The activAnalyzer package was primarily built for working through a Shiny app. The procedure for using the app is explained in the related user’s guide. The functions used in this app can also be used to analyze data outside the app, as shown below.
library(activAnalyzer)
library(magrittr)
library(ggplot2)
<- system.file("extdata", "acc.agd", package = "activAnalyzer") file
<- prepare_dataset(data = file) mydata
<-
mydata_with_wear_marks %>%
mydata mark_wear_time(
to_epoch = 60,
cts = "vm",
frame = 90,
allowanceFrame = 2,
streamFrame = 30
)
plot_data(data = mydata_with_wear_marks, metric = "vm")
#> frame is 90
#> streamFrame is 30
#> allowanceFrame is 2
<-
mydata_with_intensity_marks mark_intensity(
data = mydata_with_wear_marks,
col_axis = "vm",
equation = "Sasaki et al. (2011) [Adults]",
sed_cutpoint = 200,
mpa_cutpoint = 2690,
vpa_cutpoint = 6167,
age = 32,
weight = 67,
sex = "male",
)
plot_data_with_intensity(
mydata_with_intensity_marks,metric = "vm"
)
<-
results_by_day %>%
mydata_with_intensity_marks recap_by_day(
age = 32,
weight = 67,
sex = "male",
valid_wear_time_start = "07:00:00",
valid_wear_time_end = "22:00:00"
)
results_by_day
<-
averaged_results %>%
results_by_day average_results(minimum_wear_time = 10, fun = "mean")
averaged_results