Package 'caretForecast'

May 3, 2022
Title Time Series Forecasting Using Caret Infrastructure
Version 0.0.3
Description Recursive time series forecast using Caret infrastructure. The models are selected based on time series cross-validation and forecasting is done recursively.
License GPL (>= 3)
<pre>URL https://github.com/Akai01/caretForecast</pre>
BugReports https://github.com/Akai 01 /caretForecast/issues Depends R (>= 3.2.0)
Imports forecast (>= 8.15), caret (>= 6.0.88), magrittr (>= 2.0.1), methods (>= 4.1.1)
Suggests Cubist (>= 0.3.0), knitr (>= 1.29), testthat (>= 2.3.2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
NeedsCompilation no
Author Resul Akay [aut, cre]
Maintainer Resul Akay <resulakay1@gmail.com></resulakay1@gmail.com>
Repository CRAN
Date/Publication 2022-05-02 22:22:03 UTC
R topics documented:
ARml forecast forecast.ARml get_var_imp retail retail_wide split_ts suggested_methods 1

2 ARml

Index 11

ARml

Autoregressive forecasting using various Machine Learning models.

Description

Autoregressive forecasting using various Machine Learning models.

Usage

```
ARml(
 у,
 max_lag = 5,
 xreg = NULL,
  caret_method = "cubist",
 metric = "RMSE",
 pre_process = NULL,
  cv = TRUE,
  cv_horizon = 4,
  initial_window = length(y) - max_lag - cv_horizon * 2,
  fixed_window = FALSE,
  verbose = TRUE,
  seasonal = TRUE,
  K = frequency(y)/2,
  tune_grid = NULL,
  lambda = "auto",
  BoxCox_method = c("guerrero", "loglik"),
  BoxCox_lower = -1,
  BoxCox\_upper = 2,
 BoxCox_biasadj = FALSE,
 BoxCox_fvar = NULL,
  allow_parallel = FALSE,
)
```

Arguments

У	A univariate time series object.
max_lag	Maximum value of lag.
xreg	Optional. A numerical vector or matrix of external regressors, which must have the same number of rows as y. (It should not be a data frame.).
caret_method	A string specifying which classification or regression model to use. Possible values are found using names(getModelInfo()). A list of functions can also be passed for a custom model function. See http://topepo.github.io/caret/

for details.

ARml 3

metric A string that specifies what summary metric will be used to select the optimal

model. See ?caret::train.

pre_process A string vector that defines a pre-processing of the predictor data. Current pos-

sibilities are "BoxCox", "YeoJohnson", "expoTrans", "center", "scale", "range", "knnImpute", "bagImpute", "medianImpute", "pca", "ica" and "spatialSign". The default is no pre-processing. See preProcess and trainControl on the procedures and how to adjust them. Pre-processing code is only designed to work

when x is a simple matrix or data frame.

cv Logical, if cv = TRUE model selection will be done via cross-validation. If cv =

FALSE user need to provide a specific model via tune_grid argument.

cv_horizon The number of consecutive values in test set sample.

initial_window The initial number of consecutive values in each training set sample.

fixed_window Logical, if FALSE, all training samples start at 1.

verbose A logical for printing a training log.

seasonal Boolean. If seasonal = TRUE the fourier terms will be used for modeling sea-

sonality.

K Maximum order(s) of Fourier terms

tune_grid A data frame with possible tuning values. The columns are named the same as

the tuning parameters. Use getModelInfo to get a list of tuning parameters for each model or see http://topepo.github.io/caret/available-models.html.

(NOTE: If given, this argument must be named.)

lambda BoxCox transformation parameter. If lambda = NULL If lambda = "auto", then

the transformation parameter lambda is chosen using BoxCox.lambda.

BoxCox_method BoxCox.lambda argument. Choose method to be used in calculating lambda.

BoxCox_lower BoxCox.lambda argument. Lower limit for possible lambda values.

BoxCox_upper BoxCox.lambda argument. Upper limit for possible lambda values.

BoxCox_biasadj InvBoxCox argument. Use adjusted back-transformed mean for Box-Cox trans-

formations. If transformed data is used to produce forecasts and fitted values, a regular back transformation will result in median forecasts. If biasadj is TRUE,

an adjustment will be made to produce mean forecasts and fitted values.

BoxCox_fvar InvBoxCox argument. Optional parameter required if biasadj=TRUE. Can ei-

ther be the forecast variance, or a list containing the interval level, and the cor-

responding upper and lower intervals.

allow_parallel If a parallel backend is loaded and available, should the function use it?

... Ignored.

Value

A list class of forecast containing the following elemets

- x : The input time series
- method: The name of the forecasting method as a character string
- mean: Point forecasts as a time series

4 forecast

- lower: Lower limits for prediction intervals
- upper: Upper limits for prediction intervals
- level: The confidence values associated with the prediction intervals
- model: A list containing information about the fitted model
- newx : A matrix containing regressors

Author(s)

