Package ‘breakfast’

June 11, 2021
Title Methods for Fast Multiple Change-Point Detection and Estimation

Version 2.2

Description A developing software suite for multiple change-
point detection/estimation (data segmentation) in data sequences.

Depends R (>=3.0.0)

License GPL-2

Imports plyr, Rcpp, ggplot2
LinkingTo Rcpp

Encoding UTF-8

Suggests testthat, knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation yes

Author Andreas Anastasiou [aut],
Yining Chen [aut, cre],
Haeran Cho [aut],

Piotr Fryzlewicz [aut]

Maintainer Yining Chen <y.chen1@1@lse.ac.uk>
Repository CRAN
Date/Publication 2021-06-11 19:20:02 UTC

R topics documented:

breakfast-package L 2
breakfast 3
modelic 5
modellp e e e 6
model.sdll 8
model.thresh L 10
plot.breakfast.cpts L 11
print.breakfast.cpts L. 12

2 breaktast-package
printeptmodel e e e 12
solidetect e e e 13
SOLAdetect_Seq e e e e e e e 14
SOLNOt e e e e e 15
soltguh . . L e e e 17
SOLWDS . . L e e e 18
SOLWDS2 . . . e 19

Index 21

breakfast-package Breakfast: Methods for Fast Multiple Change-point Detection and Es-
timation

Description

A developing software suite for multiple change-point detection/estimation (data segmentation) in
data sequences.

Details

The current version implements the Gaussian mean-shift model, in which the data are assumed
to be a piecewise-constant signal observed with i.i.d. Gaussian noise. Change-point detection in
breakfast is carried out in two stages: (i) computation of a solution path, and (ii) model selection
along the path. A variety of solution path and model selection methods are included, which can
be accessed individually, or through breakfast. Currently supported solution path methods are:
sol.idetect, sol.idetect_seq, sol.wbs, sol.wbs2, sol.not and sol.tguh.

Currently supported model selection methods are: model.ic, model.lp, model.sdll model.thresh.

Check back future versions for more change-point models and further methods.

Author(s)

Andreas Anastasiou
Yining Chen
Haeran Cho

Piotr Fryzlewicz

We would like to thank Shakeel Gavioli-Akilagun, Anica Kostic, Shuhan Yang and Christine Yuen
for their comments and suggestions that helped improve this package.

See Also

browseVignettes(package = "breakfast"”) contains a detailed comparative simulation study of
various methods implemented in breakfast for the Gaussian mean-shift model.

https://www.andreasanastasiou-statistics.com/
http://personal.lse.ac.uk/cheny100/
https://sites.google.com/view/haeran-cho/
http://stats.lse.ac.uk/fryzlewicz/

breakfast 3

breakfast Methods for fast multiple change-point detection and estimation

Description

This function estimates the number and locations of change-points in a data sequence, which is
modelled as a piecewise-constant function plus i.i.d. Gaussian noise. This is carried out via a
two-stage procedure combining solution path generation and model selection methodologies.

Usage

breakfast(x, solution.path = NULL, model.selection = NULL)

Arguments

X A numeric vector containing the data to be processed

solution.path A string or a vector of strings containing the name(s) of solution path generat-
ing method(s); if individual methods are accessed via this option, default tun-
ing parameters are used. Alternatively, you can directly access each solution
path generating method via sol.[method], see below. If both solution.path
and model.selection are unspecified, we return the output from the suggested
combinations based on their performance, which are: ("idetect”,"ic"), ("idetect_seq"”, "thresh"),
("not","ic"), ("tguh”,"1p"), ("wbs","ic") and ("wbs2","sd11"). If solution.path
is specified but model. selection is not, we return the output from the specified
solution.path methods combined with the suggested model selection methods
(respectively) as above.

¢ "idetect" IDetect, see sol.idetect

* "idetect_seq" Sequential IDetect, see sol.idetect_seq
¢ "not" Narrowest-Over-Threshold, see sol.not
 "tguh" Tail-Greedy Unbalanced Haar, see sol.tguh

* "wbs" Wild Binary Segmentation, see sol.wbs

* "wbs2" Wild Binary Segmentation 2, see sol.wbs2

e "all" All of the above

model.selection
A string or a vector of strings containing the name(s) of model selection method(s);
if individual methods are accessed via this option, default tuning parameters are
used. Alternatively, you can directly access each model selection method via
model . [method], see below. If both solution.path and model.selection
are unspecified, we return the output from the suggested combinations based on
their performance, which are: ("idetect”,”ic"), ("idetect_seq", "thresh"),
("not”,"ic"), ("tguh","1p"), ("wbs","ic") and ("wbs2","sd11"). If model.selection
is specified but solution.path is not, we return the output from the specified
model. selection methods combined with the suggested solution path methods
(respectively) as above.

