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afac Ascending (rising) factorial.

Description

Calculate the ascending (or rising) factorial of a value x of order r.

Usage

afac(x, r, method = "product"”)

Arguments

X
r

method

Value

A value for which the ascending factorial is to be calculated.
The power x is to be raised to.

The method by which the descending factorials are to be calculated. Default is
"product” which uses direct arithmetic. Alternative is "gamma" which calcu-
lates the descending factorial using the Gamma function. The alternative method
might be faster but might fail because the Gamma function is not defined for
negative integers (returning Inf).

The ascending factorial of value x raised to the r’th power.

Examples

# To calculate the 4th ascending factorial for a value (e.g., 3.14):
afac(x = 3.14, r = 4)

# To calculate the 5th ascending factorial for values 3.14, 2.72, and 0.58:

afac(x =

c(3.14, 2.72, 0.58), r =5)
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AMS Alpha Shape-Parameter Given Location-Parameters, Mean, Variance,
Skewness, Kurtosis and Beta Shape-Parameter of a Four-Parameter
Beta PDD.
Description

Calculates the Beta value required to produce a Beta probability density distribution with defined
moments and parameters. Be advised that not all combinations of moments and parameters can be
satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both location-
parameters, meaning that the value of the lower-location parameter will take on which ever value it
must, and cannot be specified).

Usage
AMS(
mean = NULL,
variance = NULL,
skewness = NULL,
kurtosis = NULL,
1=o0,
u=1,
beta = NULL,
sd = NULL
)
Arguments
mean The mean (first raw moment) of the target Standard Beta probability density
distribution.
variance The variance (second central moment) of the target Standard Beta probability
density distribution.
skewness The skewness (third standardized moment) of the target Beta probability density
distribution.
kurtosis The kurtosis (fourth standardized moment) of the target Beta probability density
distribution.
1 The lower-bound of the Beta distribution. Default is O (i.e., the lower-bound of
the Standard, two-parameter Beta distribution).
u The upper-bound of the Beta distribution. Default is 1 (i.e., the upper-bound of
the Standard, two-parameter Beta distribution).
beta Optional specification of the Beta shape-parameter of the target Beta distribu-
tion. Finds then the Alpha parameter necessary to produce a distribution with
the specified mean, given specified Beta, 1, and u parameters.
sd Optional alternative to specifying var. The standard deviation of the target Stan-

dard Beta probability density distribution.
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Value

A numeric value representing the required value for the Alpha shape-parameter in order to produce
a Beta probability density distribution with the target mean and variance, given specified lower- and
upper bounds of the Beta distribution.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of @, rescaled to proportion
# of maximum.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3)) / 100
hist(testdata, xlim = c(@, 1))

# To find the alpha shape-parameter of a Standard (two-parameter) Beta
# distribution with the same mean and variance as the observed-score
# distribution using AMS():

AMS(mean(testdata), var(testdata))

AUC Area Under the ROC Curve.

Description

Given a vector of false-positive rates and a vector of true-positive rates, calculate the area under the
Receiver Operator Characteristic (ROC) curve.

Usage

AUC(FPR, TPR)

Arguments
FPR Vector of False-Positive Rates.
TPR Vector of True-Positive Rates.
Value

A value representing the area under the ROC curve.

Note

Script originally retrieved and modified from https://blog.revolutionanalytics.com/2016/11/calculating-
auc.html.
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Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(0@, 100))

Suppose the cutoff value for attaining a pass is 50 items correct, and
that the reliability of this test was estimated to 0.7. To calculate the
necessary (x, y) coordinates to compute the area under the curve statistic
one can use the LL.ROC() function with the argument

raw.out = TRUE.

coords <- LL.ROC(x = testdata, reliability = .7, truecut = 50, min = 0,

max = 100, raw.out = TRUE)

N

# To calculate and retrieve the Area Under the Curve (AUC) with the AUC()
# function, feed it the raw coordinates calculated above.
AUC(coords[, "FPR"], coords[, "TPR"])

Beta.2p.fit Method of Moment Estimates of Shape-Parameters of the Two-
Parameter (Standard) Beta Distribution.

Description

An implementation of the method of moments estimation of two-parameter Beta distribution param-
eters. Given a vector of values, calculates the shape parameters required to produce a two-parameter
Beta distribution with the same mean and variance (i.e., the first two moments) as the observed-score
distribution.

Usage

Beta.2p.fit(scores, mean = NULL, variance = NULL, 1 =0, u=1)

Arguments

scores A vector of values to which the two-parameter Beta distribution is to be fitted.
The values ought to fall within the [0, 1] interval.

mean The mean of the target Beta distribution. Alternative to feeding the function raw
scores.

variance The variance of the target Beta distribution. Alternative to feeding the function
raw scores.

1 Optional specification of a lower-bound parameter of the Beta distribution. De-
fault is O (i.e., the lower-bound of the Standard two-parameter Beta distribution).

u Optional specification of an upper-bound parameter of the Beta distribution. De-

faultis 1 (i.e., the lower-bound of the Standard two-parameter Beta distribution).
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Value

A list of parameter-values required to produce a Standard two-parameter Beta distribution with the
same first two moments as the observed distribution.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3)) / 100
hist(testdata, xlim = c(@, 1), freq = FALSE)

# To fit and retrieve the parameters for a two-parameter Beta distribution
# to the observed-score distribution using Beta.2p.fit():

(params.2p <- Beta.2p.fit(testdata))

curve(dbeta(x, params.2p$alpha, params.2p$beta), add = TRUE)

Beta.4p.fit Method of Moment Estimates of Shape- and Location Parameters of
the Four-Parameter Beta Distribution.

Description

An implementation of the method of moments estimation of four-parameter Beta distribution pa-
rameters presented by Hanson (1991). Given a vector of values, calculates the shape- and location
parameters required to produce a four-parameter Beta distribution with the same mean, variance,
skewness and kurtosis (i.e., the first four moments) as the observed-score distribution.

Usage
Beta.4p.fit(
scores,
mean = NULL,

variance = NULL,
skewness = NULL,

kurtosis = NULL
)
Arguments

scores A vector of values to which the four-parameter Beta distribution is to be fitted.

mean If scores are not supplied: specification of the mean for the target four-parameter
Beta distribution.

variance If scores are not supplied: specification of the variance for the target four-
parameter Beta distribution.

skewness If scores are not supplied: specification of the skewness for the target four-
parameter Beta distribution.

kurtosis If scores are not supplied: specification of the kurtosis for the target four-parameter

Beta distribution.
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Value

A list of parameter-values required to produce a four-parameter Beta distribution with the same first
four moments as the observed distribution.

References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(@, 100), freq = FALSE)

# To fit and retrieve the parameters for a four-parameter Beta distribution

# to the observed-score distribution using Beta.4p.fit():

(params.4p <- Beta.4p.fit(testdata))

curve(dBeta.4P(x, params.4p$l, params.4p$u, params.4p$alpha, params.4p$beta), add = TRUE)

Beta.gfx.poly.cdf Coordinate Generation for Marking an Area Under the Curve for the
Beta Cumulative Probability Density Distribution.

Description

Plotting tool, producing a two-column matrix with values of y corresponding to locations on x.
Useful for shading areas under the curve when tracing the line for the Standard Beta cumulative
probability function.

Usage
Beta.gfx.poly.cdf(from, to, by, alpha, beta, 1 =0, u=1)

Arguments
from The point of the x-axis from where to start producing y-density values.
to The point of the x-axis to where y-density values are to be produced.
by The resolution (or spacing) at which to produce y-density values.
alpha The alpha shape-parameter value for the Standard Beta cumulative probability
distribution.
beta The beta shape-parameter for the Standard Beta cumulative probability distribu-

tion.
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1 The lower-bound location parameter of the Beta distribution.
u The upper-bound location parameter of the Beta distribution.
Value

A two-column matrix with cumulative probability-values of y to plot against corresponding location
values of x.

Examples

# To box in an area under a four-parameter Beta cumulative distribution with
# location parameters 1 = 0.25 and u = 0.75, and shape parameters

# alpha = 5 and beta = 3, from 0.4 to 0.6:

plot(NULL, x1lim = c(@, 1), ylim = c(0, 1))

coords <- Beta.gfx.poly.cdf(from = 0.4, to = 0.6, by = 0.001, alpha = 5,
beta = 3, 1 = 0.25, u =0.75)

polygon(coords)
Beta.gfx.poly.pdf Coordinate Generation for Marking an Area Under the Curve for the
Beta Probability Density Distribution.
Description

Plotting tool, producing a two-column matrix with values of y corresponding to locations on x.
Useful for shading areas under the curve when tracing the line for the Standard Beta probability
density function.

Usage
Beta.gfx.poly.pdf(from, to, by, alpha, beta, 1 =0, u=1)

Arguments
from The point of the x-axis from where to start producing y-density values.
to The point of the x-axis to where y-density values are to be produced.
by The resolution (or spacing) at which to produce y-density values.
alpha The alpha (first) shape-parameter value for the Standard Beta probability density
distribution.
beta The beta (second) shape-parameter for the Standard Beta probability density
distribution.
1 The lower-bound location parameter of the Beta distribution.
u The upper-bound location parameter of the Beta distribution.
Value

A two-column matrix with density-values of y to plot against corresponding location values of x.
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Examples

# To box in an area under a four-parameter Beta distribution with location
# parameters 1 = .25 and u = .75, and shape parameters alpha = 5 and

# rbeta = 3, from 0.4 to 0.6:

plot(NULL, x1lim = c(@, 1), ylim = c(0, 7))

coords <- Beta.gfx.poly.pdf(from = 0.4, to = 0.6, by = 0.001, alpha = 5,
beta = 3, 1 = 0.25, u =0.75)

polygon(coords)
Beta.gfx.poly.qdf Coordinate Generation for Marking an Area Under the Curve for the
Beta Quantile Density Distribution.
Description

Plotting tool, producing a two-column matrix with values of y corresponding to locations on x.
Useful for shading areas under the curve when tracing the line for the Standard Beta probability
quantile function.

Usage

Beta.gfx.poly.qdf(from, to, by, alpha, beta, 1 =0, u=1)

Arguments
from The point of the x-axis from where to start producing y-quantile values.
to The point of the x-axis to where y-quantile values are to be produced.
by The resolution (or spacing) at which to produce y-density values.
alpha The alpha shape-parameter value for the Standard Beta probability distribution.
beta The beta shape-parameter for the Standard Beta probability distribution.
1 The lower-bound location parameter of the Beta distribution.
u The upper-bound location parameter of the Beta distribution.
Value

A two-column matrix with quantile-values of y to plot against corresponding location values of x.

