Package ‘castor’

September 2, 2022

Type Package

Title Efficient Phylogenetics on Large Trees

Version 1.7.3

Date 2022-09-01

Author Stilianos Louca

Maintainer Stilianos Louca <louca@zoology.ubc.ca>

Description Efficient phylogenetic analyses on massive phylogenies comprising up to mil-
lions of tips. Functions include pruning, rerooting, calculation of most-recent common ances-
tors, calculating distances from the tree root and calculating pairwise distances. Calcula-
tion of phylogenetic signal and mean trait depth (trait conservatism), ancestral state reconstruc-
tion and hidden character prediction of discrete characters, simulating and fitting mod-
els of trait evolution, fitting and simulating diversification models, dating trees, compar-
ing trees, and reading/writing trees in Newick format. Citation: Louca, Stilianos and Doe-
beli, Michael (2017) <doi:10.1093/bioinformatics/btx701>.

License GPL (>=2)

Depends Rcpp (>=0.12.10)

Imports parallel, naturalsort, stats, Matrix, RSpectra
Suggests nloptr

SystemRequirements C++11

LinkingTo Rcpp

RoxygenNote 7.1.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-09-01 23:10:02 UTC

R topics documented:

castor-package e
asr_empirical_probabilities Lo
asr_independent_contrasts L. Lo e

https://doi.org/10.1093/bioinformatics/btx701

R topics documented:

aST_MAX_ParSiMONY v v v v e v v e e e e e e e e e e e e e e e 9
ast_mk_model e e e 12
asr_squared_change_parsimony 17
asr_subtree_averagingo e e e e e 19
collapse_monofurcations 20
collapse_tree_at_resolution 22
congruent_divergence_times e e e 24
congruent_hbds_model 26
consentrait_depth L 31
count_lineages_through_time L oL 34
count_tips_per_node e 36
count_transitions_between_clades 0. 37
date_tree_red L L s e 38
discrete_trait_depth 40
evaluate_Spline e e e e e 43
exponentiate_MmatriXot e e e e e e e e e e 44
extend_tree_to_height 46
extract_fasttree_constraints e e e e e e e e e 48
find_farthest_tips 49
find_farthest_tip_pair 51
find_nearest_tips e 52
find_root e e e e e e e 55
find_root_of_monophyletic_tips 56
fit_and_compare_bm_models oL 57
fit_and_compare_sbm_const 60
fittbm_model e e 64
fit_hbds_model_on_grid 67
fit_hbds_model_parametric o 79
fit_hbd_model_on_grid 87
fit_hbd_model_parametric 93
fit_hbd_pdr_on_best_grid_size 101
fit_hbd_pdr_on_grid 106
fit_hbd_pdr_parametric 113
fit_hbd_psr_on_best_grid_size 119
fit hbd_psr_on_grid. 124
fit_hbd_psr_parametric 130
fit.mK . . . e 137
At MUSSE o o e e e 142
fit_sbm_const e 155
fit_sbm_geobiased_const 160
fit. sbm_linear e 166
fitsbm_on_grid 172
fit_sbm_parametric e e e 178
fit_ tree_model e 186
gamma_Statistic e e e e e 191
geNerate_gene_tre€_MSC v v v v v v v e e e e e e e e e e e e e e 192
generate_gene_tree_msc_hgt_dl L L Lo o 195

generate_random_treeo e e e e e e 201

R topics documented: 3

generate_tree_hbds L e 205
generate_tree_hbd_reverse 210
generate_tree_with_evolving_rateso 215
geographic_acf 220
get_all_distances_to_root L. e e e 223
get_all_node_depths 225
get_all_pairwise_distanceso e 226
get_clade_list e e e 228
get_independent_contrastso e e 229
get_mrca_of _Set. 232
get_pairwise_distancesol e 233
GEL_PAITWISE_MICAS v v v v o v v e i e e e e e e e e e e e 235
get_random_diffusivity_matrix 236
get_random_mk_transition_matriXo e 237
et TedS e e 238
get_stationary_distributiono 240
get_subtrees_at_nodes 241
get_subtree_at_node L e e e 242
get_subtree_with_tips L 244
get_tips_for_mrcas L. 246
get_trait_act 247
get_trait_statS_Over_timeo e e e e 250
get_transition_index_matrix e 253
GELITEE_SPAN .« . . vt e e e e e e e e e e e e e e e e e e 254
get_tree_traversal_root_to_tips e e 255
hsp_binomial 256
hsp_empirical_probabilities 260
hsp_independent_contrasts 262
hsp_max_parsimony i e e e e e e e e 264
hsp_mk_model 267
hsp_nearest_neighbor 272
hsp_squared_change_parsimony 274
hsp_subtree_averaging 276
is_bifurcating L 277
is_monophyletic 278
JOIN_T0Oted_trees o ot i e e e e e e e 279
loglikelihood_hbd 281
mMap_to_State_SPACEt 285
merge_nodes_to_multifurcations L L Lo 287
merge_short_edges 288
model_adequacy_hbd Lo 290
model_adequacy_hbds 295
multifurcations_to_bifurcations e 301
pick_random_tips 303
read_tree e e e s 304
reconstruct_past_diversification Lo 307
reorder_tree_edges L. e e e e 312