* "ic" Strengthened Schwarz information criterion, see model.ic

4 breakfast

* "lp" Localised pruning, see model.lp

 "sdll" Steepest Drop to Low Levels method, see model.sdll
* "thresh" Thresholding, see model.thresh

 "all" All of the above

Details

Please also take a look at the vignette for tips/suggestions/examples of using the breakfast package.

Value

An S3 object of class breakfast. cpts, which contains the following fields:

* x Input vector x

» cptmodel.list A list containing S3 objects of class cptmodel; each contains the following
fields:

— solution.path The solution path method used

— model.selection The model selection method used to return the final change-point esti-
mators object

— no.of.cpt The number of estimated change-points in the piecewise-constant mean of the
vector cptpath.object$x

— cpts The locations of estimated change-points in the piecewise-constant mean of the vec-
tor cptpath.object$x. These are the end-points of the corresponding constant-mean
intervals

— est An estimate of the piecewise-constant mean of the vector cptpath.object$x; the
values are the sample means of the data (replicated a suitable number of times) between
each pair of consecutive detected change-points

References

A. Anastasiou & P. Fryzlewicz (2019). Detecting multiple generalized change-points by isolating
single ones. arXiv preprint arXiv:1901.10852.

R. Baranowski, Y. Chen & P. Fryzlewicz (2019). Narrowest-over-threshold detection of multiple
change points and change-point-like features. Journal of the Royal Statistical Society: Series B,
81(3), 649-672.

H. Cho & C. Kirch (2021) Two-stage data segmentation permitting multiscale change points, heavy
tails and dependence. arXiv preprint arXiv:1910.12486.

P. Fryzlewicz (2014). Wild binary segmentation for multiple change-point detection. The Annals of
Statistics, 42(6), 2243-2281.

P. Fryzlewicz (2020). Detecting possibly frequent change-points: Wild Binary Segmentation 2 and
steepest-drop model selection. To appear in Journal of the Korean Statistical Society.

P. Fryzlewicz (2018). Tail-greedy bottom-up data decompositions and fast multiple change-point
detection. The Annals of Statistics, 46(6B), 3390-3421.

model.ic 5

Examples

f <- rep(rep(c(@, 1), each = 50), 10)
x <= f + rnorm(length(f)) * .5

breakfast(x)
model.ic Estimating change-points in the piecewise-constant mean of a noisy
data sequence via the strengthened Schwarz information criterion
Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of a noisy data sequence via the sSIC (strengthened Schwarz information criterion) method.

Usage

model.ic(cptpath.object, alpha = 1.01, g.max = NULL)

Arguments

cptpath.object A solution-path object, returned by a sol.[name] routine. Note that the field
cptpath.object$x contains the input data sequence.

alpha The parameter associated with the sSIC. The default value is 1.01. Note that the
SIC is recovered when alpha = 1.

g.max The maximum number of change-points allowed. If nothing or NULL is provided,
the default value of min(100,n/1log(n)) (rounded to an integer) will be used.

Details

The model selection method for algorithms that produce nested solution path is described in "Wild
binary segmentation for multiple change-point detection", P. Fryzlewicz (2014), The Annals of
Statitics, 42: 2243-2281. The corresponding description for those that produce non-nested solution
set can be found in "Narrowest-over-threshold detection of multiple change points and change-
point-like features", R. Baranowski, Y. Chen and P. Fryzlewicz (2019), Journal of Royal Statistical
Society: Series B, 81(3), 649-672.

Value

An S3 object of class cptmodel, which contains the following fields:

solution.path The solution path method used to obtain cptpath.object

model.selection
The model selection method used to return the final change-point estimators
object, here its value is "ic"

no.of.cpt The number of estimated change-points in the piecewise-constant mean of the
vector cptpath.object$x

6 model.lp

cpts The locations of estimated change-points in the piecewise-constant mean of
the vector cptpath.object$x. These are the end-points of the corresponding
constant-mean intervals

est An estimate of the piecewise-constant mean of the vector cptpath.object$x;
the values are the sample means of the data (replicated a suitable number of
times) between each pair of consecutive detected change-points

References

P. Fryzlewicz (2014). Wild binary segmentation for multiple change-point detection. The Annals of
Statistics, 42(6), 2243-2281.

