Dynamic regression for time series using Extreme Gradient Boosting with hyper-parameter tuning via Bayesian Optimization or Random Search.
Version: | 2.0.1 |
Depends: | R (≥ 4.1) |
Imports: | rBayesianOptimization (≥ 1.2.0), xgboost (≥ 1.4.1.1), purrr (≥ 0.3.4), ggplot2 (≥ 3.3.5), readr (≥ 2.1.2), stringr (≥ 1.4.0), lubridate (≥ 1.7.10), narray (≥ 0.4.1.1), fANCOVA (≥ 0.6-1), imputeTS (≥ 3.2), scales (≥ 1.1.1), tictoc (≥ 1.0.1), modeest (≥ 2.4.0), moments (≥ 0.14), Metrics (≥ 0.1.4), parallel (≥ 4.1.1), utils (≥ 4.1.1), stats (≥ 4.1.1) |
Published: | 2022-03-23 |
Author: | Giancarlo Vercellino |
Maintainer: | Giancarlo Vercellino <giancarlo.vercellino at gmail.com> |
License: | GPL-3 |
URL: | https://rpubs.com/giancarlo_vercellino/audrex |
NeedsCompilation: | no |
Materials: | NEWS |
CRAN checks: | audrex results |
Reference manual: | audrex.pdf |
Package source: | audrex_2.0.1.tar.gz |
Windows binaries: | r-devel: audrex_2.0.1.zip, r-release: audrex_2.0.1.zip, r-oldrel: audrex_2.0.1.zip |
macOS binaries: | r-release (arm64): audrex_2.0.1.tgz, r-oldrel (arm64): audrex_2.0.1.tgz, r-release (x86_64): audrex_2.0.1.tgz, r-oldrel (x86_64): audrex_2.0.1.tgz |
Old sources: | audrex archive |
Please use the canonical form https://CRAN.R-project.org/package=audrex to link to this page.