root_at_ midpoint 314

4 castor-package

root_at node e e e 315
root_in_edge e e e 317
TOOL_VIA_OULZTOUP .« « v v v v v i e e e e e e e e e e e e e e e e 318
shift_clade_times e 319
simulate bm_model L e 321
simulate_deterministic_hbd 324
simulate_deterministic_hbds 328
simulate_diversification_model 333
simulate_dSSe L e e e e e 337
simulate._ mk_model 344
simulate_ou_model e 346
simulate_rou_model e e 348
simulate_sbm e 350
simulate tdsSse e e e 352
spline_coefficients 359
split_tree_at_height 361
tree_diStancCe e e e e e 362
tree_from_branching_ages 365
tree_from_sampling_branching_ageso, 366
tree_imbalance L e e e 368
trim_tree_at_height 369
WIIE_IIEE . . . o o v o o o e e e e e e e e e e e 370
Index 373
castor-package Efficient computations on large phylogenetic trees.
Description

This package provides efficient tree manipulation functions including pruning, rerooting, calcula-
tion of most-recent common ancestors, calculating distances from the tree root and calculating pair-
wise distance matrices. Calculation of phylogenetic signal and mean trait depth (trait conservatism).
Efficient ancestral state reconstruction and hidden character prediction of discrete characters on phy-
logenetic trees, using Maximum Likelihood and Maximum Parsimony methods. Simulating models
of trait evolution, and generating random trees.

Details

The most important data unit is a phylogenetic tree of class "phylo", with the tree topology encoded
in the member variable tree.edge. See the ape package manual for details on the "phylo" format.
The castor package was designed to be efficient for large phylogenetic trees (>10,000 tips), and
scales well to trees with millions of tips. Most functions have asymptotically linear time complexity
O(N) in the number of edges N. This efficiency is achived via temporary auxiliary data structures,
use of dynamic programing, heavy use of C++, and integer-based indexing instead of name-based
indexing of arrays. All functions support trees that include monofurcations (nodes with a single
child) as well as multifurcations (nodes with more than 2 children). See the associated paper by
Louca et al. for a comparison with other packages.

asr_empirical_probabilities 5

Throughout this manual, "Ntips" refers to the number of tips, "Nnodes" to the number of nodes and
"Nedges" to the number of edges in a tree. In the context of discrete trait evolution/reconstruction,
"Nstates" refers to the number of possible states of the trait. In the context of multivariate trait
evolution, "Ntraits" refers to the number of traits.

Author(s)

Stilianos Louca

Maintainer: Stilianos Louca <louca@zoology.ubc.ca>

References

S. Louca and M. Doebeli (2017). Efficient comparative phylogenetics on large trees. Bioinformat-
ics. DOI:10.1093/bioinformatics/btx701

asr_empirical_probabilities
Empirical ancestral state probabilities.

Description

Given a rooted phylogenetic tree and the states of a discrete trait for each tip, calculate the empirical
state frequencies/probabilities for each node in the tree, i.e. the frequencies/probabilities of states
across all tips descending from that node. This may be used as a very crude estimate of ancestral
state probabilities.

Usage

asr_empirical_probabilities(tree, tip_states, Nstates=NULL,
probabilities=TRUE, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

tip_states An integer vector of size Ntips, specifying the state of each tip in the tree as an
integer from 1 to Nstates, where Nstates is the possible number of states (see
below).