R. Baranowski, Y. Chen & P. Fryzlewicz (2019). Narrowest-over-threshold detection of multiple
change points and change-point-like features. Journal of the Royal Statistical Society: Series B,
81(3), 649-672.

See Also

sol.idetect, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

Examples

x <= c(rep(@, 100), rep(1, 100), rep(@, 100)) + rnorm(300)
model.ic(sol.wbs(x))
model.ic(sol.not(x))

model.lp Estimating change-points in the piecewise-constant mean of a noisy
data sequence via the localised pruning

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of a noisy data sequence via the localised pruning method, which performs a Schwarz criterion-
based model selection on the given candidate set in a localised way.

Usage

model. 1p(
cptpath.object,
min.d = 5,
penalty = c("log", "polynomial"),
pen.exp = 1.01,
do.thr = TRUE,
th.const = 0.5

model.Ip 7

Arguments

cptpath.object A solution-path object, returned by a sol.[name] routine. Note that the field
cptpath.object$x contains the input data sequence.

min.d A number specifying the minimal spacing between change points; min.d = 5 by
default
penalty A string specifying the type of penalty term to be used in Schwarz criterion;

possible values are:
e "log" Use penalty = log(length(x))"pen.exp
e "polynomial” Use penalty = length(x)*pen.exp
pen.exp Exponent for the penalty term (see penalty)

do.thr If do. thr = TRUE, mild threshoding on the CUSUM test statistics is performed
after internal standardisation step in order to "pre-prune down" the candidates

th.const A constant multiplied to sqrt(2*log(length(x))) to form a mild threshold;
if not supplied, a default value (0.5 a value suggested in Fryzlewicz (2020) is
used, see th.const in model.sdll

Details

Further information can be found in Cho and Kirch (2021).

Value

An S3 object of class cptmodel, which contains the following fields:

solution.path The solution path method used to obtain cptpath.object

model.selection
The model selection method used to return the final change-point estimators
object, here its value is "1p”

no.of.cpt The number of estimated change-points in the piecewise-constant mean of the
vector cptpath.object$x

cpts The locations of estimated change-points in the piecewise-constant mean of
the vector cptpath.object$x. These are the end-points of the corresponding
constant-mean intervals

est An estimate of the piecewise-constant mean of the vector cptpath.object$x;
the values are the sample means of the data (replicated a suitable number of
times) between each pair of consecutive detected change-points
References
H. Cho & C. Kirch (2021) Two-stage data segmentation permitting multiscale change points, heavy
tails and dependence. arXiv preprint arXiv:1910.12486.
See Also

sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

8 model.sdll

Examples

f <- rep(rep(c(@, 1), each = 50), 10)
x <= f + rnorm(length(f)) x .5
model.lp(sol.not(x))

model.sdll Estimating change-points in the piecewise-constant mean of a noisy
data sequence via the Steepest Drop to Low Levels method

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of a noisy data sequence via the Steepest Drop to Low Levels method.

Usage

model.sdl1(
cptpath.object,
sigma = stats::mad(diff(cptpath.object$x)/sqrt(2)),
universal = TRUE,
th.const = NULL,
th.const.min.mult = 0.3,
lambda = 0.9

Arguments

cptpath.object A solution-path object, returned by a sol. [name] routine. In particular, SDLL
model selection should work well when cptpath.object is an object returned
by the sol.wbs2 routine. Note that the field cptpath.object$x contains the
input data sequence.

sigma An estimate of the standard deviation of the noise in the data cptpath.object$x.
Can be a functional of cptpath.object$x or a specific value if known. The de-
fault is the Median Absolute Deviation of the vector diff (cptpath.object$x)/sqrt(2),
tuned to the Gaussian distribution. Note that model.sdl1l works particularly
well when the noise is i.i.d. Gaussian.

universal If TRUE, then the threshold that decides if there are any change-points is chosen
automatically, so that the probability of type-I error (i.e. indicating change-
points if there are none) is approximately 1 -alpha when the number M of in-
tervals drawn in the sol.wbs2 solution path routine is 1000. If FALSE, then
th.const must be specified.

th.const Only relevant if universal == FALSE; in that case a numerical value must be
provided. Used to create the threshold (applicable to the CUSUM magnitudes
stored in cptpath.object) that decides if there are any change-points in the
mean vector; that threshold is then th.const * sqrt(2 * log(n)) * sigma, where
n is the length of the data vector cptpath.object$x.

model.sdll

th.const.min.mult

lambda

Details

A fractional multiple of the threshold, used to decide the lowest magnitude of
CUSUMs from cptpath.object still considered by the SDLL model selection
criterion as potentially change-point-carrying.