Examples

# To box in an area under a four-parameter Beta quantile distribution with

# location parameters 1 = .25 and u = 75, and shape parameters alpha = 5 and
# beta = 3, from .4 to .6:

plot(NULL, x1lim = c(@, 1), ylim = c(@, 1))

coords <- Beta.gfx.poly.qdf(from = 0.4, to = 0.6, by = 0.001, alpha = 5,
beta = 3, 1 = 0.25, u = 0.75)

polygon(coords)
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Beta.tp.fit Estimate Beta true-score distribution based on observed-score raw-
moments and the effective test length.

Description

Estimator for the Beta true-score distribution shape-parameters from the observed-score distribu-
tion and Livingston and Lewis’ effective test length. Returns a list with entries representing the
lower- and upper shape parameters (I and u), and the shape parameters (alpha and beta) of the
four-parameters beta distribution.

Usage

Beta.tp.fit(
X,
min,
max,
etl,
reliability = NULL,
true.model = "4P",
failsafe = FALSE,

1=o0,
u-=1,
alpha = NA,
beta = NA,
output = "parameters”
)
Arguments
X Vector of observed-scores.
min The minimum possible score to attain on the test.
max The maximum possible score to attain on the test.
etl The value of Livingston and Lewis’ effective test length. See ?ETL(). Not
necessary to specify if reliability is supplied to the reliability argument.
reliability Optional specification of the test-score reliability coefficient. If specified, over-
rides the input of the etl argument.
true.model The type of Beta distribution which is to be fit to the moments of the true-
score distribution. Options are "4P" and "2P", where "4P" refers to the four-
parameter (with the same mean, variance, skewness, and kurtosis), and "2P" the
two-parameter solution where both location-parameters are specified (with the
same mean and variance).
failsafe Logical. Whether to revert to a fail-safe two-parameter solution should the four-

parameter solution contain invalid parameter estimates.
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1 If failsafe = TRUE or true.model = "2P": The lower-bound of the Beta distri-
bution. Default is O (i.e., the lower-bound of the Standard, two-parameter Beta

distribution).

u If failsafe = TRUE or true.model = "2P": The upper-bound of the Beta distri-
bution. Default is 1 (i.e., the upper-bound of the Standard, two-parameter Beta
distribution).

alpha If failsafe = TRUE or true.model = "2P": The alpha shape-parameter of the
Beta distribution. Default is NA (i.e., estimate the parameter).

beta If failsafe = TRUE or true.model = "2P": The beta shape-parameter of the
Beta distribution. Default is NA (i.e., estimate the parameter).

output Option to specify true-score distribution moments as output if the value of the
output argument does not equal "parameters”.

Value

A list with the parameter values of a four-parameter Beta distribution. "1" is the lower location-

parameter, "u

the upper location-parameter, "alpha" the first shape-parameter, and "beta" the sec-

ond shape-parameter.

References

Hanson, B. A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound Bi-
nomial Model and the Calculation of Classification Consistency Indexes. American College Testing
Research Report Series. Retrieved from https://files.eric.ed.gov/fulltext/ED344945.pdf

Lord, F. M. (1965). A strong true-score theory, with applications. Psychometrika. 30(3). pp.
239-270. doi: 10.1007/BF02289490

Rogosa, D. & Finkelman, M. (2004). How Accurate Are the STAR Scores for Individual Students?
— An Interpretive Guide. Retrieved from http://statweb.stanford.edu/~rag/accguide/guide04.pdf

Examples

# Generate some fictional data. Say 1000 individuals take a 100-item test
# where all items are equally difficult, and the true-score distribution
# is a four-parameter Beta distribution with location parameters 1 = 0.25,
# u = 0.75, alpha = 5, and beta = 3:

set.seed(12)

testdata <- rbinom(1000, 100, rBeta.4P(1000, 0.25, 0.75, 5, 3))

# Since this test contains items which are all equally difficult, the true
# effective test length (etl) is the actual test length. I.e., etl = 100.
# To estimate the four-parameter Beta distribution parameters underlying
# the draws from the binomial distribution:

Beta.tp.fit(testdata, @, 100, 100)

# Imagine a case where the fitting procedure produces an impermissible
# estimate (e.g., 1 <@ or u>1).

set.seed(1234)

testdata <- rbinom(1000, 50, rBeta.4P(1000, ©.25, 0.75, 5, 3))
Beta.tp.fit(testdata, @, 50, 50)
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This example produced an l-value estimate less than @. One way of
dealing with such an occurrence is to revert to a two-parameter

model, specifying the 1 and u parameters and estimating the

alpha and beta parameters necessary to produce a Beta distribution

with the same mean and variance as the estimated true-score distribution.

o o

Suppose you have good theoretical reasons to fix the 1 parameter at a
value of 0.25 (e.g., the test is composed of multiple-choice questions
with four response-options, resulting in a 25% chance of guessing the
correct answer). The l-parameter could be specified to this theoretically
justified value, and the u-parameter could be specified to be equal to the
estimate above (u = 0.7256552) as such:

Beta.tp.fit(testdata, @, 50, 50, true.model = "2P", 1 = 0.25, u = 0.7256552)

#
#
#
#
#
#

betabinomialmoments Compute Moments of Beta-Binomial Probability Mass Functions.

Description

Computes Raw, Central, or Standardized moment properties of defined Beta-Binomial probability
mass functions.

Usage
betabinomialmoments(
N,
1,
u,
alpha,
beta,
types = c("raw"”, "central”, "standardized"),
orders = 4
)
Arguments
N Number of trials.
1 The first (lower) location-parameter of the Beta distribution.
u The second (upper) location-parameter of the Beta distribution.
alpha The alpha (first) shape-parameter of the Beta distribution.
beta The beta (second) shape-parameter of the Beta-distribution.
types A character vector determining which moment-types are to be calculated. Per-

missible values are "raw", "central", and "standardized".

orders The number of moment-orders to be calculated for each of the moment-types.
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Value

A list of moment types, each a list of moment orders.

References

Hanson, B. A (1991). Method of Moments Estimates for the Four-Parameter Beta Compound Bino-
mial Model and the Calculation of Classification Consistency Indexes. American College Testing
Research Report Series.

Examples

# Assume 100 observations of a discrete variable with probabilities of

# positive outcomes adhering to a four-parameter Beta distribution with

# location parameters 1 = 0.25 and u = .95, and shape parameters a = 5 and

# b = 3. To compute the first four raw, central, and standardized moments of
# this distrubution using betabinomialmoments():

betabinomialmoments(N = 100, 1 = .25, u = .95, alpha = 5, beta = 3,

types = c("raw”, "central”, "standardized"”), orders = 4)
betamedian Compute Median of Two- and Four-Parameter Beta Probability Den-
sity distribution.
Description

Computes the median of a Beta distribution with specified shape- and location parameters.

Usage

betamedian(alpha, beta, 1 =0, u=1)

Arguments

alpha The alpha shape parameter.

beta The beta shape parameter.

1 The first (lower) location parameter. Default set to 0.

u The second (upper) location parameter. Default set to 1.
Examples

# To calculate the median of a two-parameter (standard) Beta distribution with
# shape parameters alpha = 5 and beta = 3:
betamedian(alpha = 5, beta = 3)

# To calculate the median of a four-parameter Beta distribution with shape
# parameters alpha = 5 and beta = 3, and location parameters 1 = 25 and

# u = 150:

betamedian(alpha = 5, beta = 3, 1 = 25, u = 150)
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betamode Compute Mode of Two- and Four-Parameter Beta Probability Density
distribution.

Description

Computes the mode of a Beta distribution with specified shape- and location parameters.

Usage

betamode(alpha, beta, 1 =0, u =1)

Arguments
alpha The alpha shape parameter of the PDD.
beta The beta shape parameter of the PDD.
1 The first (lower) location parameter of a four-parameter distribution. Default set
to @.
u The second (upper) location parameter of a four-parameter distribution. Default
setto 1.
Examples

# To calculate the mode of a two-parameter (standard) Beta distribution with
# shape parameters alpha = 5 and beta = 3:
betamode(alpha = 5, beta = 3)

# To calculate the mode of a four-parameter Beta distribution with shape
# parameters alpha = 5 and beta = 3, and location parameters 1 = 25 and
# u = 150:

betamode(alpha = 5, beta = 3, 1 = 25, u = 150)

betamoments Compute Moments of Two-to-Four Parameter Beta Probability Den-
sity Distributions.

Description

Computes Raw, Central, or Standardized moment properties of defined Standard Beta probability
density distributions.



16 betamoments

Usage
betamoments(
alpha,
beta,
1=o0,
u-=1,
types = c("raw”, "central”, "standardized"),
orders = 4
)
Arguments
alpha The alpha shape parameter.
beta The beta shape parameter.
1 The first (lower) location parameter.
u The second (upper) location parameter.
types A character vector determining which moment-types are to be calculated. Per-
missible values are "raw", "central", and "standardized".
orders The number of moment-orders to be calculated for each of the moment-types.
Value

A list of moment types, each a list of moment orders.

References

Hanson, B. A (1991). Method of Moments Estimates for the Four-Parameter Beta Compound Bino-
mial Model and the Calculation of Classification Consistency Indexes. American College Testing
Research Report Series.

Examples

# Assume some variable follows a four-parameter Beta distribution with

# location parameters 1 = 0.25 and u = 0.75, and shape parameters alpha = 5
# and beta = 3. To compute the first four raw, central, and standardized

# moments of this distribution using betamoments():

betamoments(alpha = 5, beta = 3, 1 = 0.25, u = 0.75,

types = c("raw”, "central”, "standardized"), orders = 4)
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binomialmoments Compute Moments of Binomial Probability Mass Functions.

Description

Computes Raw, Central, or Standardized moment properties of defined Binomial probability mass

functions.
Usage

binomialmoments(n, p, types = c("raw", "central”, "standardized"), orders = 4)
Arguments

n Number of Binomial trials

p Probability of success per trial.

types A character vector determining which moment-types are to be calculated. Per-

missible values are "raw", "central", and "standardized".

orders The number of moment-orders to be calculated for each of the moment-types.