Nstates Either NULL, or an integer specifying the number of possible states of the trait.
If NULL, then it will be computed based on the maximum value encountered in
tip_states

probabilities Logical, specifying whether empirical frequencies should be normalized to rep-
resent probabilities. If FALSE, then the raw occurrence counts are returned.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

6 asr_empirical_probabilities

Details

For this function, the trait’s states must be represented by integers within 1,..,Nstates, where Nstates
is the total number of possible states. If the states are originally in some other format (e.g., charac-
ters or factors), you should map them to a set of integers 1,..,Nstates. You can easily map any set of
discrete states to integers using the function map_to_state_space.

The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). The function has asymptotic time complexity O(Nedges
x Nstates).

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include names; if it does, however, they are checked for consistency (if
check_input==TRUE).

Value
A list with the following elements:

ancestral_likelihoods

A 2D integer (if probabilities==FALSE) or numeric (if probabilities==TRUE)
matrix, listing the frequency or probability of each state for each node. This
matrix will have size Nnodes x Nstates, where Nstates was either explicitly pro-
vided as an argument or inferred from tip_states. The rows in this matrix will
be in the order in which nodes are indexed in the tree, i.e. the [n,s]-th entry will
be the frequency or probability of the s-th state for the n-th node. Note that the
name was chosen for compatibility with other ASR functions.

Author(s)

Stilianos Louca

See Also

asr_max_parsimony, asr_squared_change_parsimony asr_mk_model, map_to_state_space

Examples

Not run:

generate a random tree

Ntips = 100

tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

create a random transition matrix

Nstates = 3

Q = get_random_mk_transition_matrix(Nstates, rate_model="ER", max_rate=0.01)
cat(sprintf(”Simulated ER transition rate=%g\n"”,Q[1,21))

simulate the trait's evolution
simulation = simulate_mk_model(tree, Q)

tip_states = simulation$tip_states

calculate empirical probabilities of tip states

asr_independent_contrasts 7

asr_empirical_probabilities(tree, tip_states=tip_states, Nstates=Nstates)

End(Not run)

asr_independent_contrasts

Ancestral state reconstruction via phylogenetic independent contrasts.

Description

Reconstruct ancestral states for a continuous (numeric) trait using phylogenetic independent con-
trasts (PIC; Felsenstein, 1985).

Usage

asr_independent_contrasts(tree,

Arguments

tree

tip_states

weighted

include_CI

check_input

Details

tip_states,

weighted = TRUE,
include_CI = FALSE,
check_input = TRUE)

A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

A numeric vector of size Ntips, specifying the known state of each tip in the
tree.

Logical, specifying whether to weight tips and nodes by the inverse length of
their incoming edge, as in the original method by Felsenstein (1985). If FALSE,
edge lengths are treated as if they were 1.

Logical, specifying whether to also calculate standard errors and confidence in-
tervals for the reconstructed states under a Brownian motion model, as described
by Garland et al (1999).

Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

The function traverses the tree in postorder (tips—>root) and estimates the state of each node as a
convex combination of the estimated states of its chilren. These estimates are the intermediate "X"
variables introduced by Felsenstein (1985) in his phylogenetic independent contrasts method. For
the root, this yields the same globally parsimonious state as the squared-changes parsimony algo-
rithm implemented in asr_squared_change_parsimony (Maddison 1991). For any other node,
PIC only yields locally parsimonious reconstructions, i.e. reconstructed states only depend on the
subtree descending from the node (see discussion by Maddison 1991).

8 asr_independent_contrasts

If weighted==TRUE, then this function yields the same ancestral state reconstructions as
ape: :ace(phy=tree, x=tip_states, type="continuous”, method="pic", model="BM", CI=FALSE)

in the ape package (v. 0.5-64). Note that in contrast to the CI95 returned by ape: : ace, the confi-
dence intervals calculated here have the same units as the trait and depend both on the tree topology
as well as the tip states.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. This is the
same as setting weighted=FALSE. The tree may include multi-furcations (i.e. nodes with more than
2 children) as well as mono-furcations (i.e. nodes with only one child). Edges with length 0 will be
adjusted internally to some tiny length if needed (if weighted==TRUE).

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include item names; if it does, however, they are checked for consistency (if
check_input==TRUE). All tip states must be non-NA; otherwise, consider using one of the functions
for hidden-state-prediction (e.g., hsp_independent_contrasts).