Only relevant if universal == TRUE; can be set to 0.9 or 0.95. The approximate
probability of not detecting any change-points if the truth does not contain any,
when the number M of intervals drawn in the sol.wbs2 solution path routine is
1000.

The Steepest Drop to Low Levels method is described in "Detecting possibly frequent change-
points: Wild Binary Segmentation 2 and steepest-drop model selection", P. Fryzlewicz (2020),
Journal of the Korean Statistical Society, 49, 1027-1070.

Value

An S3 object of class cptmodel, which contains the following fields:

solution.path
model.selection

no.of.cpt

cpts

est

References

The solution path method used to obtain cptpath.object

The model selection method used to return the final change-point estimators
object, here its value is "sd11”

The number of estimated change-points in the piecewise-constant mean of the
vector cptpath.object$x

The locations of estimated change-points in the piecewise-constant mean of
the vector cptpath.object$x. These are the end-points of the corresponding
constant-mean intervals

An estimate of the piecewise-constant mean of the vector cptpath.object$x;
the values are the sample means of the data (replicated a suitable number of
times) between each pair of consecutive detected change-points

P. Fryzlewicz (2020). Detecting possibly frequent change-points: Wild Binary Segmentation 2 and
steepest-drop model selection. Journal of the Korean Statistical Society, 49, 1027-1070.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

Examples

f <- rep(rep(c(@, 1), each = 50), 10)
x <= f + rnorm(length(f))
model.sdll(sol.wbs2(x))

10 model.thresh

model. thresh Estimating change-points in the piecewise-constant mean of a noisy
data sequence via thresholding

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of a noisy data sequence via thresholding.

Usage

model. thresh(
cptpath.object,
sigma = stats::mad(diff(cptpath.object$x)/sqrt(2)),
th_const = 1.15

Arguments

cptpath.object A solution-path object, returned by a sol.[name] routine. Note that the field
sols.object$x contains the input data sequence.

sigma An estimate of the standard deviation of the noise in the data cptpath.object$x.
Can be a functional of cptpath.object$x or a specific value if known. The de-
fault is the Median Absolute Deviation of the vector diff (cptpath.object$x)/sqrt(2),
tuned to the Gaussian distribution. Note that model. thresh works particularly
well when the noise is i.i.d. Gaussian.

th_const A positive real number with default value equal to 1. It is used to define the
threshold for the detection process.

Value

An S3 object of class cptmodel, which contains the following fields:

solution.path The solution path method used to obtain cptpath.object

model .selection
The model selection method used to return the final change-point estimators
object, here its value is "thresh”

no.of.cpt The number of estimated change-points in the piecewise-constant mean of the
vector cptpath.object$x

cpts The locations of estimated change-points in the piecewise-constant mean of
the vector cptpath.object$x. These are the end-points of the corresponding
constant-mean intervals

est An estimate of the piecewise-constant mean of the vector cptpath.object$x;
the values are the sample means of the data (replicated a suitable number of
times) between each pair of consecutive detected change-points

plot.breakfast.cpts 11

See Also

sol.idetect_seq, sol.idetect_seq, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

Examples

f <- rep(rep(c(@, 1), each = 50), 10)
x <= f + rnorm(length(f))
model. thresh(sol.idetect_seq(x))

plot.breakfast.cpts Change-points estimated by breakfast

Description

Plot method for objects of class breakfast.cpts

Usage
S3 method for class 'breakfast.cpts'
plot(x, display.data = TRUE, ...)
Arguments
X a breakfast.cpts object

display.data ifdisplay.data = TRUE, change-point estimators are plotted against the data by
method. If display.data = FALSE, only the estimators are plotted; this option
is recommended when length(x) is large.

current not in use

Examples

f <- rep(rep(c(@, 1), each = 50), 5)

x <= f + rnorm(length(f)) x .5

plot(breakfast(x, solution.path = 'all', model.selection = 'all'), display.data = TRUE)
plot(breakfast(x), display.data = FALSE)

