Package ‘bmotif”

September 11, 2020
Title Motif Analyses of Bipartite Networks
Version 2.0.2
Date 2020-09-04

Description Counts occurrences of motifs in bipartite networks, as well as the number of
times each node or link appears in each unique position within motifs. Has support for both
binary and weighted motifs: can calculate the mean weight of motifs and the standard deviation
of their mean weights. Intended for use in ecology, but its methods are general and can be
applied to any bipartite network. Full details are given in Simmons et al. (2019)
<doi:10.1111/2041-210X.13149>.

Depends R (>=3.5.0)
License MIT + file LICENSE
Encoding UTF-8

LazyData true
RoxygenNote 7.1.1

Imports tensor (>=1.5), Repp (>=0.12.18), reshape2 (>= 1.4.3),
gtools (>= 3.8.1), stats (>=3.5.0)

Suggests testthat, knitr, rmarkdown
LinkingTo Rcpp

VignetteBuilder knitr

Language en-GB
NeedsCompilation yes

Author Benno Simmons [aut, cre],
Michelle Sweering [aut],
Maybritt Schillinger [aut],
Riccardo Di Clemente [aut]

Maintainer Benno Simmons <benno.simmons@gmail.com>
Repository CRAN
Date/Publication 2020-09-11 09:40:06 UTC

2 link_positions

R topics documented:

lnk_positions oL e e e e e 2
MCOUNE . . . v v v v i e 4
node_positions e e 7
Index 12
link_positions Calculate link position vectors
Description

Counts the number of times each link in a network occurs in each unique link position within the

motifs
Usage
link_positions(M, six_node = FALSE, weights, normalisation = "none")
Arguments
M A numeric matrix representing interactions between two groups of nodes. Each
row corresponds to a node in one level and each column corresponds to a node
in the other level. Elements of M are positive numbers if nodes interact, and 0
otherwise. Formally, M is a biadjacency matrix. When nodes i and j interact,
m_ij > 0; if they do not interact, m_ij = 0.
six_node Logical; should positions in six node motifs be counted? Defaults to FALSE.
weights Logical; Should weights of the links be taken into account?

normalisation Which normalisation should be used: none’,’sum’, ’position’, ’sizeclass’, ’size-
class_plusl1’, ’sizeclass_NAzero’, "levelsize’, ’levelsize_plusl’, ’levelsize_NAzero’, motif’,
"motif_plusl’ or *'motif_NAzero’? Defaults to "none". (see details)

Details

Counts the number of times each link in a network occurs in each of the 29 (if six_node = FALSE)
or 106 (if six_node = TRUE) unique link positions within motifs (to quantify a link’s structural
role). If six_node = FALSE, link positions in all motifs containing between 2 and 5 nodes are
counted. If six_node = TRUE, link positions in all motifs containing between 2 and 6 nodes
are counted. Analyses where six_node = FALSE are substantially faster than when six_node =
TRUE, especially for large networks. For large networks, counting six node motifs is also memory
intensive. In some cases, R can crash if there is not enough memory.

If interactions are weighted (non-zero matrix elements take values other than 1), these can be in-
corporated by setting weights = TRUE. If weights = TRUE, the function will return the number of
times each link occurs in each position, multiplied by the weight of the link, following Mora et al.
(2018).

Links between nodes with more interactions will tend to appear in more positions. Normalisation
helps control for this effect. bmotif include four types of normalisation:

link_positions 3

* "none'": performs no normalisation and will return the raw position counts.

e "sum': divides the position measure for each link by the total number of times that link
appears in any position (divides each element in a row by the row sum).

» "position': divides the position measure for each link by the total number of times any link
occurs in that link position (divides each element in a column by the column sum). This gives
a measure of how often a link occurs in a position relative to the other links in the network.

¢ Size class normalisation

— "'sizeclass'': divides the position measure for each link by the total number of times that
link appears in any position within the same motif size class (the number of nodes a motif
contains).

