The brglm2 R package provides bracl()
which is a wrapper of brglmFit()
for fitting adjacent category models for ordinal responses using either maximum likelihood or maximum penalized likelihood or any of the various bias reduction methods described in brglmFit()
. There is a formal equivalence between adjacent category logit models for ordinal responses and multinomial logistic regression models (see, e.g. the Multinomial logistic regression using brglm2 vignette and the brmultinom()
function). bracl()
utilizes that equivalence and fits the corresponding Poisson log-linear model, by appropriately re-scaling the Poisson means to match the multinomial totals (a.k.a. the “Poisson trick”). The mathematical details and algorithm on using the Poisson trick for mean-bias reduction are given in I. Kosmidis and Firth (2011).
If you found this vignette or brglm2, in general, useful, please consider citing brglm2 and the associated paper. You can find information on how to do this by typing citation("brglm2")
.
The stemcell
data set ships with brglm2. Agresti (2015, sec. 4.1) provides a detailed description of the variables recorded in this data set (see also ?stemcell
).
library("brglm2")
data("stemcell", package = "brglm2")
<- within(stemcell, religion <- as.numeric(religion)) stem
The following chunk of code fits an adjacent category logit model with proportional odds and reproduces Agresti (2010, Table 4.2). Note that the intercept parameters are different because Agresti (2010, Table 4.2) uses different contrasts for the intercept parameters.
<- research ~ religion + gender
stem_formula <- bracl(stem_formula, weights = frequency, data = stem,
stemcells_ml parallel = TRUE, type = "ML")
summary(stemcells_ml)
#> Call:
#> bracl(formula = stem_formula, data = stem, weights = frequency,
#> parallel = TRUE, type = "ML")
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> definitely:(Intercept) -0.9509 0.1426 -6.67 2.6e-11 ***
#> probably:(Intercept) 0.5573 0.1451 3.84 0.00012 ***
#> probably not:(Intercept) -0.1066 0.1648 -0.65 0.51776
#> religion 0.2668 0.0479 5.57 2.5e-08 ***
#> genderfemale -0.0141 0.0767 -0.18 0.85395
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual Deviance: 2033.208
#> Log-likelihood: -1016.604
#> AIC: 2043.208
#>
#>
#> Type of estimator: ML (maximum likelihood)
#> Number of Fisher Scoring iterations: 2
stemcells_ml
is an object inheriting from
class(stemcells_ml)
#> [1] "bracl" "brmultinom" "brglmFit" "glm"
brglm2 implements print
, coef
, fitted
, predict
, summary
, vcov
and logLik
methods for
We can check if a model with non-proportional odds fits the data equally well by fitting it and carrying out a likelihood ration test.
<- bracl(stem_formula, weights = frequency, data = stemcell,
stemcells_ml_full parallel = FALSE, type = "ML")
summary(stemcells_ml_full)
#> Call:
#> bracl(formula = stem_formula, data = stemcell, weights = frequency,
#> parallel = FALSE, type = "ML")
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> definitely:(Intercept) -0.37499 0.12692 -2.95 0.0031 **
#> probably:(Intercept) 0.99079 0.15514 6.39 1.7e-10 ***
#> probably not:(Intercept) 0.45775 0.21225 2.16 0.0310 *
#> definitely:religion.L 0.59389 0.14794 4.01 6.0e-05 ***
#> probably:religion.L 0.36457 0.18481 1.97 0.0485 *
#> probably not:religion.L -0.00922 0.24461 -0.04 0.9699
#> definitely:religion.Q 0.23646 0.14713 1.61 0.1080
#> probably:religion.Q -0.11603 0.18061 -0.64 0.5206
#> probably not:religion.Q -0.16547 0.25085 -0.66 0.5095
#> definitely:genderfemale -0.12598 0.16817 -0.75 0.4538
#> probably:genderfemale 0.18153 0.20877 0.87 0.3846
#> probably not:genderfemale -0.16828 0.28097 -0.60 0.5492
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual Deviance: 2023.391
#> Log-likelihood: -1011.696
#> AIC: 2047.391
#>
#>
#> Type of estimator: ML (maximum likelihood)
#> Number of Fisher Scoring iterations: 3
The value of the log likelihood ratio statistic here is
<- deviance(stemcells_ml) - deviance(stemcells_ml_full))
(lrt #> [1] 9.816886
and has an asymptotic chi-squared distribution with
<- df.residual(stemcells_ml) - df.residual(stemcells_ml_full))
(df1 #> [1] 7
The p-value from testing the hypothesis that stemcells_ml_full
is an as good fit as stemcells_ml
is
pchisq(lrt, df1, lower.tail = FALSE)
#> [1] 0.19919
hence, the simpler model is found to be as adequate as the full model is.