12 print.cptmodel

print.breakfast.cpts Change-points estimated by breakfast

Description

Print method for objects of class breakfast.cpts

Usage
S3 method for class 'breakfast.cpts'
print(x, by = c("method”, "estimator”), ...)
Arguments
X a breakfast.cpts object
by if by = "method’, change-point estimators are printed by method; if by = 'estimator’,

each change-point estimator is printed with the methods that detect it.

current not in use

Examples

f <- rep(rep(c(@, 1), each = 50), 5)

x <= f + rnorm(length(f)) x .5

print(breakfast(x, solution.path = 'all', model.selection = 'all'), by = 'method')
print(breakfast(x), by = 'estimator')

print.cptmodel Change-points estimated by solution path generation + model selec-
tion methods

Description

Print method for objects of class cptmodel

Usage
S3 method for class 'cptmodel'
print(x, ...)

Arguments
X a cptmodel object

current not in use

sol.idetect 13

Examples

f <- rep(rep(c(@, 1), each = 50), 5)
x <= f + rnorm(length(f)) x .5
print(model.ic(sol.idetect(x)))

sol.idetect Solution path generation via the Isolate-Detect method

Description

This function arranges all possible change-points in the mean of the input vector in the order of im-
portance, via the Isolate-Detect (ID) method. It is developed to be used with the sdll and information
criterion (ic) model selection rules.

Usage

sol.idetect(x, thr_ic = 0.9, points = 3)

Arguments
X A numeric vector containing the data to be processed.
thr_ic A positive real number with default value equal to 0.9. It is used to create the
solution path. The lower the value, the larger the solution path vector.
points A positive integer with default value equal to 3. It defines the distance between
two consecutive end- or start-points of the right- or left-expanding intervals, as
described in the Isolate-Detect methodology.
Details

The Isolate-Detect method and its algorithm is described in "Detecting multiple generalized change-

points by isolating single ones", A. Anastasiou & P. Fryzlewicz (2021), Metrika, https://doi.org/10.1007/s00184-
021-00821-6.

Value

An S3 object of class cptpath, which contains the following fields:
solutions.nested
TRUE, i.e., the change-point outputs are nested

solution.path Locations of possible change-points in the mean of x, arranged in decreasing
order of change-point importance

solution.set Empty list

X Input vector x

14 sol.idetect_seq

cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-
points of the detection intervals of the corresponding possible change-point lo-
cation in the third column. The fourth column is a measure of strength of the
corresponding possible change-point. The order of the rows is the same as the
order returned in solution.path

method The method used, which has value "idetect" here

References
A. Anastasiou & P. Fryzlewicz (2021). Detecting multiple generalized change-points by isolating
single ones. Metrika, https://doi.org/10.1007/s00184-021-00821-6.

See Also

sol.idetect_seq, sol.not, sol.wbs, sol.wbhs2, sol.tguh,

Examples

r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.idetect(r3)

sol.idetect_seq Solution path generation using the sequential approach of the Isolate-
Detect method

Description

This function uses the Isolate-Detect method in its original sequential way in order to create the
solution path. It is developed to be used with the thresholding model selection rule.

Usage

sol.idetect_seq(x, points = 3)

Arguments
X A numeric vector containing the data to be processed
points A positive integer with default value equal to 3. It defines the distance between
two consecutive end- or start-points of the right- or left-expanding intervals, as
described in the Isolate-Detect methodology.
Details

The Isolate-Detect method and its algorithm is described in "Detecting multiple generalized change-
points by isolating single ones", A. Anastasiou & P. Fryzlewicz (2021), Metrika, https://doi.org/10.1007/s00184-
021-00821-6.

sol.not 15

Value
An S3 object of class cptpath, which contains the following fields:

solutions.nested
TRUE, i.e., the change-point outputs are nested

solution.path Locations of possible change-points in the mean of x, arranged in decreasing
order of change-point importance

solution.set Empty list
X Input vector x

cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-
points of the detection intervals of the corresponding possible change-point lo-
cation in the third column. The fourth column is a measure of strength of the
corresponding possible change-point. The order of the rows is the same as the
order returned in solution.path

method The method used, which has value "idetect_seq" here

References
A. Anastasiou & P. Fryzlewicz (2021). Detecting multiple generalized change-points by isolating
single ones. Metrika, https://doi.org/10.1007/s00184-021-00821-6.