Value

A list of moment types, each a list of moment orders.

References

Hanson, B. A (1991). Method of Moments Estimates for the Four-Parameter Beta Compound Bino-
mial Model and the Calculation of Classification Consistency Indexes. American College Testing
Research Report Series.

Examples

# Assume some variable follows a four-parameter Beta distribution with
# location parameters 1 = .25 and u = .75, and shape parameters a = 5
# and b = 3. To compute the first four raw, central, and standardized
# moments of this distrubution using betamoments():

betamoments(a =5, b =3, 1 = .25, u = .75,

types = c("raw”, "central”, "standardized"”), orders = 4)
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BMS Beta Shape-Parameter Given Location-Parameters, Mean, Variance,
Skewness, Kurtosis and Alpha Shape-Parameter of a Four-Parameter
Beta PDD.
Description

Calculates the Beta value required to produce a Beta probability density distribution with defined
moments and parameters. Be advised that not all combinations of moments and parameters can be
satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both location-
parameters, meaning that the value of the lower-location parameter will take on which ever value it
must, and cannot be specified).

Usage
BMS(

mean = NULL,

NULL,
NULL,
NULL,

variance
skewness
kurtosis
1=o0,
u=1,

alpha = NULL,

sd = NULL

Arguments
mean
variance

skewness

kurtosis

alpha

sd

The mean (first raw moment) of the target Standard Beta probability density
distribution.

The variance (second central moment) of the target Standard Beta probability
density distribution.

The skewness (third standardized moment) of the target Beta probability density
distribution.

The kurtosis (fourth standardized moment) of the target Beta probability density
distribution.

The lower-bound of the Beta distribution. Default is O (i.e., the lower-bound of
the Standard, two-parameter Beta distribution).

The upper-bound of the Beta distribution. Default is 1 (i.e., the upper-bound of
the Standard, two-parameter Beta distribution).

Optional specification of the Alpha shape-parameter of the target Beta distribu-
tion. Finds then the Beta parameter necessary to produce a distribution with the
specified mean, given specified Alpha, 1, and u parameters.

Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.
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Value

A numeric value representing the required value for the Beta shape-parameter in order to produce
a Standard Beta probability density distribution with the target mean and variance, given specified
lower- and upper bounds of the Beta distribution.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of @, rescaled to proportion
# of maximum.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, ©.75, 5, 3)) / 100
hist(testdata, xlim = c(0, 1))

# To find the beta shape-parameter of a Standard (two-parameter) Beta
# distribution with the same mean and variance as the observed-score
# distribution using BMS():

BMS(mean(testdata), var(testdata))

# To find the beta shape-parameter of a four-parameter Beta

# distribution with specified lower- and upper-bounds of 1 = 0.25 and
# u = 0.75 using BMS:

BMS(mean(testdata), var(testdata), 0.25, 0.75)

caStats Classification Accuracy Statistics.

Description
Provides a set of statistics often used for conveying information regarding the certainty of classifi-
cations based on tests.

Usage

caStats(tp, tn, fp, fn)

Arguments
tp The frequency or rate of true-positive classifications.
tn The frequency or rate of true-negative classifications.
fp The frequency or rate of false-positive classifications.
fn The frequency or rate of false-negative classifications.
Value

A list of diagnostic performance statistics based on true/false positive/negative statistics. Specifi-
cally, the sensitivity, specificity, positive likelihood ratio (LR.pos), negative likelihood ratio (LR.neg),
positive predictive value (PPV), negative predictive value (NPV), Youden’s J. (Youden.J), and Ac-
curacy.
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References

Glas et al. (2003). The Diagnostic Odds Ratio: A Single Indicator of Test Performance, Journal of
Clinical Epidemiology, 1129-1135, 56(11). doi: 10.1016/S0895-4356(03)00177-X

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(0@, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and

# that the reliability of this test was estimated to ©.7. First, compute the
# estimated confusion matrix using LL.CA(Q):

cmat <- LL.CA(x = testdata, reliability = 0.7, cut = 50, min = @,

max = 100)$confusionmatrix

# To estimate and retrieve diagnostic performance statistics using caStats(),
# feed it the appropriate entries of the confusion matrix.

caStats(tp = cmat["True”, "Positive"], tn = cmat["True”, "Negative"],

fp = cmat["False”, "Positive"”], fn = cmat["False”, "Negative"])

cba Calculate Cronbach’s Alpha reliability-coefficient from supplied vari-
ables.

Description

Calculates Cronbach’s Alpha reliability coefficient of the sum-score.

Usage
cbha(x)
Arguments
X A data-frame or matrix of numerical values where rows represent respondents,
and columns represent items.
Value

Cronbach’s Alpha for the sum-score of supplied variables.

Note

Missing values are treated by passing na.rm = TRUE to the var function call.

Be aware that this function does not issue a warning if there are negative correlations between
variables in the supplied data-set.
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References

Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika 16,
297-334. doi: 10.1007/BF02310555

Examples

# Generate some fictional data. Say 100 students take a 50-item long test
# where all items are equally difficult.

set.seed(1234)

p.success <- rBeta.4P(100, 0.25, 0.75, 5, 3)

for (i in 1:50) {

if (i ==1) {
rawdata <- matrix(nrow = 100, ncol = 50)

}

rawdatal, i] <- rbinom(100, 1, p.success)
3
# To calculate Cronbach's Alpha for this test:
cha(rawdata)

ccStats Classification Consistency Statistics.
Description

Provides a set of statistics often used for conveying information regarding the consistency of clas-
sifications based on tests.

Usage

ccStats(ii, ij, ji, ji)

Arguments
ii The frequency or rate of consistent classifications into category "i".
ij The frequency or rate of inconsistent classifications into categories "i" and "j".
ji The frequency or rate of inconsistent classifications into categories "j" and "i".
jj The frequency or rate of consistent classifications into category "j".

Value

A list of classification consistency statistics. Specifically, the coefficient of consistent classification
(p), the coefficient of consistent classification by chance (p_c), the proportion of positive classifica-
tions due to chance (p_c_pos), the proportion of negative classifications due to chance (p_c_neg),
and Cohen’s Kappa coefficient.
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References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes. American College Test-
ing.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(@, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and

# that the reliability of this test was estimated to 0.7. First, compute the
# estimated consistency matrix using LL.CA():

cmat <- LL.CA(x = testdata, reliability = .7, cut = 50, min = 0,

max = 10@)$consistencymatrix

# To estimate and retrieve consistency statistics using ccStats(),
# feed it the appropriate entries of the consistency matrix.
ccStats(ii = cmat["i", "i"]1, ij = cmat["i", "j"1,

ji = cmatl”j", "i"]1, jj = cmat["j", "j"1)

confmat Confusion matrix

Description

Organizes supplied values of true and false positives and negatives into a confusion matrix.

Usage

confmat(tp, tn, fp, fn, output = "freq")

Arguments
tp The frequency or rate of true-positive classifications.
tn The frequency or rate of true-negative classifications.
fp The frequency or rate of false-positive classifications.
fn The frequency or rate of false-negative classifications.
output Whether the returned output reflects frequencies or proportions. Defaults to
returning frequencies.
Value

A confusion matrix organizing the input values of true and false positive and negatives.
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Examples

# Generate some true and observed conditions.

set.seed(1234)

true.ability <- rbeta(50, 4, 4)

true.category <- ifelse(true.ability < 0.5, @, 1)

observed.score <- rbinom(50, 50, true.ability)

observed.category <- ifelse(observed.score < 25, 0, 1)

# Calculate the frequencies of true and false positives and negatives based on the true and
# observed conditions.

TP <- sum(ifelse(observed.category == @ & true.category == 0, 1, 0))
FP <- sum(ifelse(observed.category == @ & true.category != 0, 1, 0))
TN <- sum(ifelse(observed.category == 1 & true.category == 1, 1, 0))

FN <- sum(ifelse(observed.category == 1 & true.category != 1, 1, 0))
# Organize the above values in a confusion matrix using the confmat function:
confmat(tp = TP, fp = FP, tn = TN, fn = FN)

dBeta. 4P Probability Density under the Four-Parameter Beta PDD.

Description

Gives the density at desired values of x under the Four-Parameter Beta PDD.

Usage

dBeta.4P(x, 1, u, alpha, beta)

Arguments
X Value of x.
1 The first (lower) location parameter.
u The second (upper) location parameter.
alpha The first shape parameter.
beta The second shape parameter.
Value

The value for the probability density at specified values of x.

Examples

# Assume some variable follows a four-parameter Beta distribution with

# location parameters 1 = 0.25 and u = 0.75, and shape parameters alpha = 5
# and beta = 3. To compute the probability density at a specific point of
# the distribution (e.g., 0.5) using dBeta.4P():

dBeta.4P(x = 0.5, 1 = 0.25, u = 0.75, alpha = 5, beta = 3)
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dBeta.pBeta An implementation of a Beta-density Compound Cumulative-Beta Dis-
tribution.

Description

The Beta Compound Beta distribution: The product of the four-parameter Beta probability density
function and the Beta cumulative probability function. Used in the Livingston and Lewis approach
to classification accuracy and consistency, the output can be interpreted as the population density of
passing scores produced at "x" (a value of true-score).

Usage

dBeta.pBeta(x, 1, u, alpha, beta, n, c, lower.tail = FALSE)

Arguments
X x-axis input for which p (proportion or probability) is to be computed.
1 The lower-bound of the four-parameter Beta distribution.
u The upper-bound of the four-parameter Beta distribution.
alpha The alpha shape-parameter of the Beta density distribution.
beta The beta shape-parameter of the Beta density distribution.
n The number of trials for the Beta cumulative probability distribution.
c The "true-cut" (proportion) of on the Beta cumulative probability distribution.
lower.tail Logical. Whether to compute the lower or upper tail of the Beta cumulative
probability distribution. Default is FALSE (i.e., upper tail).
References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Examples

# Given a four-parameter Beta distribution with parameters 1 = 0.25, u = 0.75,

# alpha = 5, and beta = 3, and a Beta error distribution with number of

# trials (n) = 10 and a cutoff-point (c) at 50% correct (i.e., proportion correct
# of ©0.5), the population density of passing scores produced at true-score

# (x) = 0.5 can be calculated as:

dBeta.pBeta(x = 0.5, 1 = 0.25, u=0.75, a=5, b=3, n=10, c = 0.5)
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# Conversely, the density of failing scores produced at x can be calculated
# by passing the additional argument "lower.tail = TRUE” to the function.

