The R package arulesCBA (Hahsler et al, 2020) is an extension of the package arules to perform association rule-based classification. The package provides the infrastructure for class association rules and implements associative classifiers based on the following algorithms:
The package also provides the infrastructure for associative classification (supervised discetization, mining class association rules (CARs)), and implements various association rule-based classification strategies (first match, majority voting, weighted voting, etc.).
Stable CRAN version: Install from within R with
install.packages("arulesCBA")
Current development version: Install from r-universe.
install.packages("arulesCBA", repos = "https://mhahsler.r-universe.dev")
library("arulesCBA")
data("iris")
Learn a classifier.
<- CBA(Species ~ ., data = iris)
classifier classifier
## CBA Classifier Object
## Formula: Species ~ .
## Number of rules: 6
## Default Class: versicolor
## Classification method: first
## Description: CBA algorithm (Liu et al., 1998)
Inspect the rulebase.
inspect(classifier$rules, linebreak = TRUE)
## lhs rhs support confidence coverage lift count size coveredTransactions totalErrors
## [1] {Petal.Length=[-Inf,2.45)} => {Species=setosa} 0.33 1.00 0.33 3.0 50 2 50 50
## [2] {Sepal.Length=[6.15, Inf],
## Petal.Width=[1.75, Inf]} => {Species=virginica} 0.25 1.00 0.25 3.0 37 3 37 13
## [3] {Sepal.Length=[5.55,6.15),
## Petal.Length=[2.45,4.75)} => {Species=versicolor} 0.14 1.00 0.14 3.0 21 3 21 13
## [4] {Sepal.Width=[-Inf,2.95),
## Petal.Width=[1.75, Inf]} => {Species=virginica} 0.11 1.00 0.11 3.0 17 3 5 8
## [5] {Petal.Width=[1.75, Inf]} => {Species=virginica} 0.30 0.98 0.31 2.9 45 2 4 6
## [6] {} => {Species=versicolor} 0.33 0.33 1.00 1.0 150 1 33 6
Make predictions for the first few instances of iris.
predict(classifier, head(iris))
## [1] setosa setosa setosa setosa setosa setosa
## Levels: setosa versicolor virginica