Resul Akay

Examples

```
library(caretForecast)

train_data <- window(AirPassengers, end = c(1959, 12))

test <- window(AirPassengers, start = c(1960, 1))

ARml(train_data, caret_method = "lm", max_lag = 12) -> fit

forecast(fit, h = length(test)) -> fc

autoplot(fc) + autolayer(test)

accuracy(fc, test)
```

forecast

Forecasting an ARml object

Description

Forecasting an ARml object

Usage

```
forecast(
  object,
  h = frequency(object$y),
  xreg = NULL,
  level = c(80, 95),
  PI = FALSE,
  num_bs = 1000,
  ...
)
```

forecast 5

Arguments

object	A list class of ARml
h	forecast horizon
xreg	Optionally, a numerical vector or matrix of future external regressors
level	Confidence level for prediction intervals.
PI	If TRUE, prediction intervals are produced, otherwise only point forecasts are calculated. If PI is FALSE, then level, fan, bootstrap and npaths are all ignored.
num_bs	Number of bootstrapped versions to generate.
	Other arguments pased to forecast::forecast()

Value

A list class of forecast containing the following elemets

- x : The input time series
- method: The name of the forecasting method as a character string
- mean: Point forecasts as a time series
- lower: Lower limits for prediction intervals
- upper: Upper limits for prediction intervals
- level: The confidence values associated with the prediction intervals
- model : A list containing information about the fitted model
- newxreg: A matrix containing regressors

Author(s)

Resul Akay

Examples

```
library(caretForecast)

train_data <- window(AirPassengers, end = c(1959, 12))

test <- window(AirPassengers, start = c(1960, 1))

ARml(train_data, caret_method = "lm", max_lag = 12) -> fit

forecast(fit, h = length(test), level = c(80,95), PI = TRUE) -> fc
autoplot(fc)+ autolayer(test)

accuracy(fc, test)
```

6 forecast.ARml

forecast.ARml

Forecasting an ARml object

Description

Forecasting an ARml object

Usage

```
## $3 method for class 'ARml'
forecast(
  object,
  h = frequency(object$y),
  xreg = NULL,
  level = c(80, 95),
  PI = FALSE,
  num_bs = 1000,
  ...
)
```

Arguments

object	A list class of ARml
h	forecast horizon
xreg	Optionally, a numerical vector or matrix of future external regressors
level	Confidence level for prediction intervals.
PI	If TRUE, prediction intervals are produced, otherwise only point forecasts are calculated. If PI is FALSE, then level, fan, bootstrap and npaths are all ignored.
num_bs	Number of bootstrapped versions to generate.
	Other arguments pased to forecast::forecast()

Value

A list class of forecast containing the following elemets

- x : The input time series
- method: The name of the forecasting method as a character string
- mean: Point forecasts as a time series
- lower: Lower limits for prediction intervals
- upper: Upper limits for prediction intervals
- level: The confidence values associated with the prediction intervals
- model: A list containing information about the fitted model
- newxreg: A matrix containing regressors

get_var_imp 7

Author(s)

Resul Akay

Examples

```
library(caretForecast)

train_data <- window(AirPassengers, end = c(1959, 12))

test <- window(AirPassengers, start = c(1960, 1))

ARml(train_data, caret_method = "lm", max_lag = 12) -> fit

forecast(fit, h = length(test), level = c(80,95), PI = TRUE) -> fc
autoplot(fc)+ autolayer(test)
accuracy(fc, test)
```

get_var_imp

Variable importance for forecasting model.

Description

Variable importance for forecasting model.

Usage

```
get_var_imp(object, plot = TRUE)
```

Arguments

object A list class of ARml or forecast object derived from ARml plot Boolean, if TRUE, variable importance will be ploted.

Value

A list class of "varImp.train". See varImp or a "trellis" plot.

Author(s)

Resul Akay

8 retail

Examples

```
train <- window(AirPassengers, end = c(1959, 12))

test <- window(AirPassengers, start = c(1960, 1))

ARml(train, caret_method = "lm", max_lag = 12, trend_method = "none", pre_process = "center") -> fit

forecast(fit, h = length(test), level = c(80,95), PI = TRUE) -> fc
autoplot(fc)+ autolayer(test)
accuracy(fc, test)
get_var_imp(fc, plot = TRUE)
```

retail

Grouped sales data from an Australian Retailer

Description

A dataset containing 42 products' sales

Usage

retail

Format

```
A data class of "tbl_df", "tbl", "data.frame" with 13986 rows and 3 columns:
```

date date

item products

value sales

Source

```
https://robjhyndman.com/data/ausretail.csv
```

retail_wide 9

retail_wide

Sales data from an Australian Retailer in time series format

Description

A dataset containing 42 products' sales

Usage

```
retail_wide
```

Format

An object of class mts (inherits from ts, matrix) with 333 rows and 43 columns.

This data set is the wide format of retail data.

Source

```
https://robjhyndman.com/data/ausretail.csv
```

split_ts

Split a time series into training and testing sets

Description

Split a time series into training and testing sets

Usage

```
split_ts(y, test_size = 10)
```

Arguments

y A univariate time series

test_size The number of observations to keep in the test set

Value

A list with train and test elements

Author(s)

Resul Akay

10 suggested_methods

Examples

```
dlist <- split_ts(retail_wide[,1], test_size = 12)</pre>
```

suggested_methods

Suggested methods for ARml

Description

Suggested methods for ARml

Usage

```
suggested_methods()
```

Value

A character vector of Suggested methods

Author(s)

Resul Akay

Examples

```
suggested_methods()
```

Index

```
* datasets
retail, 8
retail_wide, 9

ARml, 2

BoxCox.lambda, 3

forecast, 4
forecast.ARml, 6

get_var_imp, 7

InvBoxCox, 3

retail, 8, 9
retail_wide, 9

split_ts, 9
suggested_methods, 10

varImp, 7
```