBackend Numeric. 0 means don’t do anything with file backed rasters. Leave their file
intact as is, in its place. 1 means save a copy of the file backed rasters in
fileBackedDir. 2 means move all data in file-backed rasters to memory. This
means that the objects will be part of the main qs file of the simList. Default is
0.

filebackedDir Only used if fileBackend is 1. NULL, the default, or Character string. If NULL,
then then the files will be copied to the directory: file.path(dirname(filename),
"rasters"). A character string will be interpreted as a path to copy all rasters
to.

envir If sim is a character string, then this must be provided. It is the environment
where the object named sim can be found.

... passed to saveSimList(), including non-optional ones such as filename. Also
see fileBackend and filebackedDir arguments in that function.

zipfile A character string indicating the filename for the zip file. Passed to zip.
outputs Logical. If TRUE, all files identified in outputs(sim) will be included in the zip.
inputs Logical. If TRUE, all files identified in inputs(sim) will be included in the zip.
cache Logical. Not yet implemented. If TRUE, all files in cachePath(sim) will be

included in the zip archive. Defaults to FALSE as this could be large, and may
include many out of date elements. See Details.

Details

There is a family of 4 functions that are mutually useful for saving and loading simList objects
and their associated files (e.g., file-backed Raster*, inputs, outputs, cache) saveSimList(),
loadSimList(), zipSimList(), unzipSimList()

Save - Move - Load:
There are 3 different workflows for "save - move files - load" that work in our tests:

1. filebackend = 0: No renaming of file-backed rasters, on recovery attempts to rebuild
This approach is attempting to emulate a "relative filenames" approach, i.e., attempt to treat
the file-backed raster file names as if they were relative (which they are not – raster pack-
age forces absolute file paths). To do this, all the renaming occurs within loadSimList or
unzipSimList. These function will use the paths argument to rewrite the paths of the files
that are identified with Filenames(sim) so that they are in the equivalent (relative) posi-
tion as they were. This will only work if all files were in one of the paths of the original
simList, so that they can be matched up with the new paths passed in loadSimList. This
is not guaranteed to work correctly, though it works in a wide array of testing.
zipSimList(sim, zipfile = tmpZip, filename = "sim.qs")
pths <- getPaths(mySim)
out <- unzipSimList(tmpZip, paths = pths)

120 scheduleConditionalEvent

2. filebackend = 1: On-the-fly renaming of file-backed rasters;
(a) Save the sim object with a filename, e.g., file,
(b) make a copy of all file-backed rasters to fileBackedDir,
(c) update all the pointers to those files so that they are correct in the raster metadata

saveSimList(sim, file = "sim.qs", fileBackend = 1, fileBackedDir = "here")
simNew <- loadSimList(file = "sim.qs")

3. filebackend = 2: On-the-fly bringing to memory of all rasters
All rasters are brought to memory, and then saved into sim.qs

saveSimList(sim, file = "sim.qs", fileBackend = 2)
simNew <- loadSimList(file = "sim.qs")

If cache is used, it is likely that it should be trimmed before zipping, to include only cache
elements that are relevant.

Value

saveSimList(): A saved .qs file in filename location.

zipSimList(): A saved .zip file in zipfile location.

See Also

loadSimList(), unzipSimList()

scheduleConditionalEvent

Schedule a conditional simulation event

Description

Adds a new event to the simulation’s conditional event queue, updating the simulation object by
creating or appending to sim$._conditionalEvents. This is very experimental. Use with caution.

Usage

scheduleConditionalEvent(
sim,
condition,
moduleName,
eventType,
eventPriority = .normal(),
minEventTime = start(sim),
maxEventTime = end(sim)

)

scheduleConditionalEvent 121

Arguments

sim A simList simulation object.

condition A string, call or expression that will be assessed for TRUE after each event in the
regular event queue. It can access objects in the simList by using functions of
sim, e.g., "sim$age > 1"

moduleName A character string specifying the module from which to call the event. If miss-
ing, it will use currentModule(sim)

eventType A character string specifying the type of event from within the module.

eventPriority A numeric specifying the priority of the event. Lower number means higher
priority. As a best practice, it is recommended that decimal values are conceptual
grouped by their integer values (e.g., 4.0, 4.25, 4.5 are conceptually similar). See
priority().

minEventTime A numeric specifying the time before which the event should not occur, even if
the condition is met. Defaults to start(sim)

maxEventTime A numeric specifying the time after which the event should not occur, even if
the condition is met. Defaults to end(sim)

Value

Returns the modified simList object, i.e., sim$._conditionalEvents.

This conditional event queue will be assessed at every single event in the normal event queue. If
there are no conditional events, then spades will proceed as normal. As conditional event conditions
are found to be true, then it will trigger a call to scheduleEvent(...) with the current time passed
to eventTime and it will remove the conditional event from the conditional queue. If the user would
like the triggered conditional event to occur as the very next event, then a possible strategy would
be to set eventPriority of the conditional event to very low or even negative to ensure it gets
inserted at the top of the event queue.

Author(s)

Eliot McIntire

References

Matloff, N. (2011). The Art of R Programming (ch. 7.8.3). San Francisco, CA: No Starch Press,
Inc.. Retrieved from https://nostarch.com/artofr.htm

See Also

scheduleEvent(), conditionalEvents()

Examples

sim <- simInit(times = list(start = 0, end = 2))
condition <- "sim$age > 1" # provide as string
condition <- quote(sim$age > 1) # provide as a call
condition <- expression(sim$age > 1) # provide as an expression

https://nostarch.com/artofr.htm

122 scheduleEvent

sim <- scheduleConditionalEvent(sim, condition, "firemodule", "burn")
conditionalEvents(sim)
sim <- spades(sim) # no changes to sim$age, i.e., it is absent
events(sim) # nothing scheduled
sim$age <- 2 # change the value
sim <- spades(sim) # Run spades, the condition is now true, so event is

scheduled at current time
events(sim) # now scheduled in the normal event queue

scheduleEvent Schedule a simulation event

Description

Adds a new event to the simulation’s event queue, updating the simulation object.

Usage

scheduleEvent(
sim,
eventTime,
moduleName,
eventType,
eventPriority = .pkgEnv$.normalVal,
.skipChecks = FALSE

)

Arguments

sim A simList simulation object.

eventTime A numeric specifying the time of the next event.

moduleName A character string specifying the module from which to call the event. If miss-
ing, it will use currentModule(sim)

eventType A character string specifying the type of event from within the module.

eventPriority A numeric specifying the priority of the event. Lower number means higher
priority. As a best practice, it is recommended that decimal values are conceptual
grouped by their integer values (e.g., 4.0, 4.25, 4.5 are conceptually similar). See
priority().

.skipChecks Logical. If TRUE, then internal checks that arguments match expected types are
skipped. Should only be used if speed is critical.

Details

Here, we implement a simulation in a more modular fashion so it’s easier to add submodules to
the simulation. We use S4 classes and methods, and use data.table instead of data.frame to
implement the event queue (because it is much faster).

show,simList-method 123

Value

Returns the modified simList object.

Author(s)

Alex Chubaty

References

Matloff, N. (2011). The Art of R Programming (ch. 7.8.3). San Francisco, CA: No Starch Press,
Inc.. Retrieved from https://nostarch.com/artofr.htm

See Also

priority(), scheduleConditionalEvent()

Examples

Not run:
scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn") # default priority
scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn", .normal()) # default priority

scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn", .normal()-1) # higher priority
scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn", .normal()+1) # lower priority

scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn", .highest()) # highest priority
scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn", .lowest()) # lowest priority

End(Not run)

show,simList-method Show an Object

Description

Show an Object

Usage

S4 method for signature 'simList'
show(object)

Arguments

object simList

Author(s)

Alex Chubaty

https://nostarch.com/artofr.htm

124 simInit

simFile Generate simulation file name

Description

Assists with saving and retrieving simulations (e.g., with saveSimList and loadSimList).

Usage

simFile(name, path, time = NULL, ext = "rds")

Arguments

name Object name (e.g., "mySimOut")

path Directory location in where the file will be located (e.g., an outputPath).

time Optional simulation time to use as filename suffix. Default NULL.

ext The file extension to use (default "rds").

simInit Initialize a new simulation

Description

Create a new simulation object, the "sim" object. This object is implemented using an environment
where all objects and functions are placed. Since environments in R are pass by reference, "putting"
objects in the sim object does no actual copy. The simList also stores all parameters, and other
important simulation information, such as times, paths, modules, and module load order. See more
details below.