We can use bracl()
to fit the adjacent category model using estimators with smaller mean or median bias. For mean bias reduction we do
summary(update(stemcells_ml, type = "AS_mean"))
#> Call:
#> bracl(formula = stem_formula, data = stem, weights = frequency,
#> parallel = TRUE, type = "AS_mean")
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> definitely:(Intercept) -0.9456 0.1424 -6.64 3.1e-11 ***
#> probably:(Intercept) 0.5562 0.1450 3.84 0.00012 ***
#> probably not:(Intercept) -0.1097 0.1644 -0.67 0.50453
#> religion 0.2653 0.0478 5.55 2.8e-08 ***
#> genderfemale -0.0138 0.0766 -0.18 0.85670
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual Deviance: 2033.215
#> Log-likelihood: -1016.608
#> AIC: 2043.215
#>
#>
#> Type of estimator: AS_mean (mean bias-reducing adjusted score equations)
#> Number of Fisher Scoring iterations: 4
and for median
summary(update(stemcells_ml, type = "AS_median"))
#> Call:
#> bracl(formula = stem_formula, data = stem, weights = frequency,
#> parallel = TRUE, type = "AS_median")
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> definitely:(Intercept) -0.9481 0.1425 -6.65 2.8e-11 ***
#> probably:(Intercept) 0.5574 0.1450 3.84 0.00012 ***
#> probably not:(Intercept) -0.1082 0.1646 -0.66 0.51105
#> religion 0.2659 0.0478 5.56 2.7e-08 ***
#> genderfemale -0.0140 0.0766 -0.18 0.85522
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual Deviance: 2033.21
#> Log-likelihood: -1016.605
#> AIC: 2043.21
#>
#>
#> Type of estimator: AS_median (median bias-reducing adjusted score equations)
#> Number of Fisher Scoring iterations: 4
The estimates from mean and median bias reduction are similar to the maximum likelihood ones, indicating that estimation bias is not a major issue here.
We can predict the category probabilities using the predict()
method
predict(stemcells_ml, type = "probs")
#> definitely probably probably not definitely not
#> 1 0.2138134 0.4297953 0.1911925 0.16519872
#> 2 0.2931825 0.4513256 0.1537533 0.10173853
#> 3 0.3784551 0.4461609 0.1163995 0.05898444
#> 4 0.2177773 0.4316255 0.1893146 0.16128261
#> 5 0.2975956 0.4516958 0.1517219 0.09898673
#> 6 0.3830297 0.4452227 0.1145262 0.05722143
#> 7 0.2138134 0.4297953 0.1911925 0.16519872
#> 8 0.2931825 0.4513256 0.1537533 0.10173853
#> 9 0.3784551 0.4461609 0.1163995 0.05898444
#> 10 0.2177773 0.4316255 0.1893146 0.16128261
#> 11 0.2975956 0.4516958 0.1517219 0.09898673
#> 12 0.3830297 0.4452227 0.1145262 0.05722143
#> 13 0.2138134 0.4297953 0.1911925 0.16519872
#> 14 0.2931825 0.4513256 0.1537533 0.10173853
#> 15 0.3784551 0.4461609 0.1163995 0.05898444
#> 16 0.2177773 0.4316255 0.1893146 0.16128261
#> 17 0.2975956 0.4516958 0.1517219 0.09898673
#> 18 0.3830297 0.4452227 0.1145262 0.05722143
#> 19 0.2138134 0.4297953 0.1911925 0.16519872
#> 20 0.2931825 0.4513256 0.1537533 0.10173853
#> 21 0.3784551 0.4461609 0.1163995 0.05898444
#> 22 0.2177773 0.4316255 0.1893146 0.16128261
#> 23 0.2975956 0.4516958 0.1517219 0.09898673
#> 24 0.3830297 0.4452227 0.1145262 0.05722143
?brglmFit
and ?brglm_control
provide descriptions of the various bias reduction methods supported in brglm2. The iteration
vignette describes the iteration and gives the mathematical details for the bias-reducing adjustments to the score functions for generalized linear models.
If you found this vignette or brglm2, in general, useful, please consider citing brglm2 and the associated paper. You can find information on how to do this by typing citation("brglm2")
.