The function has asymptotic time complexity O(Nedges).

Value
A list with the following elements:

ancestral_states
A numeric vector of size Nnodes, listing the reconstructed state of each node.
The entries in this vector will be in the order in which nodes are indexed in the
tree.

standard_errors
Numeric vector of size Nnodes, listing the phylogenetically estimated standard
error for the state in each node, under a Brownian motion model. The standard
errors have the same units as the trait and depend both on the tree topology as
well as the tip states. Calculated as described by Garland et al. (1999, page
377). Only included if include_CI==TRUE.

CI95 Numeric vector of size Nnodes, listing the radius (half width) of the 95% con-
fidence interval of the state in each node. Confidence intervals have same units
as the trait and depend both on the tree topology as well as the tip states. For
each node, the confidence interval is calculated according to the Student’s t-
distribution with Npics degrees of freedom, where Npics is the number of inter-
nally calculated independent contrasts descending from the node [Garland et al,
1999]. Only included if include_CI==TRUE.

Author(s)

Stilianos Louca

References

J. Felsenstein (1985). Phylogenies and the Comparative Method. The American Naturalist. 125:1-
15.

W. P. Maddison (1991). Squared-change parsimony reconstructions of ancestral states for continuous-
valued characters on a phylogenetic tree. Systematic Zoology. 40:304-314.

asr_max_parsimony 9

T. Garland Jr., P. E. Midford, A. R. Ives (1999). An introduction to phylogenetically based statistical
methods, with a new method for confidence intervals on ancestral values. American Zoologist.

39:374-388.
See Also

asr_squared_change_parsimony, asr_max_parsimony, asr_mk_model

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a continuous trait
tip_states = simulate_ou_model (tree, stationary_mean=0, spread=1, decay_rate=0.001)$tip_states

reconstruct node states via weighted PIC
asr = asr_independent_contrasts(tree, tip_states, weighted=TRUE, include_CI=TRUE)
node_states = asr$ancestral_states

get lower bounds of 95% CIs
lower_bounds = node_states - asr$CI95

asr_max_parsimony Maximum-parsimony ancestral state reconstruction.

Description

Reconstruct ancestral states for a discrete trait using maximum parsimony. Transition costs can vary
between transitions, and can optionally be weighted by edge length.

Usage

asr_max_parsimony(tree, tip_states, Nstates=NULL,
transition_costs="all_equal”,
edge_exponent=0, weight_by_scenarios=TRUE,
check_input=TRUE)

Arguments
tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.
tip_states An integer vector of size Ntips, specifying the state of each tip in the tree as an
integer from 1 to Nstates, where Nstates is the possible number of states (see
below).
Nstates Either NULL, or an integer specifying the number of possible states of the trait. If

NULL, then Nstates will be computed based on the maximum value encountered
in tip_states

10 asr_max_parsimony

transition_costs

Either "all_equal","sequential”, "proportional”, "exponential”", or a quadratic
non-negatively valued matrix of size Nstates x Nstates, specifying the transition
costs between all possible states (which can include 0 as well as Inf). The [r,c]-
th entry of the matrix is the cost of transitioning from state r to state c. The option
"all_equal" specifies that all transitions are permitted and are equally costly. "se-
quential" means that only transitions between adjacent states are permitted from
a node to its children, and all permitted transitions are equally costly. "propor-
tional" means that all transitions are permitted, but the cost increases propor-
tional to the distance between states. "exponential” means that all transitions are
permitted, but the cost increases exponentially with the distance between states.
The options "sequential" and "proportional" only make sense if states exhibit an
order relation (as reflected in their integer representation).

edge_exponent Non-negative real-valued number. Optional exponent for weighting transition
costs by the inverse length of edge lengths. If 0, edge lengths do not influence
the ancestral state reconstruction (this is the conventional max-parsimony). If
>0, then at each edge the transition costs are multiplied by 1/L¢, where L is the
edge length and e is the edge exponent. This parameter is mostly experimental;
modify at your own discretion.

weight_by_scenarios
Logical, indicating whether to weight each optimal state of a node by the number
of optimal maximum-parsimony scenarios in which the node is in that state. If
FALSE, then all optimal states of a node are weighted equally (i.e. are assigned
equal probabilities).