Usage

simInit(
times,
params,
modules,
objects,
paths,
inputs,
outputs,
loadOrder,
notOlderThan = NULL

)

S4 method for signature

simInit 125

'list,list,list,list,list,data.frame,data.frame,character'
simInit(
times,
params,
modules,
objects,
paths,
inputs,
outputs,
loadOrder,
notOlderThan = NULL

)

S4 method for signature 'ANY,ANY,ANY,character,ANY,ANY,ANY,ANY'
simInit(
times,
params,
modules,
objects,
paths,
inputs,
outputs,
loadOrder,
notOlderThan = NULL

)

S4 method for signature 'ANY,ANY,character,ANY,ANY,ANY,ANY,ANY'
simInit(
times,
params,
modules,
objects,
paths,
inputs,
outputs,
loadOrder,
notOlderThan = NULL

)

S4 method for signature 'ANY,ANY,ANY,ANY,ANY,ANY,ANY,ANY'
simInit(
times,
params,
modules,
objects,
paths,
inputs,
outputs,

126 simInit

loadOrder,
notOlderThan = NULL

)

simInitDefaults()

Arguments

times A named list of numeric simulation start and end times (e.g., times = list(start
= 0.0, end = 10.0, timeunit = "year")), with the final optional element, timeunit,
overriding the default time unit used in the simulation which is the "smallest time
unit" across all modules. See examples.

params A list of lists of the form list(moduleName=list(param1=value, param2=value)).
See details.

modules A named list of character strings specifying the names of modules to be loaded
for the simulation. Note: the module name should correspond to the R source
file from which the module is loaded. Example: a module named "caribou" will
be sourced form the file ‘caribou.R’, located at the specified modulePath(simList)
(see below).

objects (optional) A vector of object names (naming objects that are in the calling envi-
ronment of the simInit, which is often the .GlobalEnv unless used program-
matically. NOTE: this mechanism will fail if object name is in a package de-
pendency), or a named list of data objects to be passed into the simList (more
reliable). These objects will be accessible from the simList as a normal list,
e.g,. mySim$obj.

paths An optional named list with up to 4 named elements, modulePath, inputPath,
outputPath, and cachePath. See details. NOTE: Experimental feature now
allows for multiple modulePaths to be specified in a character vector. The mod-
ules will be searched for sequentially in the first modulePath, then if it doesn’t
find it, in the second etc.

inputs A data.frame. Can specify from 1 to 6 columns with following column names:
objectName (character, required), file (character), fun (character), package
(character), interval (numeric), loadTime (numeric). See inputs() and vignette("ii-
modules") section about inputs.

outputs A data.frame. Can specify from 1 to 5 columns with following column names:
objectName (character, required), file (character), fun (character), package
(character), saveTime (numeric) and eventPriority (numeric). If eventPriority
is not set, it defaults to .last(). If eventPriority is set to a low value, e.g.,
0, 1, 2 and saveTime is start(sim), it should give "initial conditions".
See outputs() and vignette("ii-modules") section about outputs.

loadOrder An optional character vector of module names specifying the order in which to
load the modules. If not specified, the module load order will be determined
automatically.

notOlderThan A time, as in from Sys.time(). This is passed into the Cache function that
wraps .inputObjects. If the module uses the .useCache parameter and it is set
to TRUE or ".inputObjects", then the .inputObjects will be cached. Setting

simInit 127

notOlderThan = Sys.time() will cause the cached versions of .inputObjects
to be refreshed, i.e., rerun.

Details

Calling this simInit function does the following::

What Details Argument(s) to use
fills simList slots places the arguments times, params, modules, paths into equivalently named simList slots times, params, modules, paths
sources all module files places all function definitions in the simList, specifically, into a sub-environment of the main simList environment: e.g., sim$<moduleName>$function1 (see section on Scoping) modules
copies objects from the global environment to the simList environment objects
loads objects from disk into the simList inputs
schedule object loading/copying Objects can be loaded into the simList at any time during a simulation inputs
schedule object saving Objects can be saved to disk at any arbitrary time during the simulation. If specified here, this will be in addition to any saving due code inside a module (i.e., a module may manually run write.table(...) outputs
schedules "init" events from all modules (see events()) automatic
assesses module dependencies via the inputs and outputs identified in their metadata. This gives the order of the .inputObjects and init events. This can be overridden by loadOrder. automatic
determines time unit takes time units of modules and how they fit together times or automatic
runs .inputObjects functions from every module in the module order as determined above automatic

params can only contain updates to any parameters that are defined in the metadata of modules.
Take the example of a module named, Fire, which has a parameter named .plotInitialTime. In
the metadata of that module, it says TRUE. Here we can override that default with: list(Fire=list(.plotInitialTime=NA)),
effectively turning off plotting. Since this is a list of lists, one can override the module defaults for
multiple parameters from multiple modules all at once, with say: list(Fire = list(.plotInitialTime
= NA, .plotInterval = 2), caribouModule = list(N = 1000)).

The params list can contain a list (named .globals) of named objects e.g., .globals = list(climateURL
= "https:\\something.com") entry. Any and every module that has a parameter with that name
(in this case climateURL) will be overridden with this value as passed.

params can be used to set the seed for a specific event in a module. This is done using the normal
params argument, specifying .seed as a list where the elements are a numeric for the seed and the
name is the event. Since parameters must be specific to a module, this creates a module and event
specific seed e.g., params = list(moduleName = list(.seed = list(init = 123))) will set the
init event of module named moduleName to 123. The RN stream will be reset to its state prior to
the set.seed call after the event.

We implement a discrete event simulation in a more modular fashion so it is easier to add modules
to the simulation. We use S4 classes and methods, and fast lists to manage the event queue.

paths specifies the location of the module source files, the data input files, and the saving output
files. If no paths are specified the defaults are as follows:

• cachePath: getOption("reproducible.cachePath");
• inputPath: getOption("spades.modulePath");
• modulePath: getOption("spades.inputPath");
• inputPath: getOption("spades.outputPath").

Value

A simList simulation object, pre-initialized from values specified in the arguments supplied.

128 simInit

Parsing and Checking Code

The simInit function will attempt to find usage of sim$xxx or sim[['xxx']] on either side of the
assignment (<-) operator. It will compare these to the module metadata, specifically inputObjects
for cases where objects or "gotten" from the simList and outputObjects for cases where objects
are assigned to the simList.

It will also attempt to find potential, common function name conflicts with things like scale and
stack (both in base and raster), and Plot (in quickPlot and some modules).

This code checking is young and may get false positives and false negatives, i.e., miss things. It
also takes computational time, which may be undesirable in operational code. To turn off checking
(i.e., if there are too many false positives and negatives), set options(spades.moduleCodeChecks
= FALSE).

Caching

Using caching with SpaDES is vital when building re-usable and reproducible content. Please see
the vignette dedicated to this topic.

Note

Since the objects in the simList are passed-by-reference, it is useful to create a copy of the initial-
ized simList object prior to running the simulation (e.g., mySimOut <- spades(Copy(mySim))).
This ensures you retain access to the original objects, which would otherwise be overwritten/modified
during the simulation.

The user can opt to run a simpler simInit call without inputs, outputs, and times. These can be
added later with the accessor methods (See example). These are not required for initializing the
simulation via simInit. All of modules, paths, params, and objects are needed for successful
initialization.

Author(s)

Alex Chubaty and Eliot McIntire

References

Matloff, N. (2011). The Art of R Programming (ch. 7.8.3). San Francisco, CA: No Starch Press,
Inc.. Retrieved from https://nostarch.com/artofr.htm

See Also

spades(), times(), params(), objs(), paths(), modules(), inputs(), outputs()

Examples

Not run:
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")
),

https://nostarch.com/artofr.htm

simInit 129

modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

)
spades(mySim) # shows plotting

Change more parameters, removing plotting
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned"),
fireSpread = list(.plotInitialTime = NA)

),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

)
outSim <- spades(mySim)

A little more complicated with inputs and outputs
if (require(rgdal)) {
mapPath <- system.file("maps", package = "quickPlot")
mySim <- simInit(

times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")
),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"),

outputPath = tempdir()),
inputs = data.frame(

files = dir(file.path(mapPath), full.names = TRUE, pattern = "tif")[1:2],
functions = "raster",
package = "raster",
loadTime = 1,
stringsAsFactors = FALSE),

outputs = data.frame(
expand.grid(objectName = c("caribou","landscape"),
saveTime = 1:2,
stringsAsFactors = FALSE))

)

Use accessors for inputs, outputs
mySim2 <- simInit(
times = list(current = 0, start = 0.0, end = 2.0, timeunit = "year"),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
params = list(.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")),
paths = list(

modulePath = system.file("sampleModules", package = "SpaDES.core"),
outputPath = tempdir()

)
)

add by accessor is equivalent
inputs(mySim2) <- data.frame(

130 simInitAndSpades

files = dir(file.path(mapPath), full.names = TRUE, pattern = "tif")[1:2],
functions = "raster",
package = "raster",
loadTime = 1,
stringsAsFactors = FALSE)

outputs(mySim2) <- data.frame(
expand.grid(objectName = c("caribou", "landscape"),
saveTime = 1:2,
stringsAsFactors = FALSE))

all.equal(mySim, mySim2) # TRUE

Use accessors for times -- does not work as desired because times are
adjusted to the input timeunit during simInit
mySim2 <- simInit(
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")
),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"),

outputPath = tempdir()),
inputs = data.frame(

files = dir(file.path(mapPath), full.names = TRUE, pattern = "tif")[1:2],
functions = "raster",
package = "raster",
loadTime = 1,
stringsAsFactors = FALSE),

outputs = data.frame(
expand.grid(objectName = c("caribou","landscape"),
saveTime = 1:2,
eventPriority = c(0,10), # eventPriority 0 may give "initial" conditions
stringsAsFactors = FALSE))

)

add times by accessor fails all.equal test because "year" was not
declared during module loading, so month became the default
times(mySim2) <- list(current = 0, start = 0.0, end = 2.0, timeunit = "year")
all.equal(mySim, mySim2) # fails because time units are all different, so

several parameters that have time units in
"months" because they were loaded that way

params(mySim)$fireSpread$.plotInitialTime
params(mySim2)$fireSpread$.plotInitialTime
events(mySim) # load event is at time 1 year
events(mySim2) # load event is at time 1 month, reported in years because of

update to times above
}

End(Not run)

simInitAndSpades Call simInit and spades together

simInitAndSpades 131

Description

These functions are convenience wrappers that may allow for more efficient Caching. Passes all
arguments to simInit, then passes the created simList to spades.