— "'sizeclass_plus1'': same as ’sizeclass’ but adds one to all position measure values. If
a link does not occur in any motifs in a given size class, ’sizeclass’ normalisation will
return NAs. ’sizeclass_plus1’ avoids this by adding one to all counts.

— "sizeclass_NAzero'': same as ’sizeclass’ but replaces all NA values with 0. If a link does
not occur in any motifs in a given size class, ’sizeclass’ normalisation will return NAs.
’sizeclass_NAzero’ avoids this by replacing NAs with zero.

¢ Levelsize normalisation

— "levelsize'': divides the position measure for each link by the total number of times that
link appears in any position within a motif with a given number of nodes in the top level
and the bottom level. For example, the relative frequencies of all position measures in
motifs with three nodes in the top level and two nodes in the bottom level will sum to
one, as will the relative frequency of all position measures in motifs with 2 nodes in the
top level and two nodes in the bottom level, and so on.

— "levelsize_plusl'': same as ’levelsize’ but adds one to all position measure values. If a
link does not occur in any motifs with a given number of nodes in the top level and the
bottom level, ’levelsize’ normalisation will return NAs. ’levelsize_plus1’ avoids this by
adding one to all counts.

— "levelsize_NAzero'': same as ’levelsize’ but replaces all NA values with 0. If a link does
not occur in any motifs with a given number of nodes in the top level and the bottom level,
’levelsize’ normalisation will return NAs. ’levelsize_NAzero’ avoids this by replacing
NAs with zero.

¢ Motif normalisation

— "motif"": divides the position measure for each link by the total number of times that link
appears in any position within the same motif. For example, the relative frequencies of all
position measures in motif 5 will sum to one, as will the relative frequency of all position
measures in motif 10, and so on.

— "motif_plus1'": same as 'motif” but adds one to all position measure values. If a link
does not occur in a particular motif, *'motif” normalisation will return NAs. *motif_plus1’
avoids this by adding one to all counts.

— "motif_NAzero'': same as 'motif” but replaces all NA values with 0. If a link does not
occur in a particular motif, ’levelsize’ normalisation will return NAs. ’motif NAzero’
avoids this by replacing NAs with zero.

If a matrix is provided without row or column names, default names will be assigned: the first row
will be called called ’r1’, the second row will be called ’r2’ and so on. Similarly, the first column
will be called ’c1’, the second column will be called ’c2’ and so on.

4 mcount

Value

Returns a data frame with one column for each link position: 29 columns if six_node is FALSE,
and 106 columns if six_node is TRUE. Columns names are given as "lpx" where x is the ID of the
position as described in the motif dictionary. To view the *motif dictionary’ showing which link
position a given ID corresponds to, enter vignette("bmotif-dictionary"”).

Each row corresponds to one link in the network. Row names are gives as "x —y", where x is the
species in the first level (rows) and y is the species in the second level (columns).

By default, the elements of the data frame will be the raw link position counts. If weight = TRUE,
link position counts will be multiplied by the link weight. If normalisation is set to "sum",
"sizeclass" or "position", the elements will be normalised position counts as described above.

References

Mora, B.B., Cirtwill, A.R. and Stouffer, D.B., 2018. pymfinder: a tool for the motif analysis of
binary and quantitative complex networks. bioRxiv, 364703.

Simmons, B. 1., Sweering, M. J. M., Dicks, L. V., Sutherland, W. J. and Di Clemente, R. bmotif: a
package for counting motifs in bipartite networks. bioRxiv. doi: 10.1101/302356

Examples

set.seed(123)
row <- 10
col <- 10

link positions in a binary network
m <- matrix(sample(@:1, rowxcol, replace=TRUE), row, col)
link_positions(M = m, six_node = TRUE, weights = FALSE, normalisation = "none")

link positions in a weighted network
m[m>Q] <- stats::runif(sum(m), @, 100)

link_positions(M = m, six_node = TRUE, weights = TRUE, normalisation = "none")
mcount Count bipartite motifs
Description

