library(brolgar)
When we first get a longitudinal dataset, you need to understand some of its structure. This vignette demonstrates part of the process of understanding your new longitudinal data.
To use brolgar
with your work, you should convert your longitudinal data into a time series tsibble
using the tsibble
package. To do so, you need to identify the unique identifying key
, and time index
. For example:
<- as_tsibble(wages,
wages key = id,
index = xp,
regular = FALSE)
To learn more about longitudinal data as time series, see the vignette: Longitudinal Data Structures.
When you first get a dataset, you need to get an overall sense of what is in the data.
We can kind the number of keys using n_keys()
:
n_keys(wages)
#> [1] 888
Note that this is a single number, in this case, we have 888 observations.
However, we might want to know how many observations we have for each individual. If we want the number of observations in each variable, then we can use n_obs()
with features()
.
%>%
wages features(ln_wages, n_obs)
#> # A tibble: 888 × 2
#> id n_obs
#> <int> <int>
#> 1 31 8
#> 2 36 10
#> 3 53 8
#> 4 122 10
#> 5 134 12
#> 6 145 9
#> 7 155 11
#> 8 173 6
#> 9 206 3
#> 10 207 11
#> # … with 878 more rows
A plot of this can help provide better understanding of the distribution of observations.
library(ggplot2)
%>%
wages features(ln_wages, n_obs) %>%
ggplot(aes(x = n_obs)) +
geom_bar()
add_n_obs()
You can add information about the number of observations for each key with add_n_obs()
:
%>% add_n_obs()
wages #> # A tsibble: 6,402 x 10 [!]
#> # Key: id [888]
#> id xp n_obs ln_wages ged xp_since_ged black hispanic high_grade
#> <int> <dbl> <int> <dbl> <int> <dbl> <int> <int> <int>
#> 1 31 0.015 8 1.49 1 0.015 0 1 8
#> 2 31 0.715 8 1.43 1 0.715 0 1 8
#> 3 31 1.73 8 1.47 1 1.73 0 1 8
#> 4 31 2.77 8 1.75 1 2.77 0 1 8
#> 5 31 3.93 8 1.93 1 3.93 0 1 8
#> 6 31 4.95 8 1.71 1 4.95 0 1 8
#> 7 31 5.96 8 2.09 1 5.96 0 1 8
#> 8 31 6.98 8 2.13 1 6.98 0 1 8
#> 9 36 0.315 10 1.98 1 0.315 0 0 9
#> 10 36 0.983 10 1.80 1 0.983 0 0 9
#> # … with 6,392 more rows, and 1 more variable: unemploy_rate <dbl>
Which you can then use to filter()
observations:
library(dplyr)
%>%
wages add_n_obs() %>%
filter(n_obs > 3)
#> # A tsibble: 6,145 x 10 [!]
#> # Key: id [764]
#> id xp n_obs ln_wages ged xp_since_ged black hispanic high_grade
#> <int> <dbl> <int> <dbl> <int> <dbl> <int> <int> <int>
#> 1 31 0.015 8 1.49 1 0.015 0 1 8
#> 2 31 0.715 8 1.43 1 0.715 0 1 8
#> 3 31 1.73 8 1.47 1 1.73 0 1 8
#> 4 31 2.77 8 1.75 1 2.77 0 1 8
#> 5 31 3.93 8 1.93 1 3.93 0 1 8
#> 6 31 4.95 8 1.71 1 4.95 0 1 8
#> 7 31 5.96 8 2.09 1 5.96 0 1 8
#> 8 31 6.98 8 2.13 1 6.98 0 1 8
#> 9 36 0.315 10 1.98 1 0.315 0 0 9
#> 10 36 0.983 10 1.80 1 0.983 0 0 9
#> # … with 6,135 more rows, and 1 more variable: unemploy_rate <dbl>
We can also look at the distance between experience, to understand what the distribution of experience is
<- wages %>%
wages_xp_range features(xp,
feat_ranges)
ggplot(wages_xp_range,
aes(x = range_diff)) +
geom_histogram()
We can then explore the range of experience to see what the most common experience is
%>%
wages_xp_range count(range_diff) %>%
mutate(prop = n / sum(n))
#> # A tibble: 829 × 3
#> range_diff n prop
#> <dbl> <int> <dbl>
#> 1 0 38 0.0428
#> 2 0.0150 1 0.00113
#> 3 0.068 1 0.00113
#> 4 0.137 1 0.00113
#> 5 0.153 1 0.00113
#> 6 0.185 1 0.00113
#> 7 0.22 1 0.00113
#> 8 0.225 1 0.00113
#> 9 0.231 1 0.00113
#> 10 0.26 1 0.00113
#> # … with 819 more rows
To avoid staring at a plate of spaghetti, you can look at a random subset of the data. Brolgar provides some intuitive functions to help with this.