Usage

simInitAndSpades(
times,
params,
modules,
objects,
paths,
inputs,
outputs,
loadOrder,
notOlderThan,
debug,
progress,
cache,
.plots,
.plotInitialTime,
.saveInitialTime,
events,
...

)

Arguments

times A named list of numeric simulation start and end times (e.g., times = list(start
= 0.0, end = 10.0, timeunit = "year")), with the final optional element, timeunit,
overriding the default time unit used in the simulation which is the "smallest time
unit" across all modules. See examples.

params A list of lists of the form list(moduleName=list(param1=value, param2=value)).
See details.

modules A named list of character strings specifying the names of modules to be loaded
for the simulation. Note: the module name should correspond to the R source
file from which the module is loaded. Example: a module named "caribou" will
be sourced form the file ‘caribou.R’, located at the specified modulePath(simList)
(see below).

objects (optional) A vector of object names (naming objects that are in the calling envi-
ronment of the simInit, which is often the .GlobalEnv unless used program-
matically. NOTE: this mechanism will fail if object name is in a package de-
pendency), or a named list of data objects to be passed into the simList (more
reliable). These objects will be accessible from the simList as a normal list,
e.g,. mySim$obj.

paths An optional named list with up to 4 named elements, modulePath, inputPath,
outputPath, and cachePath. See details. NOTE: Experimental feature now

132 simInitAndSpades

allows for multiple modulePaths to be specified in a character vector. The mod-
ules will be searched for sequentially in the first modulePath, then if it doesn’t
find it, in the second etc.

inputs A data.frame. Can specify from 1 to 6 columns with following column names:
objectName (character, required), file (character), fun (character), package
(character), interval (numeric), loadTime (numeric). See inputs() and vignette("ii-
modules") section about inputs.

outputs A data.frame. Can specify from 1 to 5 columns with following column names:
objectName (character, required), file (character), fun (character), package
(character), saveTime (numeric) and eventPriority (numeric). If eventPriority
is not set, it defaults to .last(). If eventPriority is set to a low value, e.g.,
0, 1, 2 and saveTime is start(sim), it should give "initial conditions".
See outputs() and vignette("ii-modules") section about outputs.

loadOrder An optional character vector of module names specifying the order in which to
load the modules. If not specified, the module load order will be determined
automatically.

notOlderThan A time, as in from Sys.time(). This is passed into the Cache function that
wraps .inputObjects. If the module uses the .useCache parameter and it is set
to TRUE or ".inputObjects", then the .inputObjects will be cached. Setting
notOlderThan = Sys.time() will cause the cached versions of .inputObjects
to be refreshed, i.e., rerun.

debug Optional tools for invoking debugging. Supplying a list will invoke the more
powerful logging package. See details. Default is to use the value in getOption("spades.debug").

progress Logical (TRUE or FALSE show a graphical progress bar), character ("graphical",
"text") or numeric indicating the number of update intervals to show in a
graphical progress bar.

cache Logical. If TRUE, then the spades call will be cached. This means that if the call
is made again with the same simList, then spades will return the return value
from the previous run of that exact same simList. Default FALSE. See Details.
See also the vignette on caching for examples.

.plots Character. Sets the parameter of this name in all modules. See Plots() for pos-
sible values. The parameter is intended to slowly take over from .plotInitialTime
as a mechanism to turn on or off plotting. For backwards compatibility, if
.plotInitialTime is not set in this spades call, but this .plots is used, two
things will happen: setting this without "screen" will turn off all plotting; set-
ting this with "screen" will trigger plotting for any modules that use this pa-
rameter but will have no effect on other modules. To get plotting, therefore, it
may be necessary to also set .plotInitialTime = start(sim).

.plotInitialTime

Numeric. Temporarily override the .plotInitialTime parameter for all mod-
ules. See Details.

.saveInitialTime

Numeric. Temporarily override the .plotInitialTime parameter for all mod-
ules. See Details.

events A character vector or a named list of character vectors. If specified, the simu-
lations will only do the events indicated here. If a named list, the names must

simList-class 133

correspond to the modules and the character vectors can be specific events within
each of the named modules. With the list form, all unspecified modules will
run all their events, including internal spades modules, e.g., save, that get in-
voked with the outputs argument in simInit. See example.

... Arguments passed to simInit and spades

Value

Same as spades() (a simList) or

See Also

simInit(), spades()

simList-class The simList class

Description

Contains the minimum components of a SpaDES simulation. Various slot accessor methods (i.e., get
and set functions) are provided (see ’Accessor Methods’ below).

Details

Based on code from chapter 7.8.3 of Matloff (2011): "Discrete event simulation". Here, we im-
plement a discrete event simulation in a more modular fashion so it’s easier to add simulation
components (i.e., "simulation modules"). We use S4 classes and methods, and use data.table()
instead of data.frame() to implement the event queue (because it is much more efficient).

Slots

modules List of character names specifying which modules to load.

params Named list of potentially other lists specifying simulation parameters.

events The list of scheduled events (i.e., event queue), which can be converted to a sorted data.table
with events(sim). See ’Event Lists’ for more information.

current The current event, as a data.table. See ’Event Lists’ for more information..

completed An environment consisting of completed events, with each object named a character
representation of the order of events. This was converted from a previous version which was a
list. This was changed because the list became slow as number of events increased. See ’Event
Lists’ for more information. It is kept as an environment of individual events for speed. The
completed method converts it to a sorted data.table.

depends A .simDeps list of .moduleDeps() objects containing module object dependency infor-
mation.

simtimes List of numerical values describing the simulation start and end times; as well as the
current simulation time.

134 simList-class

inputs a data.frame or data.table of files and metadata

outputs a data.frame or data.table of files and metadata

paths Named list of modulePath, inputPath, and outputPath paths. Partial matching is per-
formed.

.xData Environment referencing the objects used in the simulation. Several "shortcuts" to access-
ing objects referenced by this environment are provided, and can be used on the simList
object directly instead of specifying the .xData slot: $, [[, ls, ls.str, objs. See examples.

.envir Deprecated. Please do not use any more.

Accessor Methods

Several slot (and sub-slot) accessor methods are provided for use, and categorized into separate help
pages:

simList-accessors-envir() Simulation environment.
simList-accessors-events() Scheduled and completed events.
simList-accessors-inout() Passing data in to / out of simulations.
simList-accessors-modules() Modules loaded and used; module dependencies.
simList-accessors-objects() Accessing objects used in the simulation.
simList-accessors-params() Global and module-specific parameters.
simList-accessors-paths() File paths for modules, inputs, and outputs.
simList-accessors-times() Simulation times.

Event Lists

The main event list is a sorted data.table (keyed) on eventTime, and eventPriority. The completed
event list is an ordered list in the exact order that the events were executed. Each event is represented
by a data.table() row consisting of:

eventTime The time the event is to occur.
moduleName The module from which the event is taken.
eventType A character string for the programmer-defined event type.
eventPriority The priority given to the event.

Note

The simList class extends the environment, by adding several slots that provide information about
the metadata for a discrete event simulation. The environment slot, if accessed directly is .xData
and this is where input and output objects from modules are placed. The simList_() class is
similar, but it extends the list class. All other slots are the same. Thus, simList is identical to
simList_, except that the former uses an environment for objects and the latter uses a list. The
class simList_ is only used internally when saving/loading, because saving/loading a list behaves
more reliably than saving/loading an environment.

spades 135

Author(s)

Alex Chubaty and Eliot McIntire

References

Matloff, N. (2011). The Art of R Programming (ch. 7.8.3). San Francisco, CA: No Starch Press,
Inc.. Retrieved from https://nostarch.com/artofr.htm

spades Run a spatial discrete event simulation

Description

Here, we implement a simulation in a more modular fashion so it’s easier to add submodules to
the simulation. We use S4 classes and methods, and use data.table instead of data.frame to
implement the event queue (because it is much faster).

Usage

spades(
sim,
debug = getOption("spades.debug"),
progress = NA,
cache,
.plotInitialTime = NULL,
.saveInitialTime = NULL,
notOlderThan = NULL,
events = NULL,
.plots = NULL,
...

)

S4 method for signature 'simList,ANY,ANY,missing'
spades(
sim,
debug = getOption("spades.debug"),
progress = NA,
cache,
.plotInitialTime = NULL,
.saveInitialTime = NULL,
notOlderThan = NULL,
events = NULL,
.plots = NULL,
...

)

S4 method for signature 'ANY,ANY,ANY,logical'

https://nostarch.com/artofr.htm

136 spades

spades(
sim,
debug = getOption("spades.debug"),
progress = NA,
cache,
.plotInitialTime = NULL,
.saveInitialTime = NULL,
notOlderThan = NULL,
events = NULL,
.plots = NULL,
...

)

Arguments

sim A simList simulation object, generally produced by simInit.

debug Optional tools for invoking debugging. Supplying a list will invoke the more
powerful logging package. See details. Default is to use the value in getOption("spades.debug").

progress Logical (TRUE or FALSE show a graphical progress bar), character ("graphical",
"text") or numeric indicating the number of update intervals to show in a
graphical progress bar.

cache Logical. If TRUE, then the spades call will be cached. This means that if the call
is made again with the same simList, then spades will return the return value
from the previous run of that exact same simList. Default FALSE. See Details.
See also the vignette on caching for examples.

.plotInitialTime

Numeric. Temporarily override the .plotInitialTime parameter for all mod-
ules. See Details.