# That is:

dBeta.pBeta(x = 0.5, 1 = 0.25, u=0.75, a=5, b=3, n=10, c = 0.5,
lower.tail = TRUE)

# By integration, the population proportion of (e.g.) passing scores in some
# region of the true-score distribution (e.g. between 0.25 and ©0.5) can be
# calculated as:

integrate(function(x) { dBeta.pBeta(x, ©.25, ©.75, 5, 3, 10, 0.5) },

lower = 0.25, upper = 0.5)

dBeta.pBinom An implementation of the Beta-density Compound Cumulative Bino-
mial Distribution.

Description

The Beta Compound Binomial distribution: The product of the four-parameter Beta probability
density function and the binomial cumulative probability mass function. Used in the Livingston
and Lewis approach to classification accuracy and consistency, the output can be interpreted as the
population density of passing scores produced at "x" (a value of true-score).

Usage

dBeta.pBinom(x, 1, u, alpha, beta, n, c, lower.tail = FALSE)

Arguments
X x-axis input for which p (proportion or probability) is to be computed.
1 The lower-bound of the four-parameter Beta distribution.
u The upper-bound of the four-parameter Beta distribution.
alpha The alpha shape-parameter of the Beta distribution.
beta The beta shape-parameter of the Beta distribution.
n The number of trials for the Binomial distribution.
c The "true-cut" (proportion) of the Binomial distribution.
lower.tail Logical. Whether to compute the lower or upper tail of the Binomial distribu-
tion. Default is FALSE (i.e., upper tail).
Note

The Binomial distribution cut-point is up-to but not including, unlike the standard behaviour of
base-R pbinom() function.
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References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Examples

# Given a four-parameter Beta distribution with parameters 1 = 0.25, u = 0.75,

# alpha = 5, and beta = 3, and a Binomial error distribution with number of

# trials (n) = 10 and a cutoff-point (c) at 50% correct (i.e., proportion correct
# of ©0.5), the population density of passing scores produced at true-score

# (x) = @ can be calculated as:

dBeta.pBinom(x = 0.5, 1 = 0.25, u=0.75, a=5, b=3, n=10, c = 0.5)

# Conversely, the density of failing scores produced at x can be calculated
# by passing the additional argument "lower.tail = TRUE"” to the function.

# That is:

dBeta.pBinom(x = 0.5, 1 = 0.25, u=10.75, a=5, b=3, n=10, c = 0.5,
lower.tail = TRUE)

#By integration, the population proportion of (e.g.) passing scores in some
#tregion of the true-score distribution (e.g. between ©.25 and 0.5) can be
#calculated as:

integrate(function(x) { dBeta.pBinom(x, ©.25, .75, 5, 3, 10, 0.5) },

lower = 0.25, upper = 0.5)

dBeta.pGammaBinom An implementation of a Beta-density Compound Cumulative Gamma-
Binomial Distribution.

Description

The Beta Compound Binomial distribution: The product of the four-parameter Beta probability
density function and the binomial cumulative probability mass function. Used in the Livingston
and Lewis approach to classification accuracy and consistency, the output can be interpreted as the
population density of passing scores produced at "x" (a value of true-score).

Usage

dBeta.pGammaBinom(x, 1, u, alpha, beta, n, c, lower.tail = FALSE)
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Arguments
X x-axis input for which p (proportion or probability) is to be computed.
1 The lower-bound of the four-parameter Beta distribution.
u The upper-bound of the four-parameter Beta distribution.
alpha The alpha shape-parameter of the four-parameter Beta distribution.
beta The beta shape-parameter of the four-parameter Beta distribution.
n The number of "trials" for the Gamma-Binomial distribution.
c The "true-cut" (proportion) on the Gamma-Binomial distribution. Need not be
an integer (unlike Binomial distribution).
lower. tail Logical. Whether to compute the lower or upper tail of the Binomial distribu-
tion. Default is FALSE (i.e., upper tail).
References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).
Loeb, D. E. (1992). A generalization of the binomial coefficients. Discrete Mathematics, 105(1-3).

Examples

# Given a four-parameter Beta distribution with parameters 1 = 0.25, u = 0.75,

# alpha = 5, and beta = 3, and a Binomial error distribution with number of

# trials (n) = 10 and a cutoff-point (c) at 50% correct (i.e., proportion correct
# of 0.5), the population density of passing scores produced at true-score

# (x) = @ can be calculated as:

dBeta.pGammaBinom(x = 0.5, 1 = 0.25, u =0.75, a=5, b=3, n=10, c = 0.5)

# Conversely, the density of failing scores produced at x can be calculated

# by passing the additional argument "lower.tail = TRUE" to the function.

# That is:

dBeta.pGammaBinom(x = 0.5, 1 = 0.25, u=0.75, a=5, b=3, n=10.1, c = 0.5,
lower.tail = TRUE)

#By integration, the population proportion of (e.g.) passing scores in some
#region of the true-score distribution (e.g. between ©.25 and 0.5) can be
#calculated as:

integrate(function(x) { dBeta.pGammaBinom(x, ©.25, .75, 5, 3, 10, 0.5) },
lower = 0.25, upper = 0.5)
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dBetaBinom Probability Mass under the Beta-Binomial Probability-Mass Distribu-
tion.

Description

Gives the density at x under the Beta-Binomial PMF.

Usage

dBetaBinom(x, N, 1, u, alpha, beta)

Arguments
X Value of x (a specific number of successes).
N The total number of trials.
1 The first (lower) location parameter.
u The second (upper) location parameter.
alpha The first shape parameter.
beta The second shape parameter.

Value

The value for the probability mass at x given the specified Beta-Binomial distribution.

Examples

# Assume some variable follows a Beta-Binomial distribution with 100 number
# of trials, and with probabilities of successful trials drawn from a four-
# parameter Beta distribution with location parameters 1 = .25 and u = 0.75
# and shape parameters alpha = 5 and beta = 3. To compute the probability

# density at a specific point of the distribution (e.g., 50):

dBetaBinom(x = 50, N = 100, 1 = 0.25, u = 0.75, alpha = 5, beta = 3)

dBetaMS Density Under a Specific Point of the Standard Beta PDD with Specific
Mean and Variance or Standard Deviation.

Description
Calculates the density under specific points of the Standard Beta probability density distribution
with defined mean and variance or standard deviation.

Usage

dBetaMS(x, mean, variance = NULL, sd = NULL)
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Arguments
X A specific point on the x-axis of the Standard Beta PDD.
mean The mean of the target Standard Beta probability density distribution.
variance The variance of the target Standard Beta probability density distribution.
sd The standard deviation of the target Standard Beta probability density distribu-
tion.
Value

A numeric value representing the required value for the beta Shape-parameter in order to produce a
Standard Beta probability density distribution with the target mean and variance.

Examples

# To compute the density at a specific point (e.g., 0.5) along the Standard
# (two-parameter) PDD with mean of 0.6 and variance of 0.04:
dBetaMS(x = 0.5, mean = 0.6, variance = 0.04)

dfac Descending (falling) factorial.

Description

Calculate the descending (or falling) factorial of a value x of order r.

Usage

dfac(x, r, method = "product"”)

Arguments
X A value for which the descending factorial is to be calculated.
r The power x is to be raised to.
method The method by which the descending factorials are to be calculated. Default is
"product” which uses direct arithmetic. Alternative is "gamma" which calcu-
lates the ascending factorial using the Gamma function. The alternative method
might be faster but might fail because the Gamma function is not defined for
negative integers (returning Inf).
Value

The descending factorial of value x raised to the r’th power.
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Examples

# To calculate the 4th descending factorial for a value (e.g., 3.14):
dfac(x = 3.14, r = 4)

# To calculate the 5th descending factorial for values 3.14, 2.72, and 0.58:
dfac(x = ¢(3.14, 2.72, 0.58), r = 5)

dGammaBinom Probability density function under the Gamma-extended Binomial dis-
tribution.

Description

Probability density function under the Gamma-extended Binomial distribution.

Usage

dGammaBinom(x, size, prob, nc = FALSE)

Arguments
X Vector of quantiles.
size Number of "trials" (zero or more). Need not be integer.
prob Probability of "success" on each "trial". Need not be integer.
nc Whether to include a normalizing constant making sure that the sum of the dis-
tribution’s density is 1.
References

Loeb, D. E. (1992). A generalization of the binomial coefficients. Discrete Mathematics, 105(1-3).

Examples

#' # Assume some variable follows a Gamma-Binomial distribution with

# "number of trials” = 10.5 and probability of "success” for each "trial”

# = 0.75, to compute the probability density to attain a "number of success”
# at a specific point (e.g., 7.5 "successes"):

dGammaBinom(x = 7.5, size = 10.5, prob = 0.75)

# Including a normalizing constant (then diverges from binomial dist.):
dGammaBinom(x = 7.5, size = 10.5, prob = 0.75, nc = TRUE)

dGammaBinom(x = 7, size = 10, prob = 0.75) == dbinom(7, 10, 0.75)
dGammaBinom(x = 7, size = 10, prob = 0.75, nc = TRUE) == dbinom(7, 10, @.75)
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ETL Livingston and Lewis’ "Effective Test Length".

Description

According to Livingston and Lewis (1995), "The effective test length corresponding to a test score is
the number of discrete, dichotomously scored, locally independent, equally difficult items required
to produce a total score of the same reliability."

Usage

ETL(mean, variance, min = @, max = 1, reliability)

Arguments
mean The mean of the observed-score distribution.
variance The variance of the observed-score distribution.
min The lower-bound (minimum possible value) of the observed-score distribution.
Default is 0 (assuming observed scores represent proportions).
max The upper-bound (maximum possible value) of the observed-score distribution.
Default is 1 (assuming observed scores represent proportions).
reliability The reliability of the observed scores (proportion of observed-score distribution
variance shared with true-score distribution).
Value

An estimate of the effective length of a test, given the stability of the observations it produces.

References

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(@, 100))

# Suppose the reliability of this test was estimated to ©0.7. To estimate and
# retrieve the effective test length using ETL():

ETL(mean = mean(testdata), variance = var(testdata), min = @, max = 100,
reliability = .7)
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gchoose Gamma-extended Binomial coefficient (choose function).

Description
Extends the Binomial coefficient for positive non-integers (including 0) by employing the Gamma
rather than the factorial function.