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

For this function, the trait’s states must be represented by integers within 1,..,Nstates, where Nstates
is the total number of possible states. If the states are originally in some other format (e.g. characters
or factors), you should map them to a set of integers 1,..,Nstates. The order of states (if relevant)
should be reflected in their integer representation. For example, if your original states are "small",
"medium" and "large" and transition_costs=="sequential”, it is advised to represent these
states as integers 1,2,3. You can easily map any set of discrete states to integers using the function
map_to_state_space.

This function utilizes Sankoff’s (1975) dynamic programming algorithm for determining the small-
est number (or least costly if transition costs are uneven) of state changes along edges needed to
reproduce the observed tip states. The function has asymptotic time complexity O(Ntips+Nnodes x
Nstates).

If tree$edge. length is missing, each edge in the tree is assumed to have length 1. If edge_exponent
is 0, then edge lengths do not influence the result. If edge_exponent!=0, then all edges must have
non-zero length. The tree may include multi-furcations (i.e. nodes with more than 2 children) as
well as mono-furcations (i.e. nodes with only one child).

Tips must be represented in tip_states in the same order as in tree$tip.label. None of the
input vectors or matrixes need include row or column names; if they do, however, they are checked
for consistency (if check_input==TRUE).

asr_max_parsimony 11

This function is meant for reconstructing ancestral states in all nodes of a tree, when the state of
each tip is known. If some of the tips have unknown state, consider either pruning the tree to keep
only tips with known states, or using the function hsp_max_parsimony.

Not all datasets are consistent with all possible transition cost models, i.e., it could happen that
for some peculiar datasets some rather constrained models (e.g. "sequential") cannot possibly pro-
duce the data. In this case, castor will most likely return non-sensical ancestral state estimates and
total_cost=Inf, although this has not thoroughly been tested.

Value

A list with the following elements:

success Boolean, indicating whether ASR was successful. If FALSE, the remaining re-
turned elements may be undefined.

ancestral_likelihoods
A 2D numeric matrix, listing the probability of each node being in each state.
This matrix will have size Nnodes x Nstates, where Nstates was either explicitly
provided as an argument or inferred from tip_states. The rows in this matrix
will be in the order in which nodes are indexed in the tree, i.e. the [n,s]-th entry
will be the probability of the s-th state for the n-th node. These probabilities are
calculated based on scenario_counts (see below), assuming that every maxi-
mum parsimony scenario is equally likely. Note that the name was chosen for
compatibility with other ASR functions.

scenario_counts
A 2D numeric matrix of size Nnodes x Nstates, listing for each node and each
state the number of maximum parsimony scenarios in which the node was in the
specific state. If only a single maximum parsimony scenario exists for the whole
tree, then the sum of entries in each row will be one.

total_cost Real number, specifying the total transition cost across the tree for the most par-
simonious scenario. In the classical case where transition_costs="all_equal”,
the total_cost equals the total number of state changes in the tree under the
most parsimonious scenario. Under some constrained transition models (e.g.,
"sequential"), total_cost may sometimes be Inf, which basically means that
the data violates the model.

Author(s)

Stilianos Louca

References

D. Sankoff (1975). Minimal mutation trees of sequences. SIAM Journal of Applied Mathematics.
28:35-42.

J. Felsenstein (2004). Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts.

See Also

hsp_max_parsimony, asr_squared_change_parsimony asr_mk_model, hsp_mk_model, map_to_state_space

12 asr_mk_model

Examples

Not run:

generate random tree

Ntips = 10

tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a discrete trait

Nstates = 5

Q = get_random_mk_transition_matrix(Nstates, rate_model="ER")
tip_states = simulate_mk_model(tree, Q)$tip_states

reconstruct node states via MPR
results = asr_max_parsimony(tree, tip_states, Nstates)

node_states = max.col(results$ancestral_likelihoods)

print reconstructed node states
print(node_states)

End(Not run)

asr_mk_model Ancestral state reconstruction with Mk models and rerooting

Description

Ancestral state reconstruction of a discrete trait using a fixed-rates continuous-time Markov model
(a.k.a. "Mk model"). This function can estimate the (instantaneous) transition matrix using maxi-
mum likelihood, or take a specified transition matrix. The function can optionally calculate marginal
ancestral state likelihoods for each node in the tree, using the rerooting method by Yang et al.
(1995).