.saveInitialTime

Numeric. Temporarily override the .plotInitialTime parameter for all mod-
ules. See Details.

notOlderThan Date or time. Passed to reproducible::Cache to update the cache. Default is
NULL, meaning don’t update the cache. If Sys.time() is provided, then it will
force a recache, i.e., remove old value and replace with new value. Ignored if
cache is FALSE.

events A character vector or a named list of character vectors. If specified, the simu-
lations will only do the events indicated here. If a named list, the names must
correspond to the modules and the character vectors can be specific events within
each of the named modules. With the list form, all unspecified modules will
run all their events, including internal spades modules, e.g., save, that get in-
voked with the outputs argument in simInit. See example.

.plots Character. Sets the parameter of this name in all modules. See Plots() for pos-
sible values. The parameter is intended to slowly take over from .plotInitialTime
as a mechanism to turn on or off plotting. For backwards compatibility, if
.plotInitialTime is not set in this spades call, but this .plots is used, two

spades 137

things will happen: setting this without "screen" will turn off all plotting; set-
ting this with "screen" will trigger plotting for any modules that use this pa-
rameter but will have no effect on other modules. To get plotting, therefore, it
may be necessary to also set .plotInitialTime = start(sim).

... Any. Can be used to make a unique cache identity, such as "replicate = 1". This
will be included in the Cache call, so will be unique and thus spades will not
use a cached copy as long as anything passed in ... is unique, i.e., not cached
previously.

Details

The is the workhorse function in the SpaDES package. It runs simulations by implementing the
rules outlined in the simList.

This function gives simple access to two sets of module parameters: .plotInitialTime and
with .plotInitialTime. The primary use of these arguments is to temporarily turn off plot-
ting and saving. "Temporary" means that the simList is not changed, so it can be used again
with the simList values reinstated. To turn off plotting and saving, use .plotInitialTime = NA or
.saveInitialTime = NA. NOTE: if a module did not use .plotInitialTime or .saveInitialTime,
then these arguments will not do anything.

Value

Invisibly returns the modified simList object.

Caching with SpaDES

There are numerous ways in which Caching can be used within SpaDES. Please see the vignette
https://CRAN.R-project.org/package=SpaDES.core/vignettes/iii-cache.html for many
examples. Briefly, functions, events, modules, entire spades calls or experiment calls (see https:
//github.com/PredictiveEcology/SpaDES.experiment) can be cached and mixtures of all of
these will work. For functions, simply wrap the call with Cache, moving the original function name
into the first argument of Cache. For events or modules, set the module parameters, .useCache,
e.g., simInit(..., parameters = list(myModule = list(.useCache = "init"))). This can be
set to an event name, which will cache that event, or a logical (e.g.,), which will cache every
event in that module. Event and module caching makes most sense when the event or module
only runs once, such as an initialization or data preparation event/module. Caching an entire sim-
ulation is actually just a function call to simInitAndSpades, for example. So, simply writing
Cache(simInitAndSpades, modules = ...) will effectively cache a whole simulation. Finally for
experiments, it is just like a function call: Cache(simInitandExperiment, ...). The final way
Caching can be done is in experiment or spades, by setting the cache argument.

If cache is TRUE, this allows for a seamless way to "save" results of a simulation. The user does
not have to intentionally do any saving manually. Instead, upon a call to spades in which the
simList is identical, the function will simply return the result that would have come if it had been
rerun. Use this with caution, as it will return exactly the result from a previous run, even if there
is stochasticity internally. Caching is only based on the input simList. See also the vignette on
caching for examples.

https://CRAN.R-project.org/package=SpaDES.core/vignettes/iii-cache.html
https://github.com/PredictiveEcology/SpaDES.experiment
https://github.com/PredictiveEcology/SpaDES.experiment

138 spades

debug

The most powerful way to use debug is to invoke the logging R package. To invoke this, debug
must be a list with up to 3 named elements: console, file, and debug. Each of these list elements
must be a list (including empty list() for defaults) with the sub-list elements here:

console level The level, see below, of information shown
file append Logical. If TRUE, the default, then log entries are appended to file, if it exists

file A filename. Defaults to log.txt
level The level, see below, of information shown

debug See possible values below

level can be a number from 0 to 100 or a character string matching one of the values in logging::loglevels.
These are hierarchical levels of information passed to the console. Set a lower number for more in-
formation and a higher number for less information. Errors in code will be shown if level is set
to "ERROR" or 40 or above; warnings in code will be shown if level is set to "WARN" or 30 or
above; normal messages in code will be shown if level is set to "INFO" or 20 or above. For con-
sistency with base R messaging, if default level is used, then normal messaging via message will
be shown; this means that suppressMessages will work to suppress messaging only when level is
set to "INFO" or 20. Some functions in the SpaDES ecosystem may have information at the lower
levels, but currently, there are few to none.

debug is specified as a non-list argument to spades or as list(debug = ...), then it can be a
logical, a quoted call, a character vector or a numeric scalar (currently 1 or 2) or a list of any of
these to get multiple outputs. This will be run at the start of every event. The following options for
debug are available. Each of these can also be in a list to get multiple outputs:

TRUE current(sim) will be printed at the start of each event as it runs
a function name (as character string) If a function, then it will be run on the simList, e.g., "time" will run time(sim) at each event.
moduleName (as character string) All calls to that module will be entered interactively
eventName (as character string) All calls that have that event name (in any module) will be entered interactively
c(<moduleName>, <eventName>) Only the event in that specified module will be entered into.
Any other R expression expressed as a character string or quoted call Will be evaluated with access to the simList as ’sim’. If this is more than one character string, then all will be printed to the screen in their sequence.
A numeric scalar, currently 1 or 2 (maybe others) This will print out alternative forms of event information that users may find useful

If not specified in the function call, the package option spades.debug is used.

If options("spades.browserOnError" = TRUE) (experimental still) if there is an error, it will
attempt to open a browser in the event where the error occurred. You can edit, and then press c to
continue or Q to quit, plus all other normal interactive browser tools. c will trigger a reparse and
events will continue as scheduled, starting with the one just edited. There may be some unexpected
consequences if the simList objects had already been changed before the error occurred.

Note

The debug option is primarily intended to facilitate building simulation models by the user. Will
print additional outputs informing the user of updates to the values of various simList slot compo-
nents. See https://github.com/PredictiveEcology/SpaDES/wiki/Debugging for details.

https://github.com/PredictiveEcology/SpaDES/wiki/Debugging

spades 139

Author(s)

Alex Chubaty and Eliot McIntire

References

Matloff, N. (2011). The Art of R Programming (ch. 7.8.3). San Francisco, CA: No Starch Press,
Inc.. Retrieved from https://nostarch.com/artofr.htm

See Also

SpaDES.core-package(), simInit(), and the caching vignette (very important for reproducibil-
ity): https://CRAN.R-project.org/package=SpaDES.core/vignettes/iii-cache.html which
uses reproducible::Cache().

Examples

Not run:
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(
.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")

),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

)
spades(mySim)

set default debug printing for the current session
setOption(spades.debug = TRUE)

Different debug options (overrides the package option 'spades.debug')
spades(mySim, debug = TRUE) # Fastest
spades(mySim, debug = "simList")
spades(mySim, debug = "print(table(sim$landscape$Fires[]))")
To get a combination -- use list(debug = list(..., ...))
spades(mySim, debug = list(debug = list(1, quote(as.data.frame(table(sim$landscape$Fires[]))))))

Can turn off plotting, and inspect the output simList instead
out <- spades(mySim, .plotInitialTime = NA) # much faster
completed(out) # shows completed events

use cache -- simInit should generally be rerun each time a spades call is made
to guarantee that it is identical. Here, run spades call twice, first
time to establish cache, second time to return cached result
for (i in 1:2) {
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")
),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

https://nostarch.com/artofr.htm
https://CRAN.R-project.org/package=SpaDES.core/vignettes/iii-cache.html

140 spadesClasses

)
print(system.time(out <- spades(mySim, cache = TRUE)))

}

E.g., with only the init events
outInitsOnly <- spades(mySim, events = "init")

or more fine grained control
outSomeEvents <- spades(mySim,

events = list(randomLandscapes = c("init"),
fireSpread = c("init", "burn")))

with outputs, the save module gets invoked and must be explicitly limited to "init"
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(
.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")

),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
outputs = data.frame(objectName = "landscape", saveTime = 0:2),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

)
This will print a message saying that caribouMovement will run its events
outSomeEvents <- spades(mySim,

events = list(randomLandscapes = c("init"),
fireSpread = c("init", "burn"),
save = "init"))

End(Not run)

spadesClasses Classes defined in SpaDES

Description

These S4 classes are defined within SpaDES. "dot" classes are not exported and are therefore in-
tended for internal use only.

Simulation classes

simList() The ’simList’ class
.moduleDeps() Descriptor object for specifying SpaDES module dependencies
.simDeps() Defines all simulation dependencies for all modules within a SpaDES simulation
————————— ——————————————————————————————

spadesOptions 141

Author(s)

Eliot McIntire and Alex Chubaty

See Also

simInit()

spadesOptions ‘SpaDES.core‘ options

Description

These provide top-level, powerful settings for a comprehensive SpaDES workflow. To see defaults,
run ‘spadesOptions()‘. See Details below.

Usage

spadesOptions()

Details

Below are options that can be set with ‘options("spades.xxx" = newValue)‘, where ‘xxx‘ is one of
the values below, and ‘newValue‘ is a new value to give the option. Sometimes these options can
be placed in the user’s ‘.Rprofile‘ file so they persist between sessions.