Usage
gchoose(n, k)

Arguments
n In Binomial terms, the number of Binomial "trials". Need not be an integer.
k In Binomial terms, the number of successful "trials". Need not be an integer.
Note

Not defined for negative integers.

References

Loeb, D. E. (1992). A generalization of the binomial coefficients. Discrete Mathematics, 105(1-3).

Examples

# Compare choose function with gchoose function for integers:
gchoose(c(8, 9, 10), c(3, 4, 5)) == choose(c(8, 9, 10), c(3, 4, 5))

# The gchoose function also works for non-integers:
gchoose(10.5, 7.5)

LABMSU Lower Location Parameter Given Shape Parameters, Mean, Variance,
and Upper Location Parameter of a Four-Parameter Beta PDD.

Description

Calculates the lower-bound value required to produce a Beta probability density distribution with
defined moments and parameters. Be advised that not all combinations of moments and parameters
can be satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both
location-parameters, meaning that the value of the lower-location parameter will take on which ever
value it must, and cannot be specified).
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Usage
LABMSU (

alpha = NULL,
beta = NULL,

u = NULL,

mean = NULL,
NULL,

variance =

33

skewness = NULL,

kurtosis =
sd = NULL

Arguments

alpha

beta

mean

variance

skewness

kurtosis

sd

Value

NULL,

The alpha (first) shape-parameter of the target Beta probability density distribu-
tion.

The beta (second) shape-parameter of the target Beta probability density distri-
bution.

The upper-bound of the Beta distribution. Default is NULL (i.e., does not take
a specified u-parameter into account).

The mean (first raw moment) of the target Standard Beta probability density
distribution.

The variance (second central moment) of the target Standard Beta probability
density distribution.

The skewness (third standardized moment) of the target Beta probability density
distribution.

The kurtosis (fourth standardized moment) of the target Beta probability density
distribution.

Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.

A numeric value representing the required value for the Beta lower location-parameter (1) in order
to produce a Beta probability density distribution with the target moments and parameters.

Examples

# Generate some fictional data.

set.seed(1234)

testdata <- rBeta.4P(100000, 0.25, 0.75, 5, 3)
hist(testdata, xlim = c(@, 1), freq = FALSE)

# Suppose you know three of the four necessary parameters to fit a four-

# parameter Beta distribution (i. e., u = 0.75, alpha = 5, beta = 3) to this
# data. To find the value for the necessary 1 parameter, estimate the mean
# and variance of the distribution:
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M <- mean(testdata)
S2 <- var(testdata)

# To find the 1 parameter necessary to produce a four-parameter Beta
# distribution with the target mean, variance, and u, alpha, and beta
# parameters using the LMSBAU() function:

(1 <- LABMSU(alpha = 5, beta = 3, mean = M, variance = S2, u = 0.75))
curve(dBeta.4P(x, 1, .75, 5, 3), add = TRUE, lwd = 2)

LL.CA An Implementation of the Livingston and Lewis (1995) Approach to
Estimate Classification Consistency and Accuracy based on Observed
Test Scores and Test Reliability.

Description

An implementation of what has been come to be known as the "Livingston and Lewis approach" to
classification consistency and accuracy, which by employing a compound beta-binomial distribution
assumes that true-scores conform to the four-parameter beta distribution, and errors of measurement
to the binomial distribution. Under these assumptions, the expected classification consistency and
accuracy of tests can be estimated from observed outcomes and test reliability.

Usage

LL.CA(
x = NULL,
reliability,
cut,
min = 0,
max = 1,
true.model = "4P",
truecut = NULL,

output = c("accuracy”, "consistency"),
failsafe = TRUE,
1 =09,
u=1,
modelfit = c(nbins = 100, minbin = 10)
)
Arguments
X A vector of observed scores for which a Beta true-score distribution is to be
estimated, or a list of pre-defined true-score distribution parameter values. If a
list is provided, the list entries must be named after the parameters: 1 and u for
the location parameters, alpha and beta for the shape parameters, and etl for
the effective test length (see documentation for the ETL function).
reliability The observed-score squared correlation (i.e., proportion of shared variance) with

the true-score.
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cut

min

max

true.model

truecut

output

failsafe

modelfit

Value

35

The cutoff value for classifying observations into pass or fail categories.

The minimum value possible to attain on the test. Default is 0 (assuming x
represent proportions).

The maximum value possible to attain on the test. Default is 1 (assuming x
represent proportions).

The probability distribution to be fitted to the moments of the true-score distribu-
tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

Optional specification of a "true" cutoff. Useful for producing ROC curves (see
documentation for the LL.ROC() function).

Character vector indicating which types of statistics (i.e, accuracy and/or con-
sistency) are to be computed and included in the output. Permissible values are
"accuracy" and "consistency”.

Logical value indicating whether to engage the automatic fail-safe defaulting
to the two-parameter Beta true-score distribution if the four-parameter fitting
procedure produces impermissible parameter estimates. Default is TRUE (i.e.,
the function will engage failsafe if the four-parameter Beta-distribution fitting-
procedure produced impermissible estimates).

If true.model = "2P" or failsafe = TRUE, the lower-bound location parameter
to be used in the two-parameter fitting procedure. Default is O (i.e., the lower-
bound of the Standard Beta distribution).

If true.model = "2P" or failsafe = TRUE, the upper-bound location parameter
to be used in the two-parameter fitting procedure. Default is 1 (i.e., the upper-
bound of the Standard Beta distribution).

Allows for controlling the chi-square test for model fit. The argument takes a
vector of two values. The first value is to represent the initial number of bins the
distribution of scores is to be divided in to. This value is set to a default of 100.
If this default results in too few bins to conduct the chi-square test, this value
can be made larger. The second value represents the minimum expected number
of observations that the bins should consist of. In accordance with standard
recommendations for chi-square tests, the default value is set to 10.

A list containing the estimated parameters necessary for the approach (i.e., the effective test-length
and the beta distribution parameters), a chi-square test of model-fit, the confusion matrix containing
estimated proportions of true/false pass/fail categorizations for a test, diagnostic performance statis-
tics, and / or a classification consistency matrix and indices. Accuracy output includes a confusion
matrix and diagnostic performance indices, and consistency output includes a consistency matrix
and consistency indices p (expected proportion of agreement between two independent test admin-
istrations), p_c (proportion of agreement on two independent administrations expected by chance
alone), and Kappa (Cohen’s Kappa).
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Note

It should be noted that this implementation differs from the original articulation of Livingston and
Lewis (1995) in some respects. First, the procedure includes a number of diagnostic performance
(accuracy) indices which the original procedure enables but that were not included. Second, the way
consistency is calculated differs substantially from the original articulation of the procedure, which
made use of a split-half approach. Rather, this implementation uses the approach to estimating
classification consistency outlined by Hanson (1991).

A shiny application providing a GUI for this method is available at https://hthaa.shinyapps.io/shinybeta/

References

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes. American College Test-
ing.

Lord. Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Lewis, Don and Burke, C. J. (1949). The Use and Misuse of the Chi-Square Test. Psychological
Bulletin, 46(6).

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(1000, 100, rBeta.4P(1000, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(@, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and
# that the reliability of this test was estimated to ©0.7. To estimate and
# retrieve the estimated parameters, confusion matrix, consistency and

# accuracy statistics using LL.CA():

LL.CA(x = testdata, reliability = .7, cut = 50, min = @, max = 100)

# Suppose the true-score parameter estimation procedure arrived at

# impermissible parameter estimates (i.e., 1 < @, u > 1, alpha < 0, or
# beta < 0). For example:

set.seed(9)

testdata <- rbinom(100, 25, rBeta.4P(100, .25, 1, 5, 3))
Beta.tp.fit(testdata, @, 25, 25, failsafe = TRUE)

Suppose further that you have good grounds for assuming that the lower-
bound parameter is equal to 0.25 (e.g., the test consists of multiple-
choice questions with four response options, leading to a 25% probability
of guessing the correct answer per question), and good reason to believe
that the upper-bound parameter is equal to 1 (i.e., there is no reason to
believe that there are no members of the population who will attain a
perfect score across all possible test-forms.) To set these lower and

e RN
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# upper bounds for the fitting procedure in the LL.CA() function, set

# the argument true.model = "2p", and specify the location parameters
#1=0.25and u = 1:

LL.CA(testdata, ©.6287713, 12, @, 25, true.model = "2p", 1 = 0.25, u = 1)

Alternatively to supplying scores to which a true-score distribution is

to be fit, a list with true-score distribution parameter values can be
supplied manually along with the effective test length (see documentation
for the ETL() function), foregoing the need for actual data. The list
entries must be named. "1" is the lower-bound and "u" the upper-bound
location parameters of the true-score distribution, "alpha” and "beta" for
the shape parameters, and "etl" for the effective test-length..

trueparams <- list("1" = 0.25, "u"” = 0.75, "alpha” = 5, "beta” = 3, "etl" = 50)
LL.CA(x = trueparams, cut = 50, min = @, max = 100)

T TR E

LL.CA.MC An Extension of the Livingston and Lewis (1995) Approach to Estimate
Classification Consistency and Accuracy for Multiple Classifications
based on Observed Test Scores and Test Reliability.

Description

An implementation of what has been come to be known as the "Livingston and Lewis approach" to
classification consistency and accuracy, which by employing a compound beta-binomial distribution
assumes that true-scores conform to the four-parameter beta distribution, and errors of measurement
to the binomial distribution. Under these assumptions, the expected classification consistency and
accuracy of tests can be estimated from observed outcomes and test reliability.

Usage

LL.CA.MC(
X = NULL,
reliability,
cut,
min = 0,
max = 1,
true.model = "4P",
failsafe = TRUE,

1=o0,
u-=1,
modelfit = c(nbins = 100, minbin = 10)
)
Arguments
X A vector of observed scores for which a Beta true-score distribution is to be

estimated, or a list of pre-defined true-score distribution parameter values. If a
list is provided, the list entries must be named after the parameters: 1 and u for
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reliability

cut

min

max

true.model

failsafe

modelfit

Value
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the location parameters, alpha and beta for the shape parameters, and etl for
the effective test length (see documentation for the ETL function).

The observed-score squared correlation (i.e., proportion of shared variance) with
the true-score.

A vector of cut-off values for classifying observations into two or more cate-
gories.