Usage
asr_mk_model(tree,

tip_states,
Nstates = NULL,
tip_priors = NULL,
rate_model = "ER",
transition_matrix = NULL,
include_ancestral_likelihoods = TRUE,
reroot = TRUE,
root_prior = "auto”,
Ntrials =1,
optim_algorithm = "nlminb”,
optim_max_iterations = 200,
optim_rel_tol = le-8,
store_exponentials = TRUE,
check_input = TRUE,

Nthreads =1)

asr_mk_model

Arguments

tree

tip_states

Nstates

tip_priors

rate_model

13

A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

An integer vector of size Ntips, specifying the state of each tip in the tree in
terms of an integer from 1 to Nstates, where Ntips is the number of tips and
Nstates is the number of possible states (see below). Can also be NULL. If
tip_states==NULL, then tip_priors must not be NULL (see below).

Either NULL, or an integer specifying the number of possible states of the trait.
If Nstates==NULL, then it will be computed based on the maximum value en-
countered in tip_states or based on the number of columns in tip_priors
(whichever is non-NULL).

A 2D numeric matrix of size Ntips x Nstates, where Nstates is the possible num-
ber of states for the character modelled. Hence, tip_priors[i,s] is the likeli-
hood of the observed state of tip i, if the tip’s true state was in state s. For exam-
ple, if you know for certain that a tip is in state k, then set tip_priors[i,s]=1
for s=k and tip_priors[i,s]=0 for all other s.

Rate model to be used for fitting the transition rate matrix. Can be "ER" (all
rates equal), "SYM" (transition rate i—>j is equal to transition rate j—>i), "ARD"
(all rates can be different), "SUEDE" (only stepwise transitions i—>i+1 and i—
>i-1 allowed, all "up’ transitions are equal, all ’down’ transitions are equal) or
"SRD" (only stepwise transitions i—>i+1 and i—>i-1 allowed, and each rate can
be different). Can also be an index matrix that maps entries of the transition
matrix to the corresponding independent rate parameter to be fitted. Diagonal
entries should map to 0, since diagonal entries are not treated as independent
rate parameters but are calculated from the remaining entries in the transition
matrix. All other entries that map to O represent a transition rate of zero. The
format of this index matrix is similar to the format used by the ace function in
the ape package. rate_model is only relevant if transition_matrix==NULL.

transition_matrix

root_prior

Either a numeric quadratic matrix of size Nstates x Nstates containing fixed tran-
sition rates, or NULL. The [r,c]-th entry in this matrix should store the transition
rate from state r to state ¢. Each row in this matrix must have sum zero. If NULL,
then the transition rates will be estimated using maximum likelihood, based on
the rate_model specified.

Prior probability distribution of the root’s states, used to calculate the model’s
overall likelihood from the root’s marginal ancestral state likelihoods. Can be
"flat" (all states equal), "empirical" (empirical probability distribution of
states across the tree’s tips), "stationary" (stationary probability distribution of
the transition matrix), "likelihoods" (use the root’s state likelihoods as prior)
or "max_likelihood" (put all weight onto the state with maximum likelihood).
If "stationary" and transition_matrix==NULL, then a transition matrix is
first fitted using a flat root prior, and then used to calculate the stationary distri-
bution. root_prior can also be a non-negative numeric vector of size Nstates
and with total sum equal to 1.

include_ancestral_likelihoods

Include the marginal ancestral likelihoods for each node (conditional scaled
state likelihoods) in the return values. Note that this may increase the com-

14 asr_mk_model

putation time and memory needed, so you may set this to FALSE if you don’t
need marginal ancestral states.

reroot Reroot tree at each node when computing marginal ancestral likelihoods, ac-
cording to Yang et al. (1995). This is the default and recommended behavior,
but leads to increased computation time. If FALSE, ancestral likelihoods at each
node are computed solely based on the subtree descending from that node, with-
out rerooting. Caution: Rerooting is strictly speaking only valid if the Mk model
is time-reversible (for example, if the transition matrix is symmetric). Do not
use the rerooting method if rate_model="ARD".