Counts occurrences of motifs in a bipartite network

Usage

mcount(M, six_node = FALSE, normalisation, mean_weight, standard_dev)

mcount 5

Arguments
M A numeric matrix representing interactions between two groups of nodes. Each
row corresponds to a node in one level and each column corresponds to a node
in the other level. Elements of M are positive numbers if nodes do interact, and
0 otherwise. Formally, M is a biadjacency matrix. When nodes i and j interact,
m_ij > 0; if they do not interact, m_ij = 0.
six_node Logical; should six node motifs be counted? Defaults to FALSE.

normalisation Logical; should motif frequencies be normalised to control for network size?

mean_weight Logical; used for weighted networks. Should the mean weight of each motif be
computed?

standard_dev Logical; should the standard deviation of the mean weight for each motif be
computed? Warning: can be slow for larger networks.

Details

Counts the number of times each of the 17 motifs up to five nodes (if six_node = FALSE), or
44 motifs up to six nodes (if six_node = TRUE), occurs in a network (note: if the network has
weights it will be converted to binary; see below for how to use the weights argument to account
for network weights).

Six-node motifs

If six_node = FALSE, all motifs containing between 2 and 5 nodes are counted. If six_node
= TRUE, all motifs containing between 2 and 6 nodes are counted. Analyses where six_node =
FALSE are substantially faster than when six_node = TRUE, especially for large networks. For
large networks, counting six node motifs is also memory intensive. In some cases, R can crash if
there is not enough memory.

Normalisation

Larger networks tend to contain more motifs. Controlling for this effect by normalising motif
counts is important if different sized networks are being compared. If normalisation = TRUE,
motif frequencies are normalised in four ways:

* ""normalise_sum'': converts each frequency to a relative frequency by expressing counts as a
proportion of the total number of motifs in the network

* ""normalise_sizeclass'': expresses counts as a proportion of the total number of motifs within
each motif size class (the number of nodes a motif contains). For example, the relative fre-
quency of all two-node motifs will sum to one, as will the relative frequency of all three-,
four-, five- and six-node motifs.

* ""normalise_levelsize'': expresses counts as a proportion of the total number of motifs with
a given number of nodes in the top level and the bottom level. For example, the relative
frequencies of all motifs with three nodes in the top level and two nodes in the bottom level
will sum to one, as will the relative frequency of all motifs with 2 nodes in the top level and
two nodes in the bottom level, and so on. This normalisation is helpful because each set of
species with a given number of nodes in the top and bottom level is assigned to one motif that
describes the interactions among those species (Cirtwill and Ekl6f, 2018). For example, all
sets of interacting species with two species in the top level and two in the bottom level will
be assigned to either motif 5 or motif 6. 'normalise_levelsize’ allows you to see the relative

6 mcount

proportion of species which were assigned to each of these motifs. Note that some motifs will
always return a value of 1 as they are the only motif with that particular combination of nodes
in the top and bottom level. For example, motif 2 will always sum to 1 because it is the only
motif with one node in the top level and two nodes in the bottom level.

* ""normalise_nodesets'': expresses frequencies as the number of node sets that are involved in
a motif as a proportion of the number of node sets that could be involved in that motif (Poisot
and Stouffer, 2017). For example, in a motif with three nodes in one level (A) and two nodes
in the other level (P), the maximum number of node sets which could be involved in the motif
is given by the product of binomial coefficients, choosing three nodes from A and two from P.

Weighted networks

mcount also supports weighted networks. We let the weight of a given subgraph be the arithmetic
mean of the weights of its links (note: we only consider links which are actually present), following
Mora et al. (2018).

For each motif we do the following:

We calculate the weights of all subgraphs of the same type as (formally: isomorphic to) the motif.
If mean_weight = TRUE, we compute the arithmetic mean of the subgraph weights.

If standard_dev = TRUE, we compute the standard deviation of the subgraph weights.

For example, let there be two subgraphs, A and B, which are isomorphic to motif 5. Subgraph A has
three links with weights 1, 2 and 3; subgraph B has three links with weights 4, 5 and 6. The weight
of subgraph A is the mean of 1, 2 and 3, which is 2. The weight of subgraph B is the mean of 4, 5
and 6 which is 5. The mean weight of motif 5 which would be returned by mcount is therefore the
mean of 2 and 5 which is 3.5.

