TPLS_example2

Hello, from Arthur

This script shows how one can use T-PLS to assess cross-validation performance. To see how to use T-PLS to build a predictor, see TPLS_example1.

Loading library and tutorial data

library(TPLSr)
attach(TPLSdat)
#> The following objects are masked from TPLSdat (pos = 3):
#> 
#>     X, Y, mask, run, subj

X is the single trial betas. It has 3714 columns, each of which corresponds to a voxel. Y is binary variable to be predicted. In this case, the Y was whether the participant chose left or right button. Hopefully, when we create whole-brain predictor, we should be able to see left and right motor areas. subj is a numerical variable that tells us the subject number that each observation belongs to. In this dataset, there are only 3 subjects. run is a numerical variable that tells us the scanner run that each observation belongs to. In this dataset, each of the 3 subjects had 8 scan runs.

Cross Validation

There are only 3 subjects in this dataset, so we will do 3-fold CV. This entails repeating the following step 3 times * 1. Divide the data into training and testing. In this case, 2 subjects in training and 1 subject in testing. * 2. Using just the training data (i.e., 2 subjects), do secondary cross-validation to choose best tuning parameter * 3. Based on the best tuning parameter, fit a whole-brain predictor using all training data (2 subjects). * 4. Assess how well the left out subject is predicted * 5. Repeat 1~4

ACCstorage <- rep(NA, 3)
for (i in 1:3) { # primary cross-validation fold
  test = subj==i; train = !test
  
  # perform nested cross-validation within training data
  cvmdl = TPLS_cv(X[train,],Y[train],subj[train])
  cvstats = evalTuningParam(cvmdl,"Pearson",X[train,],Y[train],1:25,seq(0,1,0.05),run[train])
  
  # fit T-PLS model using all training data based on best tuning parameter
  mdl = TPLS(X[train,],Y[train])
  
  # predict the testing subject
  score = TPLSpredict(mdl,cvstats$compval_best,cvstats$threshval_best,X[test,])
  prediction = 1*(score > 0.5)
  