Ntrials Number of trials (starting points) for fitting the transition matrix. Only relevant
if transition_matrix=NULL. A higher number may reduce the risk of land-
ing in a local non-global optimum of the likelihood function, but will increase
computation time during fitting.

optim_algorithm
Either "optim" or "nlminb", specifying which optimization algorithm to use
for maximum-likelihood estimation of the transition matrix. Only relevant if
transition_matrix==NULL.

optim_max_iterations
Maximum number of iterations (per fitting trial) allowed for optimizing the like-
lihood function.

optim_rel_tol Relative tolerance (stop criterion) for optimizing the likelihood function.
store_exponentials
Logical, specifying whether to pre-calculate and store exponentials of the transi-
tion matrix during calculation of ancestral likelihoods. This may reduce compu-
tation time because each exponential is only calculated once, but requires more
memory since all exponentials are stored.
Only relevant if include_ancestral_likelihoods==TRUE, otherwise expo-
nentials are never stored.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Nthreads Number of parallel threads to use for running multiple fitting trials simultane-
ously. This only makes sense if your computer has multiple cores/CPUs and if
Ntrials>1, and is only relevant if transition_matrix==NULL. This option is
ignored on Windows, because Windows does not support forking.

Details

For this function, the trait’s states must be represented by integers within 1,..,Nstates, where Nstates
is the total number of possible states. If the states are originally in some other format (e.g. char-
acters or factors), you should map them to a set of integers 1,..,Nstates. The order of states (if
relevant) should be reflected in their integer representation. For example, if your original states
are "small", "medium" and "large" and rate_model=="SUEDE", it is advised to represent these
states as integers 1,2,3. You can easily map any set of discrete states to integers using the function
map_to_state_space.

This function allows the specification of the precise tip states (if these are known) using the vector
tip_states. Alternatively, if some tip states are only known in terms of a probability distribution,

asr_mk_model 15

you can pass these probability distributions using the matrix tip_priors. Note that exactly one of
the two arguments, tip_states or tip_priors, must be non-NULL.

Tips must be represented in tip_states or tip_priors in the same order as in tree$tip.label.
None of the input vectors or matrixes need include row or column names; if they do, however, they
are checked for consistency (if check_input==TRUE).

The tree is either assumed to be complete (i.e. include all possible species), or to represent a random
subset of species chosen independently of their states. The rerooting method by Yang et al (1995)
is used to calculate the marginal ancestral state likelihoods for each node by treating the node as a
root and calculating its conditional scaled likelihoods. Note that the re-rooting algorithm is strictly
speaking only valid for reversible Mk models, that is, satisfying the criterion

T Qi = m;Qj:, Vi, J,
where () is the transition rate matrix and 7 is the stationary distribution of the model. The rate

models “ER”, ‘SYM”, “SUEDE” and “SRD” are reversible. For example, for “SUEDE” or “SRD”
choose m;11 = m; Qi it+1/Qi+1,:- In contrast, “ARD” models are generally not reversible.

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. The tree
may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-furcations
(i.e. nodes with only one child). This function is similar to rerootingMethod in the phytools
package (v0.5-64) and similar to ape: :ace (v4.1) with options method="ML", type="discrete”
and marginal=FALSE, but tends to be much faster than rerootingMethod and ace for large trees.

Internally, this function uses fit_mk to estimate the transition matrix if the latter is not provided. If
you only care about estimating the transition matrix but not the ancestral states, consider using the
more versatile function fit_mk.

Value
A list with the following elements:

success Logical, indicating whether ASR was successful. If FALSE, all other return val-
ues may be NULL.

Nstates Integer, specifying the number of modeled trait states.

transition_matrix
A numeric quadratic matrix of size Nstates x Nstates, containing the transition
rates of the Markov model. The [r,c]-th entry is the transition rate from state r to
state c. Will be the same as the input transition_matrix, if the latter was not
NULL.

loglikelihood Log-likelihood of the observed tip states under the fitted (or provided) Mk model.
If transition_matrix was NULL in the input, then this will be the log-likelihood
maximized during fitting.

AIC Numeric, the Akaike Information Criterion for the fitted Mk model (if appli-
cable), defined as 2k — 2log(L), where k is the number of independent fitted
parameters and L is the maximized likelihood. If the transition matrix was pro-
vided as input, then no fitting was performed and hence AIC will be NULL.

ancestral_likelihoods
Optional, only returned if include_ancestral_likelihoods was TRUE. A 2D
numeric matrix, listing the likelihood of each state at each node (marginal an-
cestral likelihoods). This matrix will have size Nnodes x Nstates, where Nstates

16 asr_mk_model

was either explicitly provided as an argument, or inferred from tip_states or
tip_priors (whichever was non-NULL). The rows in this matrix will be in the
order in which nodes are indexed in the tree, i.e. the [n,s]-th entry will be the
likelihood of the s-th state at the n-th node. For example, 1likelihoods[1, 3]
will store the likelihood of observing the tree’s tip states (if reroot=TRUE) or the
descending subtree’s tip states (if reroot=FALSE), if the first node was in state
3. Note that likelihoods are rescaled (normalized) to sum to 1 for convenience
and numerical stability. The marginal likelihoods at a node should not, however,
be interpreted as a probability distribution among states.