Value

Returns a data frame with one row for each motif: either 17 rows (if six_node = FALSE) or 44 rows
(if six_node = TRUE). The data frame has three columns. The first column ("motif") indicates the
motif ID as described in Simmons et al. (2017). To view the *motif dictionary’ showing which
motif a given ID corresponds to, enter vignette("bmotif-dictionary”). The second column
("nodes") indicates how many nodes the motif contains. The third column ("frequency") is the
number of times each motif appears in the network.

If normalisation = TRUE, three additional columns are added to the output data frame, each corre-
sponding to a different method of normalising motif frequencies as described above. If mean_weight
= TRUE, an additional column with the mean weight values is added. If standard_dev = TRUE,
an additional column with the standard deviation values is added.

References

Baker, N., Kaartinen, R., Roslin, T., and Stouffer, D. B. (2015). Species’ roles in food webs show
fidelity across a highly variable oak forest. Ecography, 38(2):130-139.

Cirtwill, A. R. and Eklof, A (2018), Feeding environment and other traits shape species’ roles in
marine food webs. Ecol Lett, 21: 875-884. doi:10.1111/ele.12955

Mora, B.B., Cirtwill, A.R. and Stouffer, D.B., 2018. pymfinder: a tool for the motif analysis of
binary and quantitative complex networks. bioRxiv, 364703.

Poisot, T. & Stouffer, D. (2016). How ecological networks evolve. bioRxiv.

node_positions 7

Simmons, B. 1., Sweering, M. J. M., Dicks, L. V., Sutherland, W. J. and Di Clemente, R. bmotif: a
package for counting motifs in bipartite networks. bioRxiv. doi: 10.1101/302356

Examples

set.seed(123)
row <- 10
col <- 10

motif counts for a binary network
m <- matrix(sample(@:1, rowxcol, replace=TRUE), row, col)
mcount(M = m, six_node = TRUE, normalisation = TRUE, mean_weight = FALSE, standard_dev = FALSE)

motif counts in a weighted network
m[m>@] <- stats::runif(sum(m), @, 100)
mcount(M = m, six_node = TRUE, normalisation = TRUE, mean_weight = TRUE, standard_dev = TRUE)

node_positions Calculate node position vectors

Description

For binary networks, counts the number of times each node appears in each unique node position
within motifs; for weighted networks calculates a range of weighted node position measures.

Usage
node_positions(
M,
six_node = FALSE,
level = "all",
weights_method,
weights_combine = "none”,
normalisation = "none”
)
Arguments
M A numeric matrix representing interactions between two groups of nodes. Each
row corresponds to a node in one level and each column corresponds to a node
in the other level. Elements of M are positive numbers if nodes do interact, and
0 otherwise. Formally, M is a biadjacency matrix. When nodes i and j interact,
m_ij > 0; if they do not interact, m_ij = 0. If interactions are weighted (non-
zero matrix elements take values other than 1), the function will automatically
convert the matrix to a binary matrix.
six_node Logical; should six node motifs be counted? Defaults to FALSE.
level Which node level should positions be calculated for: "rows", "columns" or "all"?

Defaults to "all".

8 node_positions

weights_method The method for calculating weighted positions; must be one of 'none’, *'mean_motifweights’,
“total_motifweights’, "'mean_nodeweights’, ’total_nodeweights’, ’contribution’,
’mora’ or ’all’ (see details).
weights_combine
Method for combining weighted position measures; must be one of ’none’,
’mean’ or ‘sum’ (see details). Defaults to "none’.

non non non

normalisation Which normalisation should be used: "none","sum","sizeclass", "sizeclass_plus1",
" n nn

"sizeclass_NAzero", "position","levelsize","levelsize_plus1","levelsize_NAzero","motif","motif_plus1"
or "motif_NAzero" (see details)? Defaults to "none".