  # assess performance of prediction
  ACCstorage[i] = mean(prediction==Y[test])
}
#> Fold # 1
#> Calculating Comp # 1
#> Calculating Comp # 2
#> Calculating Comp # 3
#> Calculating Comp # 4
#> Calculating Comp # 5
#> Calculating Comp # 6
#> Calculating Comp # 7
#> Calculating Comp # 8
#> Calculating Comp # 9
#> Calculating Comp # 10
#> Calculating Comp # 11
#> Calculating Comp # 12
#> Calculating Comp # 13
#> Calculating Comp # 14
#> Calculating Comp # 15
#> Calculating Comp # 16
#> Calculating Comp # 17
#> Calculating Comp # 18
#> Calculating Comp # 19
#> Calculating Comp # 20
#> Calculating Comp # 21
#> Calculating Comp # 22
#> Calculating Comp # 23
#> Calculating Comp # 24
#> Calculating Comp # 25
#> Fold # 2
#> Calculating Comp # 1
#> Calculating Comp # 2
#> Calculating Comp # 3
#> Calculating Comp # 4
#> Calculating Comp # 5
#> Calculating Comp # 6
#> Calculating Comp # 7
#> Calculating Comp # 8
#> Calculating Comp # 9
#> Calculating Comp # 10
#> Calculating Comp # 11
#> Calculating Comp # 12
#> Calculating Comp # 13
#> Calculating Comp # 14
#> Calculating Comp # 15
#> Calculating Comp # 16
#> Calculating Comp # 17
#> Calculating Comp # 18
#> Calculating Comp # 19
#> Calculating Comp # 20
#> Calculating Comp # 21
#> Calculating Comp # 22
#> Calculating Comp # 23
#> Calculating Comp # 24
#> Calculating Comp # 25
#> Fold # 1
#> Fold # 2
#> Calculating Comp # 1
#> Calculating Comp # 2
#> Calculating Comp # 3
#> Calculating Comp # 4
#> Calculating Comp # 5
#> Calculating Comp # 6
#> Calculating Comp # 7
#> Calculating Comp # 8
#> Calculating Comp # 9
#> Calculating Comp # 10
#> Calculating Comp # 11
#> Calculating Comp # 12
#> Calculating Comp # 13
#> Calculating Comp # 14
#> Calculating Comp # 15
#> Calculating Comp # 16
#> Calculating Comp # 17
#> Calculating Comp # 18
#> Calculating Comp # 19
#> Calculating Comp # 20
#> Calculating Comp # 21
#> Calculating Comp # 22
#> Calculating Comp # 23
#> Calculating Comp # 24
#> Calculating Comp # 25
#> Fold # 1
#> Calculating Comp # 1
#> Calculating Comp # 2
#> Calculating Comp # 3
#> Calculating Comp # 4
#> Calculating Comp # 5
#> Calculating Comp # 6
#> Calculating Comp # 7
#> Calculating Comp # 8
#> Calculating Comp # 9
#> Calculating Comp # 10
#> Calculating Comp # 11
#> Calculating Comp # 12
#> Calculating Comp # 13
#> Calculating Comp # 14
#> Calculating Comp # 15
#> Calculating Comp # 16
#> Calculating Comp # 17
#> Calculating Comp # 18
#> Calculating Comp # 19
#> Calculating Comp # 20
#> Calculating Comp # 21
#> Calculating Comp # 22
#> Calculating Comp # 23
#> Calculating Comp # 24
#> Calculating Comp # 25
#> Fold # 2
#> Calculating Comp # 1
#> Calculating Comp # 2
#> Calculating Comp # 3
#> Calculating Comp # 4
#> Calculating Comp # 5
#> Calculating Comp # 6
#> Calculating Comp # 7
#> Calculating Comp # 8
#> Calculating Comp # 9
#> Calculating Comp # 10
#> Calculating Comp # 11
#> Calculating Comp # 12
#> Calculating Comp # 13
#> Calculating Comp # 14
#> Calculating Comp # 15
#> Calculating Comp # 16
#> Calculating Comp # 17
#> Calculating Comp # 18
#> Calculating Comp # 19
#> Calculating Comp # 20
#> Calculating Comp # 21
#> Calculating Comp # 22
#> Calculating Comp # 23
#> Calculating Comp # 24
#> Calculating Comp # 25
#> Fold # 1
#> Fold # 2
#> Calculating Comp # 1
#> Calculating Comp # 2
#> Calculating Comp # 3
#> Calculating Comp # 4
#> Calculating Comp # 5
#> Calculating Comp # 6
#> Calculating Comp # 7
#> Calculating Comp # 8
#> Calculating Comp # 9
#> Calculating Comp # 10
#> Calculating Comp # 11
#> Calculating Comp # 12
#> Calculating Comp # 13
#> Calculating Comp # 14
#> Calculating Comp # 15
#> Calculating Comp # 16
#> Calculating Comp # 17
#> Calculating Comp # 18
#> Calculating Comp # 19
#> Calculating Comp # 20
#> Calculating Comp # 21
#> Calculating Comp # 22
#> Calculating Comp # 23
#> Calculating Comp # 24
#> Calculating Comp # 25
#> Fold # 1
#> Calculating Comp # 1
#> Calculating Comp # 2
#> Calculating Comp # 3
#> Calculating Comp # 4
#> Calculating Comp # 5
#> Calculating Comp # 6
#> Calculating Comp # 7
#> Calculating Comp # 8
#> Calculating Comp # 9
#> Calculating Comp # 10
#> Calculating Comp # 11
#> Calculating Comp # 12
#> Calculating Comp # 13
#> Calculating Comp # 14
#> Calculating Comp # 15
#> Calculating Comp # 16
#> Calculating Comp # 17
#> Calculating Comp # 18
#> Calculating Comp # 19
#> Calculating Comp # 20
#> Calculating Comp # 21
#> Calculating Comp # 22
#> Calculating Comp # 23
#> Calculating Comp # 24
#> Calculating Comp # 25
#> Fold # 2
#> Calculating Comp # 1
#> Calculating Comp # 2
#> Calculating Comp # 3
#> Calculating Comp # 4
#> Calculating Comp # 5
#> Calculating Comp # 6
#> Calculating Comp # 7
#> Calculating Comp # 8
#> Calculating Comp # 9
#> Calculating Comp # 10
#> Calculating Comp # 11
#> Calculating Comp # 12
#> Calculating Comp # 13
#> Calculating Comp # 14
#> Calculating Comp # 15
#> Calculating Comp # 16
#> Calculating Comp # 17
#> Calculating Comp # 18
#> Calculating Comp # 19
#> Calculating Comp # 20
#> Calculating Comp # 21
#> Calculating Comp # 22
#> Calculating Comp # 23
#> Calculating Comp # 24
#> Calculating Comp # 25
#> Fold # 1
#> Fold # 2
#> Calculating Comp # 1
#> Calculating Comp # 2
#> Calculating Comp # 3
#> Calculating Comp # 4
#> Calculating Comp # 5
#> Calculating Comp # 6
#> Calculating Comp # 7
#> Calculating Comp # 8
#> Calculating Comp # 9
#> Calculating Comp # 10
#> Calculating Comp # 11
#> Calculating Comp # 12
#> Calculating Comp # 13
#> Calculating Comp # 14
#> Calculating Comp # 15
#> Calculating Comp # 16
#> Calculating Comp # 17
#> Calculating Comp # 18
#> Calculating Comp # 19
#> Calculating Comp # 20
#> Calculating Comp # 21
#> Calculating Comp # 22
#> Calculating Comp # 23
#> Calculating Comp # 24
#> Calculating Comp # 25

mean(ACCstorage) # out-of-sample CV performance
#> [1] 0.6661877