The following options are likely of interest to most users

OPTION *DEFAULT VALUE* *DESCRIPTION*
‘spades.browserOnError‘ ‘FALSE‘ If ‘TRUE‘, the default, then any error rerun the same event with ‘debugonce‘ called on it to allow editing to be done. When that browser is continued (e.g., with ’c’), then it will save it reparse it into the ‘simList‘ and rerun the edited version. This may allow a ‘spades()‘ call to be recovered on error, though in many cases that may not be the correct behaviour. For example, if the ‘simList‘ gets updated inside that event in an iterative manner, then each run through the event will cause that iteration to occur. When this option is ‘TRUE‘, then the event will be run at least 3 times: the first time makes the error, the second time has ‘debugonce‘ and the third time is after the error is addressed. ‘TRUE‘ is likely somewhat slower.
‘reproducible.cachePath‘ ‘getOption(’reproducible.cachePath’)‘ The default local directory in which to cache simulation outputs. Default is a temporary directory (typically ‘/tmp/RtmpXXX/SpaDES/cache‘).
‘spades.debug‘ ‘TRUE‘ The default debugging value ‘debug‘ argument in ‘spades()‘
‘spades.DTthreads‘ ‘1L‘ The default number of data.table threads to use. See also ‘?data.table::setDTthreads‘.
‘spades.futureEvents‘ ‘FALSE‘ If set to ‘TRUE‘, the event simulator will attempt to spawn events whose outputs are not needed (by other events in the sim) into a future. In some cases, this will speed up simulations, by running some events in parallel. Still VERY experimental. Use cautiously.
‘spades.inputPath‘ Default is a temporary directory (typically ‘/tmp/RtmpXXX/SpaDES/inputs‘) The default local directory in which to look for simulation inputs.
‘spades.lowMemory‘ ‘FALSE‘ If true, some functions will use more memory efficient (but slower) algorithms.
‘spades.memoryUseInterval‘ ‘FALSE‘ A numeric in seconds indicating how often sample the memory use. This will be run in a separate "future" process so it can monitor the main process. To access the resulting memory use table, use ‘memoryUse(sim)‘ after the simulation has terminated.
‘spades.messagingNumCharsModule‘ ‘21‘ The number of characters to use for the messaging preamble on each line of the messaging during spades calls.
‘spades.moduleCodeChecks‘ ‘list(suppressParamUnused = FALSE, suppressUndefined = TRUE, suppressPartialMatchArgs = FALSE, suppressNoLocalFun = TRUE, skipWith = TRUE)‘ Should the various code checks be run during ‘simInit‘. These are passed to codetools::checkUsage. Default is given by the function, plus these:
‘moduleDocument‘ ‘NULL‘ When a module is an R package e.g., via ‘convertToPackage‘, it will not, by default, rebuild documentation during ‘simInit‘. If the user would like this to happen on every call to ‘simInit‘, set this option to ‘TRUE‘
‘spades.modulePath‘ ‘file.path(tempdir(), "SpaDES", "modules")‘) The default local directory where modules and data will be downloaded and stored. Default is a temporary directory
‘spades.moduleRepo‘ ‘"PredictiveEcology/SpaDES-modules"‘ The default GitHub repository to use when downloading modules via ‘downloadModule‘
‘spades.nCompleted‘ ‘1000L‘ The maximum number of completed events to retain in the ‘completed‘ event queue.
‘spades.outputPath‘ ‘file.path(tempdir(), "SpaDES", "outputs")‘ The default local directory in which to save simulation outputs.
‘spades.recoveryMode‘ ‘1L‘ If this a numeric > 0 or TRUE, then the discrete event simulator will take a snapshot of the objects in the simList that might change (based on metadata ‘outputObjects‘ for that module), prior to initiating every event. This will allow the user to be able to recover in case of an error or manual interruption (e.g., ‘Esc‘). If this is numeric, a copy of that number of "most recent events" will be maintained so that the user can recover and restart > 1 event in the past, i.e., redo some of the "completed" events. Default is ‘TRUE‘, i.e., it will keep the state of the ‘simList‘ at the start of the current event. This can be recovered with ‘restartSpades‘ and the differences can be seen in a hidden object in the stashed simList. There is a message which describes how to find that.
‘spades.scratchPath‘ ‘file.path(tempdir(), "SpaDES", "scratch")‘) The default local directory where transient files from modules and data will written. This includes temporary ‘raster‘ and ‘terra‘ files, as well as SpaDES recovery mode files. Default is a temporary directory.
‘spades.switchPkgNamespaces‘ ‘FALSE‘ to keep computational overhead down. Should the search path be modified to ensure a module’s required packages are listed first? If ‘TRUE‘, there should be no name conflicts among package objects, but it is much slower, especially if the events are themselves fast.
‘spades.testMemoryLeaks‘ ‘TRUE‘. There is a very easy way to create a memory leak with R and SpaDES, by adding formulas or functions to ‘sim$‘ when the enclosing environment of the formula or function contained a large object, most relevant here is the ‘sim‘ object. SpaDES.core now tests for likely culprits for this and suggests alternatives with a warning
‘spades.tolerance‘ ‘.Machine$double.eps^0.5‘. The default tolerance value used for floating point number comparisons.

142 suppliedElsewhere

‘spades.useragent‘ ‘"https://github.com/PredictiveEcology/SpaDES"‘. : The default user agent to use for downloading modules from GitHub.

suppliedElsewhere Assess whether an object has or will be supplied from elsewhere

Description

When loading objects into a simList, especially during the simInit call, and inside the .inputObjects
functions of modules, it is often useful to know if an object in question will or has been by the user
via the inputs or objects arguments, or by another module’s .inputObjects while preparing
its expected inputs (via expectsInputs in metadata), or if it will be supplied by another module
during its "init" event. In all these cases, it may not be necessary for a given module to load any
default value for its expectsInputs. This function can be used as a check to determine whether
the module needs to proceed in getting and assigning its default value.

Usage

suppliedElsewhere(
object,
sim,
where = c("sim", "user", "initEvent"),
returnWhere = FALSE

)

Arguments

object Character vector

sim A simList in which to evaluated whether the object is supplied elsewhere

where Character vector with one to three of "sim", "user", or "initEvent". Default is all
three. Partial matching is used. See details.

returnWhere Logical, default FALSE, whether the vector of length 3 logical should be returned,
or a logical of length one

Details

where indicates which of three places to search, either "sim" i.e., the simList, which would be
equivalent to is.null(sim\$objName), or "user" which would be supplied by the user in the
simInit function call via outputs or inputs (equivalent to (!('defaultColor' \%in\% sim$.userSuppliedObjNames))),
or "initEvent", which would test whether a module that gets loaded before the present one will
create it as part of its outputs (i.e., as indicated by createsOutputs in that module’s metadata).
There is a caveat to this test, however; if that other event also has the object as an expectsInput,
then it would fail this test, as it also needs it as an input. This final one ("initEvent") does not
explicitly test that the object will be created in the "init" event, only that it is in the outputs of that
module, and that it is a module that is loaded prior to this one.

times 143

Examples

mySim <- simInit()
suppliedElsewhere("test", mySim) # FALSE

supplied in the simList
mySim$test <- 1
suppliedElsewhere("test", mySim) # TRUE
test <- 1

supplied from user at simInit time -- note, this object would eventually get into the simList
but the user supplied values come *after* the module's .inputObjects, so
a basic is.null(sim$test) would return TRUE even though the user supplied test
mySim <- simInit(objects = list("test" = test))
suppliedElsewhere("test", mySim) # TRUE

Not run:
Example with prepInputs
Put chunks like this in your .inputObjects
if (!suppliedElsewhere("test", mySim))

sim$test <- Cache(prepInputs, "raster.tif", "downloadedArchive.zip",
destinationPath = dataPath(sim), studyArea = sim$studyArea,
rasterToMatch = sim$otherRasterTemplate, overwrite = TRUE)

End(Not run)

times Time usage in SpaDES

Description

Functions for the simtimes slot of a simList object and its elements. To maintain modularity, the
behaviour of these functions depends on where they are used. In other words, different modules can
have their own timeunit. SpaDES converts these to seconds when running a simulation, but shows
the user time in the units of the model as shown with timeunit(sim)

Usage

times(x, ...)

S4 method for signature 'simList'
times(x)

times(x) <- value

S4 replacement method for signature 'simList'
times(x) <- value

S3 method for class 'simList'

144 times

time(x, unit, ...)

time(x) <- value

S4 replacement method for signature 'simList'
time(x) <- value

end(x, ...)

S3 method for class 'simList'
end(x, unit, ...)

end(x) <- value

S4 replacement method for signature 'simList'
end(x) <- value

start(x, ...)

S3 method for class 'simList'
start(x, unit = NULL, ...)

start(x) <- value

S4 replacement method for signature 'simList'
start(x) <- value

timeunit(x)

S4 method for signature 'simList'
timeunit(x)

timeunit(x) <- value

S4 replacement method for signature 'simList'
timeunit(x) <- value

timeunits(x)

S4 method for signature 'simList'
timeunits(x)

elapsedTime(x, ...)

S3 method for class 'simList'
elapsedTime(x, byEvent = TRUE, units = "auto", ...)

times 145

Arguments

x A simList

... Additional parameters.

value A time, given as a numeric, optionally with a unit attribute, but this will be de-
duced from the model time units or module time units (if used within a module).

unit Character. One of the time units used in SpaDES.

byEvent Logical. If TRUE, the elapsed time will be by module and event; FALSE will
report only by module. Default is TRUE.

units character string. Units in which the results are desired. Can be abbreviated.