The minimum value possible to attain on the test. Default is O (assuming x
represent proportions).

The maximum value possible to attain on the test. Default is 1 (assuming x
represent proportions).

The probability distribution to be fitted to the moments of the true-score distribu-
tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

Logical value indicating whether to engage the automatic fail-safe defaulting
to the two-parameter Beta true-score distribution if the four-parameter fitting
procedure produces impermissible parameter estimates. Default is TRUE (i.e.,
the function will engage failsafe if the four-parameter Beta-distribution fitting-
procedure produced impermissible estimates).

If true.model = "2P" or failsafe = TRUE, the lower-bound location parameter
to be used in the two-parameter fitting procedure. Default is O (i.e., the lower-
bound of the Standard Beta distribution).

If true.model = "2P" or failsafe = TRUE, the upper-bound location parameter
to be used in the two-parameter fitting procedure. Default is 1 (i.e., the upper-
bound of the Standard Beta distribution).

Allows for controlling the chi-square test for model fit. The argument takes a
vector of two values. The first value is to represent the initial number of bins the
distribution of scores is to be divided in to. This value is set to a default of 100.
If this default results in too few bins to conduct the chi-square test, this value
can be made larger. The second value represents the minimum expected number
of observations that the bins should consist of. In accordance with standard
recommendations for chi-square tests, the default value is set to 10.

A list containing the estimated parameters necessary for the approach (i.e., the effective test-length
and the beta distribution parameters), a chi-square test of model-fit, the confusion matrix containing
estimated proportions of true/false positive/negative categorizations for a test, diagnostic perfor-
mance statistics, and/or a classification consistency matrix and indices. Accuracy output includes
a confusion matrix and diagnostic performance indices, and consistency output includes a consis-
tency matrix and consistency indices p (expected proportion of agreement between two independent
test administrations), p_c (proportion of agreement on two independent administrations expected
by chance alone), and Kappa (Cohen’s Kappa).
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Note

It should be noted that this implementation differs from the original articulation of Livingston and
Lewis (1995) in some respects. First, the procedure includes a number of diagnostic performance
(accuracy) indices which the original procedure enables but that were not included. Second, the way
consistency is calculated differs substantially from the original articulation of the procedure, which
made use of a split-half approach. Rather, this implementation uses the approach to estimating
classification consistency outlined by Hanson (1991).

References

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes. American College Test-
ing.

Lord. Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Lewis, Don and Burke, C. J. (1949). The Use and Misuse of the Chi-Square Test. Psychological
Bulletin, 46(6).

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
p.success <- rBeta.4P(1000, 0.1, 0.95, 5, 3)
for (i in 1:100) {
if (i ==1){
rawdata <- matrix(nrow = 1000, ncol = 100)

}

rawdatal, i] <- rbinom(1000, 1, p.success)
3
# Suppose the cutoff value for being placed in the lower category is a score
# below 50, second lowest 60, then 70, 80, and 90. Using the cba() function
# to estimate the reliability of this test, to use the LL.CA.MC() function
# or estimating diagnostic performance and consistency indices of
# classifications when using several cut-points:

LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = @, max = 100)
# The output from this function can get quite verbose when operating with
# several cut-points. In order to retrieve only model parameter estimates:

LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = @, max = 100) $parameters

# To retrieve only the model-fit estimate:
LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = @, max = 100) $modelfit

# To retrieve only the diagnostic performance estimates:
LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = @, max = 100) $accuracy

# To retrieve only the classification consistency indices:
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LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = @, max = 100) $consistency

# Alternatively, the MC.out.tabular() function can be used to organize the
# category-specific indices in a tabular format:
MC.out.tabular(LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 82, 90), min = @, max = 100))

LL.ROC

ROC curves for the Livingston and Lewis approach.

Description

Generate a ROC curve plotting the false-positive rate against the true-positive rate at different cut-
off values across the observed proportion-score scale.

Usage

LL.ROC(
X = NULL,
reliability,
min = 0,
max = 1,
truecut,

true.model = "4P",
failsafe = TRUE,

1 =09,
u=1,
AUC = FALSE,
maxJ = FALSE,

maxAcc = FALSE,
locate = NULL,

raw.out = FALSE,
grainsize = 100

Arguments

X
reliability

min

max

truecut

A vector of observed results.
The reliability coefficient of the test.

The minimum possible value to attain on the observed-score scale. Default is 0
(assuming x represent proportions).

The maximum possible value to attain on the observed-score scale. Default is 1
(assuming x represent proportions).

The true point along the x-scale that marks the categorization-threshold.
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true.model

failsafe

AUC

maxJ

maxAcc

locate

raw.out

grainsize

Value
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The probability distribution to be fitted to the moments of the true-score distribu-
tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

If true-model == "4P": Whether to engage a fail-safe reverting to a two-parameter
true-score distribution solution should the four-parameter fitting procedure pro-
duce impermissible results. Default is TRUE (engage fail-safe in the event of
impermissible estimates).

If true.model == "2P" or failsafe == TRUE: The lower-bound location param-
eter of the two-parameter true-score distribution solution.

If true.model == "2P" or failsafe == TRUE: The upper-bound location pa-
rameter of the two-parameter true-score distribution solution.

Calculate and include the area under the curve? Default is FALSE.

Logical. Mark the point along the curve where Youden’s J statistic is maxi-
mized? Default is FALSE.

Logical. Mark the point along the curve where the Accuracy statistic is maxi-
mized? Default is FALSE.

Ask the function to locate the cut-point at which sensitivity or NPV is greater
than or equal to some value, or specificity or PPV is lesser than or equal to some
value. Take as input a character-vector of length 2, with the first argument being
which index is to be found (e.g., "sensitivity"), and the second argument the
value to locate (e.g., "0.75"). For example: c("sensitivity", "0.75").

Give raw coordinates as output rather than plot? Default is FALSE

Specify the number of cutoff-points for which the ROC curve is to be calculated.
The greater this number the greater the accuracy. Default is 100 points.

A plot tracing the ROC curve for the test, or matrix of coordinates if raw.out is TRUE.

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(1000, 100, rBeta.4P(1000, 0.25, 0.75, 5, 3))
hist(testdata / 100, xlim = c(@, 1), freq = FALSE)

# Suppose the cutoff value for attaining a pass is 50 items correct.

# Suppose further that the reliability of the test-scores were estimated to
# 0.75. To produce a plot with an ROC curve using LL.ROC(), along with the
# AUC statistics and the points at which Youden's J. is maximized:

LL.ROC(x =

testdata, reliability = 0.7, truecut = 50, min = @, max = 100,

AUC = TRUE, maxJ = TRUE)
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# Or to locate the point at which accuracy is maximized:
LL.ROC(x = testdata, reliability = @.7, truecut = 50, min = @, max = 100,
maxAcc = TRUE)

# Using the example data above, the function can be instructed to locate an
# operational cut-point at which sensitivity or specificity is equal to or
# greater than some specified value by specifying the "locate” argument with
# c("statistic”, value). For example, to locate the operational cut-point at
# which sensitivity is first equal to or greater than 0.9:

LL.ROC(testdata, reliability = 0.7, min = @, max = 100, truecut = 50,

locate = c("sensitivity”, 0.9))

# For Negative Predictive value, the point at which it is equal or greater:
LL.ROC(testdata, reliability = 0.7, min = @, max = 100, truecut = 50,

locate = c("NPV", 0.9))

# And so on for other statistics such as Specificity and Positive Predictive

# Value.
MC.out. tabular Tabular organization of accuracy and consistency output from the
LL.CA.MC() function.
Description

Function that takes the output from the LL.CA.MC() function and organizes it in a table with accu-
racy and consistency indices represented by columns and categories as rows.

Usage
MC.out. tabular(x)

Arguments

X The list-output from the LL.CA.MC() function.

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

p.success <- rBeta.4P(1000, 0.1, 0.95, 5, 3)

for (i in 1:100) {

if (i ==1)¢

rawdata <- matrix(nrow = 1000, ncol = 100)
}
rawdatal, i] <- rbinom(1000, 1, p.success)

}

# Estimate accuracy and consistency where the lowest category are scores
# below 50, second lowest 60, then 70, 80, and 90. Using the cba() function
# to estimate the reliability of this test, to use the LL.CA.MC() function
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# or estimating diagnostic performance and consistency indices of
# classifications when using several cut-points:
output <- LL.CA.MC(rowSums(rawdata), cba(rawdata), seq(50, 90, 10), @, 100)

# As this output can get quite verbose as the number of categories increase,
# the MC.out.tabular() function can be used to organize the output more

# concisely in a tabular format.

MC.out.tabular(output)

mdo Calculate McDonald’s Omega reliability-coefficient from supplied
variables.

Description
Calculates McDonalds’s Omega reliability-coefficient of the sum-score from the Spearman one-
factor model using the procedure outlined in McDonald (1999).

Usage

mdo(x, fit = FALSE)

Arguments
X A data-frame or matrix of numerical values where rows represent respondents,
and columns represent items.
fit Logical. Default is FALSE. If TRUE, the output changes from a vector containing
the Omega reliability-estimate to a list containing additional detailed informa-
tion concerning the fitted factor model.
Value

If fit =FALSE, A vector of length 1 containing the estimated McDonalds’s Omega reliability-
coefficient for the sum-score of the supplied variables. If fit = TRUE, a list containing the Omega-
coefficient reliability-estimate as the first entry, followed by the goodness-of-fit index (GFI), a two-
row matrix containing the estimated factor-loadings and error-variances, and the observed and fitted
covariance-matrices and the discrepancy matrix.

Note

Missing values are treated by passing na. rm = TRUE to the var function call and use = "pairwise.complete.obs”
to the cov function call.

The function terminates with an error if there are negative covariance-matrix entries.

References

McDonald, R. P. (1999). Test Theory: A Unified Treatment. Routledge.
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Examples

# Generate some fictional data.

set.seed(1234)

rawdata <- matrix(rnorm(500), ncol = 5)

common <- rnorm(100)

rawdata <- apply(rawdata, 2, function(x) {x + common})

# To estimate McDonald's Omega from this data:
mdo(rawdata)

# To retrieve additional information such as the GFI fit-index and model-
# parameter estimates:
mdo(rawdata, fit = TRUE)

MLA Most Likely True Alpha Value Given Observed Outcome.

Description
Given a fitted Standard (two-parameter) Beta Distribution, return the alpha shape-parameter value
where the observed mean becomes the mode.