Details

For binary networks, counts the number of times each node occurs in each unique position within
motifs (to quantify a node’s structural role). If networks are weighted, node_positions can also
calculate various weighted node position measures.

If a matrix is provided without row or column names, default names will be assigned: the first row
will be called called ’r1’, the second row will be called ’r2’ and so on. Similarly, the first column
will be called ’c1’, the second column will be called ’c2’ and so on.

Six node

If six_node = FALSE, node positions in all motifs containing between 2 and 5 nodes are counted.
If six_node = TRUE, node positions in all motifs containing between 2 and 6 nodes are counted.
Analyses where six_node = FALSE are substantially faster than when six_node = TRUE, espe-
cially for large networks. For large networks, counting six node motifs is also memory intensive.
In some cases, R can crash if there is not enough memory.

Level

The level argument controls which level of nodes positions are calculated for: "rows" returns
position counts for all nodes in rows, "columns" returns position counts for all nodes in columns,
and "all" return counts for all nodes in the network.

Weighted networks

node_positions also supports weighted networks for motifs up to five nodes. Weighted analyses
are controlled using two arguments: weights_method and weights_combine. These are described
in detail below:

» ’weights_method’: determines how the weighted position of a node is calculated in each
motif occurrence.

— ’none’: weights are ignored and node_positions returns the frequency with which each
node occurs in each unique position within motifs. 'weights_combine' must also be
‘none’.

— ’mean_motifweights’: for a given node in a given position in a motif occurrence (for-
mally a subgraph isomorphic to a particular motif), returns the mean weight of that motif
occurrence i.e. the mean of all link strengths in that motif occurrence.

— ’total_motifweights’: for a given node in a given position in a motif occurrence (for-
mally a subgraph isomorphic to a particular motif), returns the total weight of that motif
occurrence i.e. the sum of all link strengths in that motif occurrence.

node_positions 9

— ’mean_nodeweights’: for a given node in a given position in a motif occurrence (for-
mally a subgraph isomorphic to a particular motif), returns the mean weight of that focal
node’s links.

— ’total_nodeweights’: for a given node in a given position in a motif occurrence (formally

a subgraph isomorphic to a particular motif), returns the total weight of that focal node’s
links.

— ’contribution’: for a given node in a given position in a motif occurrence (formally a
subgraph isomorphic to a particular motif), returns the total weight of that focal node’s
links as a proportion of the total weight of that motif occurrence. i.e. the sum of the focal
node’s links divided by the sum of all link strengths in that motif occurrence.

— ’mora’: calculates a contribution measure following Mora et al. (2018).

— ’all’: calculates all the above measures (except 'none’) and returns them as a list of length
five.

* ’weights_combine’: determines how weighted position measures are combined across motif
occurrences to give an overall measure for a each node in a each position.

— ’none’: weights are ignored and node_positions returns the frequency with which each
node occurs in each unique positions within motifs. 'weights_method' must also be
’none’.

— ’sum’: weighted measures are summed across occurrences.

— ’mean’: the mean of the weighted measure across occurrences is calculated.

Normalisation

Nodes with more interactions will tend to appear in more positions. Normalisation helps control for
this effect. bmotif include six main types of normalisation:

* "none'': performs no normalisation and will return the raw position measure

e "sum'": divides the position measure for each node by the total number of times that node
appears in any position (divides each element in a row by the row sum).

 "position'': divides the position measure for each node by the total number of times any node
occurs in that node position (divides each element in a column by the column sum). This gives
a measure of how often a node occurs in a position relative to the other nodes in the network.

¢ Size class normalisation

— "'sizeclass'': divides the position measure for each node by the total number of times that
node appears in any position within the same motif size class (the number of nodes a
motif contains).

— "'sizeclass_plusl'': same as ’sizeclass’ but adds one to all position measures If a species
does not occur in any motifs in a given size class, ’sizeclass’ normalisation will return
NAs. ’sizeclass_plus1’ avoids this by adding one to all counts.