Details

timeunit will extract the current units of the time used in a simulation (i.e., within a spades call).
If it is set within a simInit, e.g., times=list(start=0, end=52, timeunit = "week"), it will set
the units for that simulation. By default, a simInit call will use the smallest unit contained within
the metadata for the modules being used. If there are parent modules, then the parent module
timeunit will be used even if one of its children is a smaller timeunit. If all modules, including
parents, are set to NA, timeunit defaults to seconds. If parents are set to NA, then the set of modules
defined by that parent module will be given the smallest units of the children.

Currently, available units are "second", "hours", day", "week", "month", and "year" can be used in
the metadata of a module.

The user can also define a new unit. The unit name can be anything, but the function definition must
be of the form dunitName, e.g., dyear or dfortnight. The unit name is the part without the d and
the function name definition includes the d. This new function, e.g., dfortnight <- function(x)
lubridate::duration(dday(14)) can be placed anywhere in the search path or in a module.

timeunits will extract the current units of the time of all modules used in a simulation. This is
different from timeunit because it is not necessarily associated with a spades call.

In many cases, the "simpler" use of each of these functions may be slower computationally. For
instance, it is much faster to use time(sim, "year") than time(sim). So as a module developer,
it is advantageous to write out the longer one, minimizing the looking up that R must do.

Value

Returns or sets the value of the slot from the simList object.

Note

These have default behaviour that is based on the calling frame timeunit. When used inside a
module, then the time is in the units of the module. If used in an interactive mode, then the time
will be in the units of the simulation.

Additional methods are provided to access the current, start, and end times of the simulation:

time Current simulation time.
start Simulation start time.
end Simulation end time.
timeunit Simulation timeunit.

146 updateList

timeunits Module timeunits.
times List of all simulation times (current, start, end, timeunit).

Author(s)

Alex Chubaty and Eliot McIntire

See Also

SpaDES.core-package(), specifically the section 1.2.5 on Simulation times; elapsedTime(),

Other functions to access elements of a ’simList’ object: .addDepends(), doEvent.checkpoint(),
envir(), events(), globals(), inputs(), modules(), objs(), packages(), params(), paths(),
progressInterval()

Examples

Elapsed Time
s1 <- simInit()
s2 <- spades(s1)
elapsedTime(s2)
elapsedTime(s2, units = "mins")

updateList Update elements of a named list with elements of a second named list

Description

Being deprecated. Use utils::modifyList() (which can not handle NULL) or Require::modifyList2()
for case with >2 lists and can handle NULL lists.

Usage

updateList(x, y)

Arguments

x a named list
y a named list

Value

A named list, with elements sorted by name. The values of matching elements in list y replace the
values in list x.

Author(s)

Alex Chubaty

use_gha 147

use_gha Use GitHub actions for automated module checking

Description

See corresponding vignette for more information.

Usage

use_gha(name, path)

Arguments

name module name

path module path

writeEventInfo Write simulation event info to file

Description

Useful for debugging.

Usage

writeEventInfo(sim, file = "events.txt", append = FALSE)

Arguments

sim A simList object.

file Character specifying the filename (default ‘"events.txt"’).

append Logical indicating whether to append to the file (default FALSE).

Value

Nothing returned. Invoked for its side-effect of writing to file.

Author(s)

Alex Chubaty

148 zipModule

writeRNGInfo Write RNG state info to file

Description

Useful for debugging and ensuring reproducibility.

Usage

writeRNGInfo(file = "seed.txt", append = FALSE)

Arguments

file Character specifying the filename (default "seed.txt").
append Logical indicating whether to append to the file (default FALSE).

Value

Nothing returned. Invoked for its side-effect of writing to file.

Author(s)

Alex Chubaty

zipModule Create a zip archive of a module subdirectory

Description

The most common use of this would be from a "modules" directory, rather than inside a given
module.

Usage

zipModule(name, path, version, data = FALSE, ...)

S4 method for signature 'character,character,character'
zipModule(name, path, version, data = FALSE, ...)

S4 method for signature 'character,missing,character'
zipModule(name, path, version, data = FALSE, ...)

S4 method for signature 'character,missing,missing'
zipModule(name, path, version, data = FALSE, ...)

S4 method for signature 'character,character,missing'
zipModule(name, path, version, data = FALSE, ...)

zipModule 149

Arguments

name Character string giving the module name.

path A file path to a directory containing the module subdirectory.

version The module version.

data Logical. If TRUE, then the data subdirectory will be included in the zip. Default
is FALSE.

... Additional arguments to zip(): e.g., add "-q" using flags="-q -r9X" (the
default flags are "-r9X").

Author(s)

Eliot McIntire and Alex Chubaty

Index

∗ datasets
.quickCheck, 20
inSeconds, 65
moduleDefaults, 73

∗ functions to access elements of a ’simList’
object

doEvent.checkpoint, 45
envir, 51
events, 53
globals, 59
inputs, 62
modules, 79
objs, 90
packages, 96
params, 98
paths, 100
progressInterval, 108
times, 143

∗ module creation helpers
newModule, 82
newModuleCode, 83
newModuleDocumentation, 84
newModuleTests, 85

.Random.seed(), 46

.addChangedAttr,simList-method, 13

.addDepends, 46, 52, 55, 59, 64, 80, 91, 96,
99, 102, 109, 146

.addTagsToOutput,simList-method, 14

.cacheMessage,simList-method, 15

.checkCacheRepo,list-method, 15

.checkpointSave (doEvent.checkpoint), 45

.fileExtensions, 16

.findSimList, 17

.first (priority), 108

.highest (priority), 108

.last (priority), 108

.lowest (priority), 108

.moduleDeps(), 133, 140

.normal (priority), 108

.parseElems,simList-method, 18

.preDigestByClass,simList-method, 18

.prepareOutput,simList-method, 19

.quickCheck, 20

.robustDigest,simList-method, 20

.saveFileExtensions (.fileExtensions),
16

.simDeps(), 140

.spadesTimes (inSeconds), 65

.tagsByClass,simList-method, 21

all.equal.simList, 22
anyPlotting, 22
append_attr, 23
append_attr,list,list-method

(append_attr), 23

base::all.equal(), 22
bindrows, 24

Cache, 21
Cache (.robustDigest,simList-method), 20
cachePath (paths), 100
cachePath,simList-method (paths), 100
cachePath<- (paths), 100
cachePath<-,simList-method (paths), 100
checkModule, 24
checkModule,character,character-method

(checkModule), 24
checkModule,character,missing-method

(checkModule), 24
checkModuleLocal, 25
checkModuleLocal,character,ANY,ANY-method

(checkModuleLocal), 25
checkModuleLocal,character,character,character-method

(checkModuleLocal), 25
checkObject, 26
checkObject,missing,ANY,missing,ANY-method

(checkObject), 26

150

INDEX 151

checkObject,simList,character,missing,character-method
(checkObject), 26

checkObject,simList,character,missing,missing-method
(checkObject), 26

checkObject,simList,missing,ANY,missing-method
(checkObject), 26

checkObject,simList,missing,Raster,character-method
(checkObject), 26

checkParams, 27
checkParams,simList,list-method

(checkParams), 27
checkpointFile (doEvent.checkpoint), 45
checkpointFile,simList-method

(doEvent.checkpoint), 45
checkpointFile<- (doEvent.checkpoint),

45
checkpointFile<-,simList-method

(doEvent.checkpoint), 45
checkpointInterval

(doEvent.checkpoint), 45
checkpointInterval,simList-method

(doEvent.checkpoint), 45
checkpointInterval<-

(doEvent.checkpoint), 45
checkpointInterval<-,simList-method

(doEvent.checkpoint), 45
checkpointLoad (doEvent.checkpoint), 45
checksums, 27
checksums(), 48
checkTimeunit (inSeconds), 65
checkTimeunit,character,environment-method

(inSeconds), 65
checkTimeunit,character,missing-method

(inSeconds), 65
citation (inputObjects), 60
citation,character-method

(inputObjects), 60
citation,simList-method (inputObjects),

60
classFilter, 28
classFilter,character,character,character,environment-method

(classFilter), 28
classFilter,character,character,character,missing-method

(classFilter), 28
classFilter,character,character,missing,environment-method

(classFilter), 28
classFilter,character,character,missing,missing-method

(classFilter), 28

clearCache,simList-method, 30
completed (events), 53
completed,simList,character-method

(events), 53
completed,simList,missing-method

(events), 53
completed<- (events), 53
completed<-,simList-method (events), 53
conditionalEvents (events), 53
conditionalEvents(), 121
conditionalEvents,simList,character-method

(events), 53
conditionalEvents,simList,missing-method

(events), 53
convertTimeunit (inSeconds), 65
convertToPackage, 32
Copy,simList-method, 34
copyModule, 35
copyModule,character,character,character-method

(copyModule), 35
copyModule,character,character,missing-method

(copyModule), 35
covr::report(), 73
createsOutput, 36
createsOutput,ANY,ANY,ANY-method

(createsOutput), 36
createsOutput,character,character,character-method

(createsOutput), 36
current (events), 53
current,simList,character-method

(events), 53
current,simList,missing-method

(events), 53
current<- (events), 53
current<-,simList-method (events), 53

data.frame(), 133
data.table(), 55, 133, 134
dataPath (paths), 100
dataPath,simList-method (paths), 100
dday (dhour), 43
defineEvent, 37
defineEvent(), 39
defineModule, 38
defineModule(), 37, 77
defineModule,simList,list-method

