Package ‘argon2’

October 30, 2021
Type Package

Title Secure Password Hashing
Version 0.4-0

Description Ultilities for secure password hashing via the argon2 algorithm.
It is a relatively new hashing algorithm and is believed to be very secure.
The 'argon2' implementation included in the package is the reference
implementation. The package also includes some utilities that should be
useful for digest authentication, including a wrapper of 'blake2b'. For
similar R packages, see sodium and 'berypt'. See
<https://en.wikipedia.org/wiki/Argon2> or
<https://eprint.iacr.org/2015/430.pdf> for more information.

License BSD 2-clause License + file LICENSE
Copyright See inst/COPYRIGHTS for files in src/argon2.
Depends R (>=3.0.0)

NeedsCompilation yes

ByteCompile yes
URL https://github.com/wrathematics/argon2

BugReports https://github.com/wrathematics/argon2/issues
Maintainer Drew Schmidt <wrathematics@gmail.com>
RoxygenNote 7.1.2

Author Drew Schmidt [aut, cre]

Repository CRAN

Date/Publication 2021-10-30 19:30:02 UTC

R topics documented:

argon2-package
blake2b L
QBN _NOMNCE .« « . v v v v e ettt e e e e e e e e
hashing
raw_as_char e

https://en.wikipedia.org/wiki/Argon2
https://eprint.iacr.org/2015/430.pdf
https://github.com/wrathematics/argon2
https://github.com/wrathematics/argon2/issues

2 blake2b

Index 6

argon2-package argon2

Description

Utilities for secure password hashing via the argon2 algorithm. It is a relatively new hashing algo-
rithm and is believed to be very secure. The argon2 implementation included in the package is the
reference implementation. The package also includes some utilities that should be useful for digest
authentication, including a wrapper of blake2b. For similar R packages, see sodium and berypt.

Author(s)

Drew Schmidt

References

Project URL: https://github.com/wrathematics/argon?2

blake2b blake2b

Description

A 512-bit blake2b hash implementation.

Usage
blake2b(x, key = NULL)

Arguments

X Input to be hashed. Can be a single string or a raw vector.

key An optional key. Should be NULL (for no key), a single string, or a raw vector.
Value

The hash of the string as a raw vector.

References

Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z. and Winnerlein, C., 2013, June. BLAKE2: simpler,
smaller, fast as MDS5. In International Conference on Applied Cryptography and Network Security
(pp. 119-135). Springer Berlin Heidelberg.

https://github.com/wrathematics/argon2

gen_nonce 3

Examples

Not run:
library(argon2)
blake2b("some string")
blake2b("another")

End(Not run)

gen_nonce Generate a nonce

Description

Generates a random raw (unsigned char*) vector.

Usage

gen_nonce(length = 64)

Arguments

length The number of elements to return.

Value

A random raw vector.

hashing Password Hashing

Description

Basic password hashing. Use pw_hash () to hash and pw_check() to compare a possible password
with the hashed password.

Usage

nin

pw_hash(pass, variant = "i", iterations = 16, memory = 8, nthreads = 2)

pw_check (hash, pass)

4 hashing

Arguments
pass The (plaintext) password.
variant Choice of algorithm; currently the only supported choices are "i" and "d".
iterations A time cost. Recommended to be at least 10. Can be any integer from 1 to 231
- 1.
memory A memory cost, given in MiB. Recommended to be at least 8. Can be any integer
from 1 to 2721 - 1 (but don’t be ridiculous).
nthreads Number of threads. This affects the speed of hashing, so more is better.
hash The hashed password; this is the output of pw_hash().
Details

The default options for iterations and memory should be sufficient for most purposes. You are
encouraged to read the official documentation before modifying these values, which can be found
here https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf.

On the other hand, nthreads is safe to change to fit your available resources, and you are encour-
aged to do so.

This uses the argon2 (i or d variety) hash algorithm. See references for details and implementation
source code (also bundled with this package).

Our binding uses a 512 bit salt with data generated from MT.

Value

pw_hash() returns a hash to be used as an input to pw_check().

pw_check () returns TRUE or FALSE, whether or not the plaintext password matches its hash.

References

Biryukov, A., Dinu, D. and Khovratovich, D., 2015. Fast and Tradeoff-Resilient Memory-Hard
Functions for Cryptocurrencies and Password Hashing. TACR Cryptology ePrint Archive, 2015,
p.430.

Reference implementation https://github.com/P-H-C/phc-winner-argon2

Examples

Not run:
library(argon2)

pass <- "myPassword!"”
hash <- pw_hash(pass)
hash # store this

pw_check (hash, pass)
pw_check (hash, "password")

pw_check(hash, "1234")

End(Not run)

https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
https://github.com/P-H-C/phc-winner-argon2

raw_as_char 5

raw_as_char raw_as_char

Description

Convert the literal bytes of a raw (unsigned char*) to a string representation. This is different from
R’s rawToChar (). See examples for details.

Usage

raw_as_char(raw, upper = TRUE, spaces = FALSE)

Arguments
raw A raw vector.
upper Should hex digits A-F be given in uppercase?
spaces Should the str use spaces?

Value

A character string.

Examples

Not run:
library(argon2)

str <- "some text”
raw <- charToRaw(str)
raw

rawToChar (raw)
raw_as_char(raw)

End(Not run)

Index

* package
argon2-package, 2

argon2-package, 2
blake2b, 2
gen_nonce, 3
hashing, 3

pw_check (hashing), 3
pw_hash (hashing), 3

raw_as_char, 5

	argon2-package
	blake2b
	gen_nonce
	hashing
	raw_as_char
	Index

