An implementation of the Correlated Pseudo-Marginal Sampler.
Install from CRAN by typing
install.packages("cPseudoMaRg")
in an R console. Alternatively, install from Github by typing
devtools::install_github("tbrown122387/cpm")
Another Random Effects Model that mimics the example in the above paper. They estimate a mean parameter, whereas the unknown parameters here are variance parameters. Also, this model’s likelihood is nonidentifiable.
# y | x, theta ~ Normal(x, SSy)
# x | theta ~ Normal(0, SSx)
# theta = (SSy + SSx, SS_x)
# p(theta | y) propto p(y | theta)p(theta)
# approx p(y | theta) with mean( p(y | xi, theta) ) where xi ~ p(xi | theta)
# real data
realxVar <- .2
realyVar <- .3
realTheta1 <- realxVar + realyVar
realTheta2 <- realxVar
realParams <- c(realTheta1, realTheta2)
numObs <- 10
realX <- rnorm(numObs, mean = 0, sd = sqrt(realxVar))
realY <- rnorm(numObs, mean = realX, sd = sqrt(realyVar))
# tuning params
numImportanceSamps <- 1000
numMCMCIters <- 10000
randomWalkScale <- 1.5
recordEveryTh <- 1
myLLApproxEval <- function(y, thetaProposal, uProposal){
if( (thetaProposal[1] > thetaProposal[2]) & (all(thetaProposal > 0))){
xSamps <- uProposal*sqrt(thetaProposal[2])
logCondLikes <- sapply(xSamps,
function(xsamp) {
sum(dnorm(y,
xsamp,
sqrt(thetaProposal[1] - thetaProposal[2]),
log = T)) })
m <- max(logCondLikes)
log(sum(exp(logCondLikes - m))) + m - log(length(y))
}else{
-Inf
}
}
sampler <- makeCPMSampler(
paramKernSamp = function(params){
return(params + rnorm(2)*randomWalkScale)
},
logParamKernEval = function(oldTheta, newTheta){
dnorm(newTheta[1], oldTheta[1], sd = randomWalkScale, log = TRUE)
+ dnorm(newTheta[2], oldTheta[2], sd = randomWalkScale, log = TRUE)
},
logPriorEval = function(theta){
if( (theta[1] > theta[2]) & all(theta > 0)){
0
}else{
-Inf
}
},
logLikeApproxEval = myLLApproxEval,
realY, numImportanceSamps, numMCMCIters, .99, recordEveryTh
)
res <- sampler(realParams)
# look at output
print(res)
plot(res)