(defineModule), 38
defineParameter, 40
defineParameter(), 39

152 INDEX

defineParameter,character,character,ANY,ANY,ANY,character-method
(defineParameter), 40

defineParameter,character,character,ANY,missing,missing,character-method
(defineParameter), 40

defineParameter,missing,missing,missing,missing,missing,missing-method
(defineParameter), 40

depends (modules), 79
depends(), 79
depends,simList-method (modules), 79
depends<- (modules), 79
depends<-,simList-method (modules), 79
depsEdgeList, 42
depsEdgeList,simList,logical-method

(depsEdgeList), 42
depsEdgeList,simList,missing-method

(depsEdgeList), 42
depsGraph, 43
depsGraph,simList,logical-method

(depsGraph), 43
depsGraph,simList,missing-method

(depsGraph), 43
dhour, 43
dmonth (dhour), 43
dmonths (dhour), 43
dmonths,numeric-method (dhour), 43
dNA (dhour), 43
dNA,ANY-method (dhour), 43
documentation (inputObjects), 60
documentation,simList-method

(inputObjects), 60
doEvent.checkpoint, 45, 52, 55, 59, 64, 80,

91, 96, 99, 102, 109, 146
downloadData, 46
downloadData,character,character,logical-method

(downloadData), 46
downloadData,character,character,missing-method

(downloadData), 46
downloadData,character,missing,logical-method

(downloadData), 46
downloadData,character,missing,missing-method

(downloadData), 46
downloadModule, 49
downloadModule(), 48
downloadModule,character,ANY,ANY,ANY,ANY,ANY,ANY,ANY-method

(downloadModule), 49
downloadModule,character,character,character,character,logical,logical,ANY,logical-method

(downloadModule), 49
downloadModule,character,missing,missing,missing,missing,missing,ANY,ANY-method

(downloadModule), 49
dsecond (dhour), 43
dweek (dhour), 43
dweeks (dhour), 43
dweeks,numeric-method (dhour), 43
dyear (dhour), 43
dyears (dhour), 43
dyears,numeric-method (dhour), 43

elapsedTime (times), 143
elapsedTime(), 146
end (times), 143
end<- (times), 143
end<-,simList-method (times), 143
envir, 46, 51, 55, 59, 64, 80, 91, 96, 99, 102,

109, 146
envir,simList-method (envir), 51
envir<- (envir), 51
envir<-,simList-method (envir), 51
eventDiagram, 52
eventDiagram,simList,missing,character-method

(eventDiagram), 52
eventDiagram,simList,missing,missing-method

(eventDiagram), 52
eventDiagram,simList,numeric,character-method

(eventDiagram), 52
events, 46, 52, 53, 59, 64, 80, 91, 96, 99, 102,

109, 146
events(), 127
events,simList,character-method

(events), 53
events,simList,missing-method (events),

53
events<- (events), 53
events<-,simList-method (events), 53
expectsInput, 55
expectsInput,ANY,ANY,ANY,ANY-method

(expectsInput), 55
expectsInput,character,character,character,character-method

(expectsInput), 55
expectsInput,character,character,character,missing-method

(expectsInput), 55
experiment, 56
experiment2 (experiment), 56
extractURL, 57
extractURL,character,missing-method

(extractURL), 57
extractURL,character,simList-method

(extractURL), 57

INDEX 153

fileName, 57

G (globals), 59
G,simList-method (globals), 59
G<- (globals), 59
G<-,simList-method (globals), 59
getModuleVersion, 58
getModuleVersion,character,character-method

(getModuleVersion), 58
getModuleVersion,character,missing-method

(getModuleVersion), 58
globals, 46, 52, 55, 59, 64, 80, 91, 96, 99,

102, 109, 146
globals,simList-method (globals), 59
globals<- (globals), 59
globals<-,simList-method (globals), 59
gpar(), 104

igraph(), 43, 74, 76
inherits(), 29
initialize,simList-method, 60
initialize,simList_-method

(initialize,simList-method), 60
inputArgs (inputs), 62
inputArgs,simList-method (inputs), 62
inputArgs<- (inputs), 62
inputArgs<-,simList-method (inputs), 62
inputObjects, 60
inputObjects,missing-method

(inputObjects), 60
inputObjects,simList-method

(inputObjects), 60
inputPath (paths), 100
inputPath,simList-method (paths), 100
inputPath<- (paths), 100
inputPath<-,simList-method (paths), 100
inputs, 46, 52, 55, 59, 62, 80, 91, 96, 99, 102,

109, 146
inputs(), 17, 79, 126, 128, 132
inputs,simList-method (inputs), 62
inputs<- (inputs), 62
inputs<-,simList-method (inputs), 62
inSeconds, 65

keepCache,simList-method
(clearCache,simList-method), 30

library(), 27
loadFiles (.fileExtensions), 16

loadFiles,missing,ANY-method
(.fileExtensions), 16

loadFiles,missing,missing-method
(.fileExtensions), 16

loadFiles,simList,missing-method
(.fileExtensions), 16

loadPackages, 67
loadPackages,character-method

(loadPackages), 67
loadPackages,list-method

(loadPackages), 67
loadPackages,NULL-method

(loadPackages), 67
loadSimList, 68
loadSimList(), 69, 119, 120
logPath (paths), 100
logPath,simList-method (paths), 100

makeMemoisable.simList, 69
maxTimeunit, 70
maxTimeunit,simList-method

(maxTimeunit), 70
memoryUse (memoryUseThisSession), 70
memoryUseThisSession, 70
minTimeunit, 71
minTimeunit,list-method (minTimeunit),

71
minTimeunit,simList-method

(minTimeunit), 71
moduleCodeFiles, 72
moduleCoverage, 72
moduleDefaults, 73
moduleDiagram, 74
moduleDiagram(), 88
moduleDiagram,simList,ANY,ANY-method

(moduleDiagram), 74
moduleDiagram,simList,character,logical-method

(moduleDiagram), 74
moduleGraph, 75
moduleGraph(), 74
moduleGraph,simList,logical-method

(moduleGraph), 75
moduleGraph,simList,missing-method

(moduleGraph), 75
moduleInputs (moduleParams), 78
moduleInputs,character,character-method

(moduleParams), 78
moduleMetadata, 76
moduleMetadata(), 78, 81

154 INDEX

moduleMetadata,ANY,ANY,ANY-method
(moduleMetadata), 76

moduleMetadata,missing,character,character-method
(moduleMetadata), 76

moduleMetadata,missing,character,missing-method
(moduleMetadata), 76

moduleOutputs (moduleParams), 78
moduleOutputs,character,character-method

(moduleParams), 78
moduleParams, 78
moduleParams,character,character-method

(moduleParams), 78
modulePath (paths), 100
modulePath,simList-method (paths), 100
modulePath<- (paths), 100
modulePath<-,simList-method (paths), 100
modules, 46, 52, 55, 59, 64, 79, 91, 96, 99,

102, 109, 146
modules(), 79, 128
modules,simList-method (modules), 79
modules<- (modules), 79
modules<-,simList-method (modules), 79
moduleVersion, 80
moduleVersion,character,character,missing-method

(moduleVersion), 80
moduleVersion,character,missing,missing-method

(moduleVersion), 80
moduleVersion,character,missing,simList-method

(moduleVersion), 80

NA(), 41
newModule, 82, 84–86
newModule(), 73
newModule,character,character-method

(newModule), 82
newModule,character,missing-method

(newModule), 82
newModuleCode, 83, 83, 85, 86
newModuleCode,character,character,logical,character,character-method

(newModuleCode), 83
newModuleDocumentation, 83, 84, 84, 86
newModuleDocumentation,character,character,logical,character,character-method

(newModuleDocumentation), 84
newModuleDocumentation,character,character,missing,ANY,ANY-method

(newModuleDocumentation), 84
newModuleDocumentation,character,missing,logical,ANY,ANY-method

(newModuleDocumentation), 84
newModuleDocumentation,character,missing,missing,ANY,ANY-method

(newModuleDocumentation), 84

newModuleTests, 83–85, 85
newModuleTests,character,character,logical,logical-method

(newModuleTests), 85
newProgressBar, 86
newProject, 86
newProject,character,character,logical-method

(newProject), 86
newProject,character,character,missing-method

(newProject), 86
newProjectCode, 87
newProjectCode,character,character,logical-method

(newProjectCode), 87
numeric_version(), 39

objectDiagram, 88
objectDiagram(), 74
objectDiagram,simList-method

(objectDiagram), 88
objectSynonyms, 89
objs, 46, 52, 55, 59, 64, 80, 90, 96, 99, 102,

109, 146
objs(), 128
objs,simList-method (objs), 90
objs<- (objs), 90
objs<-,simList-method (objs), 90
objSize.simList, 91
openModules, 92
openModules,character,character-method

(openModules), 92
openModules,character,missing-method

(openModules), 92
openModules,missing,character-method

(openModules), 92
openModules,missing,missing-method

(openModules), 92
openModules,simList,missing-method

(openModules), 92
outputArgs (outputs), 93
outputArgs,simList-method (outputs), 93
outputArgs<- (outputs), 93
outputArgs<-,simList-method (outputs),

93
outputObjectNames (inputObjects), 60
outputObjectNames,simList-method

(inputObjects), 60
outputObjects (inputObjects), 60
outputObjects,missing-method

(inputObjects), 60

INDEX 155

outputObjects,simList-method
(inputObjects), 60

outputPath (paths), 100
outputPath,simList-method (paths), 100
outputPath<- (paths), 100
outputPath<-,simList-method (paths), 100
outputs, 93
outputs(), 126, 128, 132
outputs,simList-method (outputs), 93
outputs<- (outputs), 93
outputs<-,simList-method (outputs), 93

