bgmm: Gaussian Mixture Modeling Algorithms and the Belief-Based Mixture Modeling

Two partially supervised mixture modeling methods: soft-label and belief-based modeling are implemented. For completeness, we equipped the package also with the functionality of unsupervised, semi- and fully supervised mixture modeling. The package can be applied also to selection of the best-fitting from a set of models with different component numbers or constraints on their structures. For detailed introduction see: Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm: Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software <doi:10.18637/jss.v047.i03>.

Version: 1.8.5
Depends: R (≥ 2.0), mvtnorm, car, lattice, combinat
Suggests: testthat
Published: 2021-10-10
Author: Przemyslaw Biecek \& Ewa Szczurek
Maintainer: Przemyslaw Biecek <Przemyslaw.Biecek at gmail.com>
License: GPL-3
URL: http://bgmm.molgen.mpg.de/
NeedsCompilation: no
Citation: bgmm citation info
In views: Cluster
CRAN checks: bgmm results

Documentation:

Reference manual: bgmm.pdf

Downloads:

Package source: bgmm_1.8.5.tar.gz
Windows binaries: r-devel: bgmm_1.8.5.zip, r-release: bgmm_1.8.5.zip, r-oldrel: bgmm_1.8.5.zip
macOS binaries: r-release (arm64): bgmm_1.8.5.tgz, r-oldrel (arm64): bgmm_1.8.5.tgz, r-release (x86_64): bgmm_1.8.5.tgz, r-oldrel (x86_64): bgmm_1.8.5.tgz
Old sources: bgmm archive

Reverse dependencies:

Reverse imports: ggrasp

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bgmm to link to this page.