Usage
MLA(alpha, beta, x = NULL, n = NULL)

Arguments
alpha Observed alpha-parameter value for fitted Standard Beta PDD.
beta Observed beta-parameter value for fitted Standard Beta PDD.
X Observed proportion-correct outcome.
n Test-length.

Value

The Alpha shape-parameter value for the Standard Beta probability density distribution where the
observed mean is the expected mode.

Examples

# Assuming a prior Standard (two-parameter) Beta distribution is fit, which
# yield an alpha parameter of 10 and a beta parameter of 8, calculate the
# true-alpha parameter most likely to have produced the observations:

MLA(a = 10, b = 8)
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MLB Most Likely True Beta Value Given Observed Outcome.

Description
Assuming a prior standard (two-parameter) Beta Distribution, return the beta shape-parameter value
where the observed mean becomes the mode.

Usage

MLB(alpha, beta, x = NULL, n = NULL)

Arguments
alpha Observed alpha-parameter value for fitted Standard Beta PDD.
beta Observed beta-parameter value for fitted Standard Beta PDD.
X Observed proportion-correct outcome.
n Test-length.

Value

The Beta shape-parameter value for the Standard Beta probability density distribution where the
observed mean is the expected mode.

Examples

# Assuming a prior Standard (two-parameter) Beta distribution is fit, which
# yield an alpha parameter of 10 and a beta parameter of 8, calculate the
# true-beta parameter most likely to have produced the observations:

MLB(a = 10, b = 8)

MLM Most Likely Mean of the Standard Beta PDD, Given that the Observa-
tion is Considered the Most Likely Observation of the Standard Beta
PDD (i.e., the mode).

Description
Assuming a prior Standard (two-parameter) Beta Distribution, returns the expected mean of the
distribution under the assumption that the observed value is the most likely value of the distribution.
Usage

MLM(alpha, beta, x = NULL, n = NULL)
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Arguments
alpha Observed alpha value for fitted Standard Beta PDD.
beta Observed beta value for fitted Standard Beta PDD.
X Observed proportion-correct outcome.
n Test-length.

Value

The expected mean of the Standard Beta probability density distribution, for which the observed
mean is the most likely value.

Examples

# Assuming a prior Standard (two-parameter) Beta distribution is fit, which
# yield an alpha parameter of 10 and a beta parameter of 8, calculate the
# true-mean most likely to have produced the observations:

MLM(a = 10, b = 8)

observedmoments Compute Moments of Observed Value Distribution.

Description

Computes Raw, Central, or Standardized moment properties of a vector of observed scores.

Usage
observedmoments(
X )
type = c("raw”, "central”, "standardized”),
orders = 4,
correct = TRUE
)
Arguments
X A vector of values, the distribution of which moments are to be calculated.
type A character vector determining which moment-types are to be calculated. Per-
missible values are "raw”, "central”, and "standardized".
orders The number of moment-orders to be calculated for each of the moment-types.
correct Logical. Whether to include bias correction in estimation of orders. Default is
TRUE.
Value

A list of moment types, each a list of moment orders.
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Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(@, 100))

# To compute the first four raw, central, and standardized moments for this
# distribution of observed scores using observedmoments():
observedmoments(x = testdata, type = c("raw”, "central”, "standardized"),
orders = 4, correct = TRUE)

pBeta. 4P Cumulative Probability Function under the Four-Parameter Beta
Probability Density Distribution.

Description

Function for calculating the proportion of observations up to a specifiable quantile under the Four-
Parameter Beta Distribution.

Usage

pBeta.4P(q, 1, u, alpha, beta, lower.tail = TRUE)

Arguments
q The quantile or a vector of quantiles for which the proportion is to be calculated.
1 The first (lower) location parameter.
u The second (upper) location parameter.
alpha The first shape parameter.
beta The second shape parameter.
lower. tail Whether the proportion to be calculated is to be under the lower or upper tail.
Default is TRUE (lower tail).
Value

A vector of proportions of observations falling under specified quantiles under the four-parameter
Beta distribution.

Examples

# Assume some variable follows a four-parameter Beta distribution with

# location parameters 1 = 0.25 and u = 0.75, and shape parameters alpha = 5
# and beta = 3. To compute the cumulative probability at a specific point of
# the distribution (e.g., 0.5)

# using pBeta.4P():

pBeta.4P(q = 0.5, 1 = 0.25, u = @0.75, alpha = 5, beta = 3)
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pBetaBinom Cumulative Probability Function under the Beta-Binomial Probability
Distribution.

Description

Function for calculating the proportion of observations up to a specifiable quantile under the Beta-
Binomial Probability Distribution.

Usage

pBetaBinom(q, N, 1, u, alpha, beta, lower.tail = TRUE)

Arguments
q The quantile or a vector of quantiles for which the proportion is to be calculated.
N The total number of trials.
1 The first (lower) location parameter.
u The second (upper) location parameter.
alpha The first shape parameter.
beta The second shape parameter.
lower.tail Whether the proportion to be calculated is to be under the lower or upper tail.
Default is TRUE (lower tail).
Value

A vector of proportions of observations falling under specified quantiles under the four-parameter
Beta distribution.

Examples

# Assume some variable follows a Beta-Binomial distribution with number of
# trials = 50, and probabilities of successful trials are drawn from a four-
# parameter Beta distribution with location parameters 1 = 0.25 and u =

# 0.75, and shape parameters alpha = 5 and beta = 3. To compute the

# cumulative probability at a specific point of the distribution (e.g., 25):
pBetaBinom(q = 25, N =50, 1 = .25, u = .75, alpha = 5, beta = 3)
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pBetaMs Probability of Some Specific Observation under the Standard Beta
PDD with Specific Mean and Variance.

Description

Calculates the probability of some specific observation falling under a specified interval ([0, x] or
[x, 1]) under the Standard Beta probability density distribution with defined mean and variance or
standard deviation.

Usage

pBetaMS(q, mean, variance = NULL, sd = NULL, lower.tail = TRUE)

Arguments
q A specific point on the x-axis of the Standard Beta probability density distribu-
tion with a defined mean and variance.
mean The mean of the target Standard Beta probability density distribution.
variance The variance of the target Standard Beta probability density distribution.
sd The standard deviation of the target Standard Beta probability density distribu-
tion.
lower.tail Whether the density that should be considered is between the lower-end (i.e., [0
-> x]) or the higher-end of the distribution (i.e., [x -> 1]).
Value

A value representing the probability of a random draw from the Standard Beta probability density
distribution with a defined mean and variance being from one of two defined intervals (i.e., [0 -> x]
or [x ->1]).

Examples

# To compute the proportion of the density under the lower-end tail of a

# point along the Standard (two-parameter) PDD (e.g., 0.5) with mean of 0.6
# and variance of 0.04:

pBetaMS(gq = 0.5, mean = 0.6, variance = 0.04)
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pGammaBinom Cumulative probability density function under the Gamma-extended
Binomial distribution.

Description

Extends the cumulative Binomial probability mass function to positive non-integers, effectively
turning the mass-function into a density-function.

Usage

pGammaBinom(q, size, prob, lower.tail = TRUE)

Arguments
q Vector of quantiles.
size Number of "trials" (zero or more). Need not be integer.
prob Probability of "success" on each "trial". Need not be integer.
lower.tail Logical. If TRUE (default), probabilities are P[X<x], otherwise, P[X >= x].
Note that this differs from base-R binom() functions.
References

Loeb, D. E. (1992). A generalization of the binomial coefficients. Discrete Mathematics, 105(1-3).

Examples

# Assume some variable follows a Gamma-Binomial distribution with

# "number of trials” = 10.5 and probability of "success” for each "trial”
# = 0.75, to compute the cumulative probability to attain a "number of

# success” below a specific point (e.g., less than 7.5 "successes”:
pGammaBinom(q = 7.5, size = 10.5, prob = 0.75)

# Conversely, to attain a value at or above 7.5:
pGammaBinom(q = 7.5, size = 10.5, prob = 0.75, lower.tail = FALSE)

gBeta.4P Quantile Given Probability Under the Four-Parameter Beta Distribu-
tion.

Description

Function for calculating the quantile (i.e., value of x) for a given proportion (i.e., the value of y)
under the Four-Parameter Beta Distribution.
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Usage

gBeta.4P(p, 1, u, alpha, beta, lower.tail = TRUE)

Arguments
p A vector (or single value) of proportions or probabilities for which the corre-
sponding value of x (i.e., the quantiles) are to be calculated.
1 The first (lower) location parameter.
u The second (upper) location parameter.
alpha The first shape parameter.
beta The second shape parameter.
lower.tail Logical. Whether the quantile(s) to be calculated is to be under the lower or
upper tail. Default is TRUE (lower tail).
Value

A vector of quantiles for specified probabilities or proportions of observations under the four-
parameter Beta distribution.

Examples

# Assume some variable follows a four-parameter Beta distribution with

# location parameters 1 = 0.25 and u = 0.75, and shape parameters alpha = 5
# and beta = 3. To compute the quantile at a specific point of the

# distribution (e.g., 0.5) using gBeta.4P():

gBeta.4P(p = 0.5, 1 = 0.25, u = 0.75, alpha = 5, beta = 3)

gBetaMs Quantile Containing Specific Proportion of the Distribution, Given a
Specific Probability of the Standard Beta PDD with Specific Mean and
Variance or Standard Deviation.

Description

Calculates the quantile corresponding to a specific probability of some observation falling within
the [0, x] (1t =TRUE) or [x, 1] (1t = FALSE) interval under the Standard Beta probability density
distribution with defined mean and variance or standard deviation.

Usage

gBetaMS(p, mean, variance = NULL, sd = NULL, lower.tail = TRUE)



52 gGammaBinom

Arguments
p A value of probability marking the point of the Y-axis to correspond to the X-
axis.
mean The mean of the target Standard Beta probability density distribution.
variance The variance of the target Standard Beta probability density distribution.
sd The standard deviation of the target Standard Beta probability density distribu-
tion.
lower. tail Logical. Specifies which end of the tail for which to calculate quantile. Default
is TRUE (meaning, find q for lower tail.)
Value

A numeric value representing the quantile for which the specified proportion of observations fall
within.

Examples

# To compute the quantile at a specific point (e.g., 0.5) along the Standard
# (two-parameter) PDD with mean of ©.6 and variance of 0.04:
gBetaMS(p = ©.5, mean = 0.6, variance = 0.04)

gGammaBinom Quantile function for the Gamma-extended Binomial distribution.