sample_n_keys()
In dplyr
, you can use sample_n()
to sample n
observations. Similarly, with brolgar
, you can take a random sample of n
keys using sample_n_keys()
:
set.seed(2019-7-15-1300)
%>%
wages sample_n_keys(size = 10) %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id)) +
geom_line()
You can combine sample_n_keys()
with add_n_obs()
and filter()
to only show keys with many observations:
library(dplyr)
%>%
wages add_n_obs() %>%
filter(n_obs > 5) %>%
sample_n_keys(size = 10) %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id)) +
geom_line()
(Note: sample_frac_keys()
, which samples a fraction of available keys.)
Now, how do you break these into many plots?
facet_strata
brolgar
provides some clever facets to help make it easier to explore your data. facet_strata()
splits the data into 12 groups by default:
set.seed(2019-07-23-1936)
library(ggplot2)
ggplot(wages,
aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
facet_strata()
But you could ask it to split the data into a more groups
set.seed(2019-07-25-1450)
library(ggplot2)
ggplot(wages,
aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
facet_strata(n_strata = 20)
And what if you want to show only a few samples per facet?
facet_sample
facet_sample()
allows you to specify the number of keys per facet, and the number of facets with n_per_facet
and n_facets
. It splits the data into 12 facets with 3 per facet by default:
set.seed(2019-07-23-1937)
ggplot(wages,
aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
facet_sample()
But you can specify your own number:
set.seed(2019-07-25-1533)
ggplot(wages,
aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
facet_sample(n_per_facet = 3,
n_facets = 20)
Under the hood, facet_sample()
and facet_strata()
use sample_n_keys()
and stratify_keys()
.
You can fit a linear model for each key using key_slope()
. This returns the intercept and slope estimate for each key, given some linear model formula. We can get the number of observations, and slope information for each individual to identify those that are decreasing over time.
key_slope(wages,ln_wages ~ xp)
#> # A tibble: 888 × 3
#> id .intercept .slope_xp
#> <int> <dbl> <dbl>
#> 1 31 1.41 0.101
#> 2 36 2.04 0.0588
#> 3 53 2.29 -0.358
#> 4 122 1.93 0.0374
#> 5 134 2.03 0.0831
#> 6 145 1.59 0.0469
#> 7 155 1.66 0.0867
#> 8 173 1.61 0.100
#> 9 206 1.73 0.180
#> 10 207 1.62 0.0884
#> # … with 878 more rows
We can then join these summaries back to the data:
library(dplyr)
<- key_slope(wages,ln_wages ~ xp) %>%
wages_slope left_join(wages, by = "id")
wages_slope#> # A tibble: 6,402 × 11
#> id .intercept .slope_xp ln_wages xp ged xp_since_ged black hispanic
#> <int> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <int> <int>
#> 1 31 1.41 0.101 1.49 0.015 1 0.015 0 1
#> 2 31 1.41 0.101 1.43 0.715 1 0.715 0 1
#> 3 31 1.41 0.101 1.47 1.73 1 1.73 0 1
#> 4 31 1.41 0.101 1.75 2.77 1 2.77 0 1
#> 5 31 1.41 0.101 1.93 3.93 1 3.93 0 1
#> 6 31 1.41 0.101 1.71 4.95 1 4.95 0 1
#> 7 31 1.41 0.101 2.09 5.96 1 5.96 0 1
#> 8 31 1.41 0.101 2.13 6.98 1 6.98 0 1
#> 9 36 2.04 0.0588 1.98 0.315 1 0.315 0 0
#> 10 36 2.04 0.0588 1.80 0.983 1 0.983 0 0