— "'sizeclass_NAzero'': same as ’sizeclass’ but replaces all NA values with 0. If a species
does not occur in any motifs in a given size class, ’sizeclass’ normalisation will return
NAs. ’sizeclass_NAzero’ avoids this by replacing NAs with zero.

* Levelsize normalisation

— "levelsize'": divides the position measure for each node by the total number of times that
node appears in any position within a motif with a given number of nodes in the top level
and the bottom level. For example, the relative frequencies of all position measures in

10 node_positions

motifs with three nodes in the top level and two nodes in the bottom level will sum to
one, as will the relative frequency of all position counts in motifs with 2 nodes in the top
level and two nodes in the bottom level, and so on.

— "levelsize_plus1'': same as ’levelsize’ but adds one to all position measures If a species
does not occur in any motifs with a given number of nodes in the top level and the bottom
level, ’levelsize’ normalisation will return NAs. ’levelsize_plusl’ avoids this by adding
one to all counts.

— "levelsize_NAzero'': same as ’levelsize’ but replaces all NA values with 0. If a species
does not occur in any motifs with a given number of nodes in the top level and the bot-
tom level, ’levelsize’ normalisation will return NAs. ’levelsize_NAzero’ avoids this by
replacing NAs with zero.

¢ Motif normalisation

— "motif": divides the position measure for each node by the total number of times that
node appears in any position within the same motif. For example, the relative frequencies
of all position measures in motif 5 will sum to one, as will the relative frequency of all
position counts in motif 10, and so on.

— "motif_plus1': same as *motif’ but adds one to all position measures. If a species does
not occur in a particular motif, *'motif” normalisation will return NAs. ’motif plusl’
avoids this by adding one to all counts.

— "motif_NAzero': same as 'motif’ but replaces all NA values with 0. If a species does
not occur in a particular motif, ’levelsize’ normalisation will return NAs. *motif NAzero’
avoids this by replacing NAs with zero.

Value

Returns a data frame with one column for each node position: 46 columns if six_node is FALSE,
and 148 columns if six_node is TRUE. Columns names are given as "npx" where x is the ID of
the position as described in Simmons et al. (2017) (and originally in Appendix 1 of Baker et al.
(2015)). To view the ’motif dictionary’ showing which node position a given ID corresponds
to, enter vignette("bmotif-dictionary").

For a network with A rows and P columns, by default (where level = "all") the data frame has A
+ P rows, one for each node. If level = "rows", the data frame will have A rows, one for each row
node; if level = "columns", it will have P rows, one for each column node.

By default, the elements of this data frame will be the raw binary or weighted position measures
(depending on which was requested). If normalisation is set to something other than "none", the
elements will be normalised position counts as described above.

If weights_method is set to "all’, node_positions instead returns a list of length five, each con-
taining a data.frame corresponding to one of the five weighting methods described above.

References

Baker, N., Kaartinen, R., Roslin, T., and Stouffer, D. B. (2015). Species’ roles in food webs show
fidelity across a highly variable oak forest. Ecography, 38(2):130-139.

Mora, B.B., Cirtwill, A.R. and Stouffer, D.B., 2018. pymfinder: a tool for the motif analysis of
binary and quantitative complex networks. bioRxiv, 364703.

Simmons, B. I., Sweering, M. J. M., Dicks, L. V., Sutherland, W. J. and Di Clemente, R. bmotif: a
package for counting motifs in bipartite networks. bioRxiv. doi: 10.1101/302356

node_positions 11

Examples

set.seed(123)
row <- 10
col <- 10

node positions in a binary network
m <- matrix(sample(@:1, rowxcol, replace=TRUE), row, col)
node_positions(M = m, six_node = TRUE, weights_method = "none”, weights_combine = "none")

node positions in a weighted network
m[m>@] <- stats::runif(sum(m), @, 100)
node_positions(M = m, six_node = FALSE, weights_method = "all"”, weights_combine = "sum")

Index

link_positions, 2
mcount, 4

node_positions, 7

12

	link_positions
	mcount
	node_positions
	Index