P (params), 98
P(), 41
P<- (params), 98
packageDescription, 62
packages, 46, 52, 55, 59, 64, 80, 91, 96, 99,

102, 109, 146
packages,ANY-method (packages), 96
paramCheckOtherMods, 97
parameters (params), 98
parameters,simList-method (params), 98
params, 46, 52, 55, 59, 64, 80, 91, 96, 98, 102,

109, 146
params(), 41, 128
params,simList-method (params), 98
params<- (params), 98
params<-,simList-method (params), 98
paths, 46, 52, 55, 59, 64, 80, 91, 96, 99, 100,

109, 146
paths(), 128
paths,simList-method (paths), 100
paths<- (paths), 100
paths<-,simList-method (paths), 100
person(), 39
Plot,simList-method, 103
Plots, 105
Plots(), 22, 132, 136
POM (experiment), 56
prepInputs(), 48
priority, 108
priority(), 121–123
progressInterval, 46, 52, 55, 59, 64, 80, 91,

96, 99, 102, 108, 146
progressInterval,simList-method

(progressInterval), 108
progressInterval<- (progressInterval),

108

progressInterval<-,simList-method
(progressInterval), 108

progressType (progressInterval), 108
progressType,simList-method

(progressInterval), 108
progressType<- (progressInterval), 108
progressType<-,simList-method

(progressInterval), 108

quickPlot::.parseElems, 18

raster(), 112
rasterCreate, 110
rasterPath (paths), 100
rasterPath,simList-method (paths), 100
rasterPath<- (paths), 100
rasterPath<-,simList-method (paths), 100
rasterToMemory, 111
rasterToMemory,ANY-method

(rasterToMemory), 111
rasterToMemory,list-method

(rasterToMemory), 111
rasterToMemory,Raster-method

(rasterToMemory), 111
rasterToMemory,simList-method

(rasterToMemory), 111
remoteFileSize, 112
reproducible::.addChangedAttr, 14
reproducible::.addTagsToOutput, 14
reproducible::.cacheMessage, 15
reproducible::.checkCacheRepo, 15, 16
reproducible::.preDigestByClass, 19
reproducible::.prepareOutput, 19
reproducible::.robustDigest(), 21
reproducible::.tagsByClass, 21
reproducible::Cache(), 139
reproducible::Checksums(), 28
reproducible::Copy(), 34, 35
reproducible::makeMemoisable(), 69
reproducible::objSize(), 91
reproducible::preProcess(), 48
reqdPkgs (inputObjects), 60
reqdPkgs,missing-method (inputObjects),

60
reqdPkgs,simList-method (inputObjects),

60
require(), 67
Require::modifyList2(), 146
Require::Require(), 39, 67

156 INDEX

restartR, 112
restartSpades, 114
rndstr, 115
rndstr,missing,missing,logical-method

(rndstr), 115
rndstr,missing,missing,missing-method

(rndstr), 115
rndstr,missing,numeric,logical-method

(rndstr), 115
rndstr,missing,numeric,missing-method

(rndstr), 115
rndstr,numeric,missing,logical-method

(rndstr), 115
rndstr,numeric,missing,missing-method

(rndstr), 115
rndstr,numeric,numeric,logical-method

(rndstr), 115
rndstr,numeric,numeric,missing-method

(rndstr), 115

saveFiles, 116
saveRDS(), 94
saveSim (saveSimList), 118
saveSimList, 118
saveSimList(), 68, 69, 119, 120
scheduleConditionalEvent, 120
scheduleConditionalEvent(), 123
scheduleEvent, 122
scheduleEvent(), 37, 121
scratchPath (paths), 100
scratchPath,simList-method (paths), 100
scratchPath<- (paths), 100
scratchPath<-,simList-method (paths),

100
setPaths(), 35
setProgressBar (newProgressBar), 86
show,simList-method, 123
showCache,simList-method

(clearCache,simList-method), 30
simFile, 124
simInit, 124
simInit(), 37, 39, 108, 133, 139, 141
simInit,ANY,ANY,ANY,ANY,ANY,ANY,ANY,ANY-method

(simInit), 124
simInit,ANY,ANY,ANY,character,ANY,ANY,ANY,ANY-method

(simInit), 124
simInit,ANY,ANY,character,ANY,ANY,ANY,ANY,ANY-method

(simInit), 124

simInit,list,list,list,list,list,data.frame,data.frame,character-method
(simInit), 124

simInitAndExperiment (experiment), 56
simInitAndSpades, 130
simInitDefaults (simInit), 124
simList (simList-class), 133
simList(), 26, 140
simList-accessors-envir (envir), 51
simList-accessors-envir(), 134
simList-accessors-events (events), 53
simList-accessors-events(), 134
simList-accessors-inout (inputs), 62
simList-accessors-inout(), 134
simList-accessors-metadata

(inputObjects), 60
simList-accessors-modules (modules), 79
simList-accessors-modules(), 134
simList-accessors-objects (objs), 90
simList-accessors-objects(), 134
simList-accessors-packages (packages),

96
simList-accessors-params (params), 98
simList-accessors-params(), 134
simList-accessors-paths (paths), 100
simList-accessors-paths(), 134
simList-accessors-times (times), 143
simList-accessors-times(), 134
simList-class, 133
simList_ (simList-class), 133
simList_(), 134
simList_-class (simList-class), 133
spades, 135
spades(), 102, 108, 128, 133
spades,ANY,ANY,ANY,logical-method

(spades), 135
spades,simList,ANY,ANY,missing-method

(spades), 135
SpaDES.core (SpaDES.core-package), 5
SpaDES.core-package, 5
spadesClasses, 140
spadesOptions, 141
spadesTimes (inSeconds), 65
start (times), 143
start<- (times), 143
start<-,simList-method (times), 143
suppliedElsewhere, 142

terraPath (paths), 100
terraPath,simList-method (paths), 100

INDEX 157

terraPath<- (paths), 100
terraPath<-,simList-method (paths), 100
time.simList (times), 143
time<- (times), 143
time<-,simList-method (times), 143
times, 46, 52, 55, 59, 64, 80, 91, 96, 99, 102,

109, 143
times(), 128
times,simList-method (times), 143
times<- (times), 143
times<-,simList-method (times), 143
timeunit (times), 143
timeunit,simList-method (times), 143
timeunit<- (times), 143
timeunit<-,simList-method (times), 143
timeunits (times), 143
timeunits,simList-method (times), 143

unmakeMemoisable.simList_
(makeMemoisable.simList), 69

unzipSimList (loadSimList), 68
unzipSimList(), 69, 119, 120
updateList, 146
use_gha, 147
utils::citation(), 61
utils::modifyList(), 146

writeEventInfo, 147
writeRNGInfo, 148

zip(), 149
zipModule, 148
zipModule(), 50, 51, 58
zipModule,character,character,character-method

(zipModule), 148
zipModule,character,character,missing-method

(zipModule), 148
zipModule,character,missing,character-method

(zipModule), 148
zipModule,character,missing,missing-method

(zipModule), 148
zipSimList, 68
zipSimList (saveSimList), 118
zipSimList(), 69, 119, 120

	SpaDES.core-package
	.addChangedAttr,simList-method
	.addTagsToOutput,simList-method
	.cacheMessage,simList-method
	.checkCacheRepo,list-method
	.fileExtensions
	.findSimList
	.parseElems,simList-method
	.preDigestByClass,simList-method
	.prepareOutput,simList-method
	.quickCheck
	.robustDigest,simList-method
	.tagsByClass,simList-method
	all.equal.simList
	anyPlotting
	append_attr
	bindrows
	checkModule
	checkModuleLocal
	checkObject
	checkParams
	checksums
	classFilter
	clearCache,simList-method
	convertToPackage
	Copy,simList-method
	copyModule
	createsOutput
	defineEvent
	defineModule
	defineParameter
	depsEdgeList
	depsGraph
	dhour
	doEvent.checkpoint
	downloadData
	downloadModule
	envir
	eventDiagram
	events
	expectsInput
	experiment
	extractURL
	fileName
	getModuleVersion
	globals
	initialize,simList-method
	inputObjects
	inputs
	inSeconds
	loadPackages
	loadSimList
	makeMemoisable.simList
	maxTimeunit
	memoryUseThisSession
	minTimeunit
	moduleCodeFiles
	moduleCoverage
	moduleDefaults
	moduleDiagram
	moduleGraph
	moduleMetadata
	moduleParams
	modules
	moduleVersion
	newModule
	newModuleCode
	newModuleDocumentation
	newModuleTests
	newProgressBar
	newProject
	newProjectCode
	objectDiagram
	objectSynonyms
	objs
	objSize.simList
	openModules
	outputs
	packages
	paramCheckOtherMods
	params
	paths
	Plot,simList-method
	Plots
	priority
	progressInterval
	rasterCreate
	rasterToMemory
	remoteFileSize
	restartR
	restartSpades
	rndstr
	saveFiles
	saveSimList
	scheduleConditionalEvent
	scheduleEvent
	show,simList-method
	simFile
	simInit
	simInitAndSpades
	simList-class
	spades
	spadesClasses
	spadesOptions
	suppliedElsewhere
	times
	updateList
	use_gha
	writeEventInfo
	writeRNGInfo
	zipModule
	Index