See Also

sol.idetect, sol.not, sol.wbs, sol.wbhs2, sol.tguh,

Examples

r3 <- rnorm(1000) + c(rep(@,300), rep(2,200), rep(-4,300), rep(0,200))
sol.idetect_seq(r3)

sol.not Solution path generation via the Narrowest-Over-Threshold method

Description
This function arranges all possible change-points in the mean of the input vector in the order of
importance, via the Narrowest-Over-Threshold (NOT) method.

Usage

sol.not(x, M = 10000, systematic.intervals = TRUE, seed = NULL)

16 sol.not

Arguments
X A numeric vector containing the data to be processed
M The maximum number of all data sub-samples at the beginning of the algorithm.

The default is M = 10000

systematic.intervals
When drawing the sub-intervals, whether to use a systematic (and fixed) or ran-
dom scheme. The default is systematic.intervals = TRUE

seed If a random scheme is used, a random seed can be provided so that every time
the same sets of random sub-intervals would be drawn. The default is seed =
NULL, which means that this option is not taken

Details

The Narrowest-Over-Threshold method and its algorithm is described in "Narrowest-over-threshold
detection of multiple change points and change-point-like features", R. Baranowski, Y. Chen and P.
Fryzlewicz (2019), Journal of Royal Statistical Society: Series B, 81(3), 649-672.

Value
An S3 object of class cptpath, which contains the following fields:
solutions.nested
FALSE, i.e., the change-point outputs are not nested
solution.path Empty list

solution.set Locations of possible change-points in the mean of x for each threshold level (in
the decreasing order), arranged in the form of a list of lists
solution.set.th
A list that contains threshold levels corresponding to the detections in solution.set

X Input vector x
M Input parameter M
cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-

points of the detection intervals of the corresponding possible change-point loca-
tion in the third column resulted from applying NOT to all threshold levels. The
fourth column is a measure of strength of the corresponding possible change-
point. The order of the rows reflect the strength of each detection in decreasing
order. To avoid repetition, each possible location would appear at most once in
the matrix (with the sub-interval that carries its highest possible strength)

method The method used, which has value "not" here

References

R. Baranowski, Y. Chen & P. Fryzlewicz (2019). Narrowest-over-threshold detection of multiple
change points and change-point-like features. Journal of the Royal Statistical Society: Series B,
81(3), 649-672.

sol.tguh 17

See Also

sol.idetect, sol. tguh, sol.wbs, sol.wbs2

Examples

r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.not(r3)

sol.tguh Solution path generation via the Tail-Greedy Unbalanced Haar
method

Description

This function arranges all possible change-points in the mean of the input vector in the order of
importance, via the Tail-Greedy Unbalanced Haar method.

Usage
sol.tguh(x, p = 0.01)

Arguments
X A numeric vector containing the data to be processed
p Specifies the number of region pairs merged in each pass through the data, as
the proportion of all remaining region pairs. The defaultis p = 0. 01
Details

The Tail-Greedy Unbalanced Haar decomposition algorithm is described in "Tail-greedy bottom-up
data decompositions and fast multiple change-point detection", P. Fryzlewicz (2018), The Annals
of Statistics, 46, 3390-3421.

Value
An S3 object of class cptpath, which contains the following fields:

solutions.nested
TRUE, i.e., the change-point outputs are nested

solution.path Locations of possible change-points in the mean of x, arranged in decreasing
order of change-point importance

solution.set Empty list
X Input vector x

M Input parameter M

18 sol.wbs

cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-
points of the detection intervals of the corresponding possible change-point lo-
cation in the third column. The fourth column is a measure of strength of the
corresponding possible change-point. The order of the rows is the same as the
order returned in solution.path

method The method used, which has value "tguh" here

References
P. Fryzlewicz (2018). Tail-greedy bottom-up data decompositions and fast multiple change-point
detection. The Annals of Statistics, 46, 3390-3421.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.wbs, sol.wbs2

Examples

r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.tguh(r3)

sol.wbs Solution path generation via the Wild Binary Segmentation method

Description
This function arranges all possible change-points in the mean of the input vector in the order of
importance, via the Wild Binary Segmentation (WBS) method.

Usage

sol.wbs(x, M = 10000, systematic.intervals = TRUE, seed = NULL)

Arguments
X A numeric vector containing the data to be processed
M The maximum number of all data sub-samples at the beginning of the algorithm.

