This small benchmark compares the performance of the base64 encoding/decoding in package base64url
with the implementations in the packages base64enc
and openssl
.
library(base64url)
library(base64enc)
library(openssl)
library(microbenchmark)
x = "plain text"
microbenchmark(
base64url = base64_urlencode(x),
base64enc = base64encode(charToRaw(x)),
openssl = base64_encode(x)
)
## Unit: nanoseconds
## expr min lq mean median uq max neval
## base64url 408 461.5 853.52 698.0 782.5 20430 100
## base64enc 1199 1367.0 3114.89 1865.0 1983.5 139937 100
## openssl 13188 13536.0 15256.11 13749.5 14081.5 135871 100
x = "N0JBLlRaUTp1bi5KOW4xWStNWEJoLHRQaDZ3"
microbenchmark(
base64url = base64_urldecode(x),
base64enc = rawToChar(base64decode(x)),
openssl = rawToChar(base64_decode(x))
)
## Unit: nanoseconds
## expr min lq mean median uq max neval
## base64url 423 485.0 1104.57 655.5 923 40442 100
## base64enc 1504 1681.5 2879.92 2225.5 2546 76432 100
## openssl 19066 19643.0 21264.27 19915.5 20281 119636 100
Here, the task has changed from encoding/decoding a single string to processing multiple strings stored inside a character vector. First, we create a small utility function which returns n
random strings with a random number of characters (between 1 and 32) each.
rand = function(n, min = 1, max = 32) {
chars = c(letters, LETTERS, as.character(0:9), c(".", ":", ",", "+", "-", "*", "/"))
replicate(n, paste0(sample(chars, sample(min:max, 1), replace = TRUE), collapse = ""))
}
set.seed(1)
rand(10)
## [1] "zN.n9+TRe" "mVA1IX/"
## [3] "1,oSisAaA8xHP" "m5U2hXC4S2MK2bGY"
## [5] "G7EqegvJTC.uFwSrH0f8x5x" "G97A1-DXBw0"
## [7] "XiqjqeS" "13FC3PTys/RoiG:P*YyDkaXhES/IH"
## [9] "0FJopP" "fcS,PMK*JVPqrYFmZh7"
Only base64url
is vectorized for string input, the alternative implementations need wrappers to process character vectors:
base64enc_encode = function(x) {
vapply(x, function(x) base64encode(charToRaw(x)), NA_character_, USE.NAMES = FALSE)
}
openssl_encode = function(x) {
vapply(x, function(x) base64_encode(x), NA_character_, USE.NAMES = FALSE)
}
base64enc_decode = function(x) {
vapply(x, function(x) rawToChar(base64decode(x)), NA_character_, USE.NAMES = FALSE)
}
openssl_decode = function(x) {
vapply(x, function(x) rawToChar(base64_decode(x)), NA_character_, USE.NAMES = FALSE)
}
The following benchmark measures the runtime to encode 1000 random strings and then decode them again:
set.seed(1)
x = rand(1000)
microbenchmark(
base64url = base64_urldecode(base64_urlencode(x)),
base64enc = base64enc_decode(base64enc_encode(x)),
openssl = openssl_decode(openssl_encode(x))
)
## Unit: microseconds
## expr min lq mean median uq max
## base64url 214.031 222.0655 270.415 260.3725 311.967 441.127
## base64enc 3613.444 3974.8940 4228.395 4058.2495 4157.485 11094.540
## openssl 34166.572 35453.3810 36002.175 35794.9835 36349.533 42507.878
## neval
## 100
## 100
## 100