Description

Quantile function for the Gamma-extended Binomial distribution.

Usage

gGammaBinom(p, size, prob, lower.tail = TRUE, precision = 1e-07)

Arguments
p Vector of probabilities.
size Number of "trials" (zero or more, including positive non-integers).
prob Probability of success on each "trial".
lower.tail Logical. If TRUE (default), probabilities are P[X < x], otherwise P[X > x].
precision The precision with which the quantile is to be calculated. Default is le-7 (i.e.,

search terminates when there is no registered change in estimate at the seventh
decimal). Tuning this value will impact the time it takes for the search algorithm
to arrive at an estimate.
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Note

This function uses a bisection search-algorithm to find the number of successes corresponding to the
specified quantile(s). This algorithm is inefficient with respect to the number of iterations required
to converge on the solution. More efficient algorithms might be added in later versions.

References

Loeb, D. E. (1992). A generalization of the binomial coefficients. Discrete Mathematics, 105(1-3).

Examples

# For a Gamma-extended Binomial distribution with number of trials = 10 and
# probability of success per trial of 0.75, calculate the number of success-
# ful trials at or below the 25% quantile:

gGammaBinom(p = 0.25, size = 10, prob = 0.75)

# Conversely, for a Gamma-extended Binomial distribution with number of
# trials = 10 and probability of success per trial of 0.75, calculate the
# number of successful trials at or above the 25% quantile:

gGammaBinom(p = 0.25, size = 10, prob = 0.75, lower.tail = FALSE)

R.ETL Model implied reliability from Livingston and Lewis’ "Effective Test
Length'.

Description
Calculate model-implied reliability given mean, variance, the minimum and maximum possible
scores, and the effective test length.

Usage

R.ETL(mean, variance, min = @, max = 1, ETL)

Arguments
mean The mean of the observed-score distribution.
variance The variance of the observed-score distribution.
min The lower-bound (minimum possible value) of the observed-score distribution.
Default is 0 (assuming observed scores represent proportions).
max The upper-bound (maximum possible value) of the observed-score distribution.
Default is 1 (assuming observed scores represent proportions).
ETL The effective test length as defined by Livingston and Lewis (1995).
Value

An estimate of the reliability of a test, given the effective test length, mean, variance, and minimum
and maximum possible scores of the observed-score distribution..
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References

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.

set.seed(1234)

testdata <- rbinom(100, 100, rBeta.4P(100@, .25, .75, 5, 3))
hist(testdata, xlim = c(@, 100))

# From the data-generating script above, the effective test length is 100.
# To estimate and retrieve the model-implied reliability using R.ETL():
R.ETL(mean = mean(testdata), variance = var(testdata), min = @, max = 100,

ETL = 100)
rBeta. 4P Random Number Generation under the Four-Parameter Beta Proba-
bility Density Distribution.
Description

Function for generating random numbers from a specified Four-Parameter Beta Distribution.

Usage

rBeta.4P(n, 1, u, alpha, beta)

Arguments
n Number of draws.
1 The first (lower) location parameter.
u The second (upper) location parameter.
alpha The alpha (first) shape parameter.
beta The beta (second) shape parameter.
Value

A vector with length n of random values drawn from the Four-Parameter Beta Distribution.

Examples

# Assume some variable follows a four-parameter Beta distribution with

# location parameters 1 = 0.25 and u = 0.75, and shape parameters alpha = 5
# and beta = 3. To draw a random value from this distribution using

# rBeta.4P():

rBeta.4P(n =1, 1 = 0.25, u = 0.75, alpha = 5, beta = 3)
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rBetaBinom Random Number Generation under the Beta-Binomial Probability
Mass Distribution.

Description

Random Number Generation under the Beta-Binomial Probability Mass Distribution.

Usage

rBetaBinom(n, N, 1, u, alpha, beta)

Arguments

n Number of draws.

N Number of trials.

1 The first (lower) location parameter.

u The second (upper) location parameter.

alpha The alpha (first) shape parameter.

beta The beta (second) shape parameter.
Value

A vector with length n of random values drawn from the Beta-Binomial Distribution.

Examples

# To draw a sample of 50 values from a Beta-Binomial distribution with
# number of trials = 100, and with success-probabilities drawn from a

# Four-Parameter Beta distribution with location parameters 1 = 0.25 and
# u = 0.95, and shape-parameters alpha = 5 and beta = 3:

rBetaBinom(n = 50, N = 100, 1 = 0.25, u = 0.95, alpha = 5, beta = 3)

rBetaMs Random Draw from the Standard Beta PDD With Specific Mean and
Variance.

Description
Draws random samples of observations from the Standard Beta probability density distribution with
defined mean and variance.

Usage

rBetaMS(n, mean, variance = NULL, sd = NULL)
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Arguments
n Number of observations to be drawn from under the Standard Beta PDD.
mean The mean of the target Standard Beta probability density distribution.
variance The variance of the target Standard Beta probability density distribution.
sd The standard deviation of the target Standard probability density distribution.
Value

A vector of length n, each value representing a random draw from the Standard Beta probability
density distribution with defined mean and variance.

rGammaBinom Random number generation under the Gamma-extended Binomial dis-
tribution.

Description

Random number generation under the Gamma-extended Binomial distribution.

Usage

rGammaBinom(n, size, prob, precision = 1e-04)

Arguments
n Number of observations.
size Number of "trials" (zero or more). Need not be integer.
prob Probability of "success" on each "trial". Need not be integer.
precision The precision with which the quantile is to be calculated. Default is le-4 (i.e.,
search terminates when there is no registered change in estimate at the fourth
decimal). Tuning this value will impact the time it takes for the search algorithm
to arrive at an estimate.
Note

Calls gGammaBinom(), which makes the random draw slower than what one might be used to (since
gGammaBinom() calls pGammaBinom() and employs a search-algorithm to find the appropriate value
down to a specifiable level of precision).

Examples

# Assume some variable follows a Gamma-Binomial distribution with

# "number of trials” = 10.5 and probability of "success” for each "trial”
# = 0.75 To draw a random value from this distribution:

rGammaBinom(n = 1, size = 10, prob = 0.75)
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tsm Proportional true-score distribution raw moments from Livingston and
Lewis’ effective test-score and effective test-length.

Description

An implementation of Lords (1965, p. 265) equation 37 for estimating the raw moments of the
true-score distribution, modified to function for the Livingston and Lewis approach.

Usage
tsm(x, r, n, method = "product”)
Arguments
X The effective test-score of test-takers.
r The moment-order that is to be calculated (where 1 is the mean, 2 is the raw
variance, 3 is the raw skewness, etc.).
n The effective test-length.
method The method by which the descending factorials are to be calculated. Default is
"product” which uses direct arithmetic. Alternative is "gamma" which calcu-
lates the descending factorial using the Gamma function. The alternative method
might be faster but might fail because the Gamma function is not defined for
negative integers (returning Inf).
References

Lord, F. M. (1965). A strong true-score theory, with applications. Psychometrika. 30(3). pp.
239-270. doi: 10.1007/BF02289490

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Examples

# Examine the raw moments of the underlying Beta distribution that is to provide the basis for
# observed-scores:
betamoments(alpha = 5, beta = 3, 1 = 0.25, u = 0.75, types = "raw")

# Generate observed-scores from true-scores by passing the true-scores as binomial probabilities
# for the rbinom function.

set.seed(1234)

obs.scores <- rbinom(1000, 100, rBeta.4P(1000, ©.25, 0.75, 5, 3))

# Examine the raw moments of the observed-score distribution.

observedmoments(obs.scores, type = "raw")

# First four estimated raw moment of the proportional true-score distribution from the observed-
# score distribution. As all items are equally difficult, the effective test-length is equal to
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# the actual test-length.

tsm(x = obs.scores, r =1, n =
tsm(x = obs.scores, r = 2, n =
tsm(x = obs.scores, r = 3, n =
tsm(x = obs.scores, r = 4, n =

100)
100)
100)
100)

UABMSL

# Which is fairly close to the true raw moments of the proportional true-score distribution
# calculated above.

UABMSL

Upper Location Parameter Given Shape Parameters, Mean, Variance,
and Lower Location Parameter of a Four-Parameter Beta PDD.

Description

Calculates the upper-bound value required to produce a Beta probability density distribution with
defined moments and parameters. Be advised that not all combinations of moments and parameters
can be satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both
location-parameters, meaning that the value of the upper-location parameter will take on which ever
value it must, and cannot be specified).

Usage

UABMSL (

alpha = NULL,
beta = NULL,
mean = NULL,
variance = NULL,
skewness = NULL,
kurtosis = NULL,
1 = NULL,

sd = NULL

Arguments

alpha
beta

mean

variance

skewness

kurtosis

distribution.

density distribution.

distribution.

distribution.

The alpha shape-parameter of the target Beta probability density distribution.
The beta shape-parameter of the target Beta probability density distribution.
The mean (first raw moment) of the target Standard Beta probability density

The variance (second central moment) of the target Standard Beta probability

The skewness (third standardized moment) of the target Beta probability density

The kurtosis (fourth standardized moment) of the target Beta probability density
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1 The lower-bound of the Beta distribution. Default is NULL (i.e., does not take
a specified l1-parameter into account).

sd Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.

Value

A numeric value representing the required value for the Beta upper location-parameter (u) in order
to produce a Beta probability density distribution with the target moments and parameters.

Examples

# Generate some fictional data.

set.seed(1234)

testdata <- rBeta.4P(100000, 0.25, 0.75, 5, 3)
hist(testdata, xlim = c(@, 1), freq = FALSE)

# Suppose you know three of the four necessary parameters to fit a four-

# parameter Beta distribution (i. e., 1 = 0.25, alpha = 5, beta = 3) to this
# data. To find the value for the necessary u parameter, estimate the mean

# and variance of the distribution:

M <- mean(testdata)

S2 <- var(testdata)

# To find the 1 parameter necessary to produce a four-parameter Beta
# distribution with the target mean, variance, and u, alpha, and beta
# parameters using the LMSBAU() function:

(u <- UABMSL(alpha = 5, beta = 3, mean = M, variance = S2, 1 = 0.25))
curve(dBeta.4P(x, 0.25, u, 5, 3), add = TRUE, lwd = 2)
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