#> # … with 6,392 more rows, and 2 more variables: high_grade <int>,
#> # unemploy_rate <dbl>
And highlight those individuals with a negative slope using gghighlight
:
library(gghighlight)
%>%
wages_slope as_tibble() %>% # workaround for gghighlight + tsibble
ggplot(aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
gghighlight(.slope_xp < 0)
keys_near
We could take our slope information and find those individuals who are representative of the min, median, maximum, etc of growth, using keys_near()
:
%>%
wages_slope keys_near(key = id,
var = .slope_xp,
funs = l_three_num)
#> # A tibble: 13 × 5
#> id .slope_xp stat stat_value stat_diff
#> <int> <dbl> <fct> <dbl> <dbl>
#> 1 6863 0.0452 med 0.0452 0
#> 2 6863 0.0452 med 0.0452 0
#> 3 6863 0.0452 med 0.0452 0
#> 4 6863 0.0452 med 0.0452 0
#> 5 6863 0.0452 med 0.0452 0
#> 6 6863 0.0452 med 0.0452 0
#> 7 6863 0.0452 med 0.0452 0
#> 8 6863 0.0452 med 0.0452 0
#> 9 7918 -4.58 min -4.58 0
#> 10 7918 -4.58 min -4.58 0
#> 11 7918 -4.58 min -4.58 0
#> 12 12455 13.2 max 13.2 0
#> 13 12455 13.2 max 13.2 0
%>%
wages_slope keys_near(key = id,
var = .slope_xp,
funs = l_three_num) %>%
left_join(wages, by = "id") %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id,
colour = stat)) +
geom_line()
You can extract features
of longitudinal data using the features
function, from fabletools
. You can, for example, calculate the minimum of a given variable for each key by providing a named list like so:
%>%
wages features(ln_wages,
list(min = min))
#> # A tibble: 888 × 2
#> id min
#> <int> <dbl>
#> 1 31 1.43
#> 2 36 1.80
#> 3 53 1.54
#> 4 122 0.763
#> 5 134 2.00
#> 6 145 1.48
#> 7 155 1.54
#> 8 173 1.56
#> 9 206 2.03
#> 10 207 1.58
#> # … with 878 more rows
brolgar
provides some sets of features, which start with feat_
.
For example, the five number summary is feat_five_num
:
%>%
wages features(ln_wages, feat_five_num)
#> # A tibble: 888 × 6
#> id min q25 med q75 max
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 31 1.43 1.48 1.73 2.02 2.13
#> 2 36 1.80 1.97 2.32 2.59 2.93
#> 3 53 1.54 1.58 1.71 1.89 3.24
#> 4 122 0.763 2.10 2.19 2.46 2.92
#> 5 134 2.00 2.28 2.36 2.79 2.93
#> 6 145 1.48 1.58 1.77 1.89 2.04
#> 7 155 1.54 1.83 2.22 2.44 2.64
#> 8 173 1.56 1.68 2.00 2.05 2.34
#> 9 206 2.03 2.07 2.30 2.45 2.48
#> 10 207 1.58 1.87 2.15 2.26 2.66
#> # … with 878 more rows
Or finding those whose values only increase or decrease with feat_monotonic
%>%
wages features(ln_wages, feat_monotonic)
#> # A tibble: 888 × 5
#> id increase decrease unvary monotonic
#> <int> <lgl> <lgl> <lgl> <lgl>
#> 1 31 FALSE FALSE FALSE FALSE
#> 2 36 FALSE FALSE FALSE FALSE
#> 3 53 FALSE FALSE FALSE FALSE
#> 4 122 FALSE FALSE FALSE FALSE
#> 5 134 FALSE FALSE FALSE FALSE
#> 6 145 FALSE FALSE FALSE FALSE
#> 7 155 FALSE FALSE FALSE FALSE
#> 8 173 FALSE FALSE FALSE FALSE
#> 9 206 TRUE FALSE FALSE TRUE
#> 10 207 FALSE FALSE FALSE FALSE
#> # … with 878 more rows
You can join these features back to the data with left_join
, like so:
%>%
wages features(ln_wages, feat_monotonic) %>%
left_join(wages, by = "id") %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
gghighlight(increase)