The defaultis M = 10000
systematic.intervals

When drawing the sub-intervals, whether to use a systematic (and fixed) or ran-
dom scheme. The default is systematic.intervals = TRUE

seed If a random scheme is used, a random seed can be provided so that every time
the same sets of random sub-intervals would be drawn. The default is seed =
NULL, which means that this option is not taken

sol.wbs2 19

Details

The Wild Binary Segmentation algorithm is described in "Wild binary segmentation for multiple
change-point detection”, P. Fryzlewicz (2014), The Annals of Statistics, 42: 2243-2281.

Value

An S3 object of class cptpath, which contains the following fields:
solutions.nested
TRUE, i.e., the change-point outputs are nested

solution.path Locations of possible change-points in the mean of x, arranged in decreasing
order of change-point importance

solution.set Empty list

X Input vector x
M Input parameter M
cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-

points of the detection intervals of the corresponding possible change-point lo-
cation in the third column. The fourth column is a measure of strength of the
corresponding possible change-point. The order of the rows is the same as the
order returned in solution.path

method The method used, which has value "wbs" here

References
P. Fryzlewicz (2014). Wild binary segmentation for multiple change-point detection. The Annals of
Statistics, 42(6), 2243-2281.

See Also

sol.idetect, sol.not, sol.tguh, sol.wbs2

Examples

r3 <- rnorm(1000) + c(rep(@,300), rep(2,200), rep(-4,300), rep(0,200))
sol.wbs(r3)

sol.wbs2 Solution path generation via the Wild Binary Segmentation 2 method

Description
This function arranges all possible change-points in the mean of the input vector in the order of
importance, via the Wild Binary Segmentation 2 method.

Usage

sol.wbs2(x, M = 1000, systematic.intervals = TRUE)

20 sol.wbs2

Arguments

X A numeric vector containing the data to be processed.

The maximum number of data sub-samples drawn at each recursive stage of the
algorithm. The default is M = 1000. Setting M = @ executes the standard binary
segmentation.

systematic.intervals
Whether data sub-intervals for CUSUM computation are drawn systematically
(TRUE; start- and end-points taken from an approximately equispaced grid) or
randomly (FALSE; obtained uniformly with replacement). The default is TRUE.

Details

The Wild Binary Segmentation 2 algorithm is described in "Detecting possibly frequent change-
points: Wild Binary Segmentation 2 and steepest-drop model selection”, P. Fryzlewicz (2020),
Journal of the Korean Statistical Society, 49, 1027-1070.

Value

An S3 object of class cptpath, which contains the following fields:
solutions.nested
TRUE, i.e., the change-point outputs are nested

fmax

solution.path Locations of possible change-points in the mean of x, arranged in decreasing
order of change-point importance

solution.set Empty list

X Input vector x
M Input parameter M
cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-

points of the detection intervals of the corresponding possible change-point lo-
cation in the third column. The fourth column is a measure of strength of the
corresponding possible change-point. The order of the rows is the same as the
order returned in solution.path

method The method used, which has value "wbs2" here
References

P. Fryzlewicz (2020). Detecting possibly frequent change-points: Wild Binary Segmentation 2 and
steepest-drop model selection. Journal of the Korean Statistical Society, 49, 1027-1070.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol. tguh, sol.wbs

Examples

r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.wbs2(r3)

Index

breakfast, 2,3,6,7,9, 11
breakfast-package, 2

model.ic, 2, 3,5
model.lp, 2,4, 6
model.sdll, 2,4, 7,8
model. thresh, 2, 4, 10

plot.breakfast.cpts, 11
print.breakfast.cpts, 12
print.cptmodel, 12

sol.idetect, 2, 3,6, 7,9, 13, 15, 17-20

sol.idetect_seq, 2, 3,7,9,11, 14,14, 18, 20

sol.not, 2, 3,6,7,9,11, 14, 15,15, 18-20

sol.tguh, 2, 3,6,7,9,11,14,15,17,17, 19,
20

sol.wbs, 2, 3,6,7,9,11,14, 15,17, 18, 18, 20

sol.wbs2,2,3,6,7,9,11,14,15,17-19, 19

21

	breakfast-package
	breakfast
	model.ic
	model.lp
	model.sdll
	model.thresh
	plot.breakfast.cpts
	print.breakfast.cpts
	print.cptmodel
	sol.idetect
	sol.idetect_seq
	sol.not
	sol.tguh
	sol.wbs
	sol.wbs2
	Index