Author(s)

Stilianos Louca

References
Z. Yang, S. Kumar and M. Nei (1995). A new method for inference of ancestral nucleotide and
amino acid sequences. Genetics. 141:1641-1650.

See Also

hsp_mk_model, asr_max_parsimony, asr_squared_change_parsimony, hsp_max_parsimony, map_to_state_space,
fit_mk

Examples
Not run:
generate random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

create random transition matrix

Nstates = 5

Q = get_random_mk_transition_matrix(Nstates, rate_model="ER", max_rate=0.01)
cat(sprintf(”Simulated ER transition rate=%g\n"”,Q[1,21))

simulate the trait's evolution

simulation = simulate_mk_model(tree, Q)

tip_states = simulation$tip_states
cat(sprintf(”"Simulated states for last 20 nodes:\n"))
print(tail(simulation$node_states,20))

reconstruct node states from simulated tip states

at each node, pick state with highest marginal likelihood

results = asr_mk_model(tree, tip_states, Nstates, rate_model="ER", Ntrials=2)
node_states = max.col(results$ancestral_likelihoods)

print Mk model fitting summary
cat(sprintf("Mk model: log-likelihood=%g\n", results$loglikelihood))
cat(sprintf("Fitted ER transition rate=%g\n",results$transition_matrix[1,2]))

asr_squared_change_parsimony 17

print reconstructed node states for last 20 nodes
print(tail(node_states,20))

End(Not run)

asr_squared_change_parsimony
Squared-change parsimony ancestral state reconstruction.

Description

Reconstruct ancestral states for a continuous (numeric) trait using squared-change maximum par-
simony (Maddison, 1991). Transition costs can optionally be weighted by the inverse edge lengths
("weighted squared-change parsimony" by Maddison).

Usage

asr_squared_change_parsimony(tree, tip_states, weighted=TRUE, check_input=TRUE)

Arguments
tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.
tip_states A numeric vector of size Ntips, specifying the known state of each tip in the
tree.
weighted Logical, specifying whether to weight transition costs by the inverted edge lengths.
This corresponds to the "weighted squared-change parsimony" reconstruction
by Maddison (1991) for a Brownian motion model of trait evolution.
check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.
Details

The function traverses the tree in postorder (tips—>root) to calculate the quadratic parameters de-
scribed by Maddison (1991) and obtain the globally parsimonious squared-change parsimony state
for the root. The function then reroots at each node, updates all affected quadratic parameters in the
tree and calculates the node’s globally parsimonious squared-change parsimony state. The function
has asymptotic time complexity O(Nedges).

If tree$edge.length is missing, each edge in the tree is assumed to have length 1. This is the
same as setting weighted=FALSE. The tree may include multi-furcations (i.e. nodes with more than
2 children) as well as mono-furcations (i.e. nodes with only one child). Edges with length 0 will be
adjusted internally to some tiny length if needed (if weighted==TRUE).

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include item names; if it does, however, they are checked for consistency (if
check_input==TRUE).

18 asr_squared_change_parsimony

If weighted==FALSE, then this function yields the same ancestral state reconstructions as
ape::ace(tip_states, tree, type="continuous"”, method="ML", model="BM", CI=FALSE)

in the ape package (v. 0.5-64), assuming the tree as unit edge lengths. If weighted==TRUE, then
this function yields the same ancestral state reconstructions as the maximum likelihood estimates
under a Brownian motion model, as implemented by the Rphylopars package (v. 0.2.10):

Rphylopars::anc.recon(tip_states, tree, vars=FALSE, CI=FALSE).

Value
A list with the following elements:

ancestral_states

A numeric vector of size Nnodes, listing the reconstructed state of each node.
The entries in this vector will be in the order in which nodes are indexed in the
tree.

total_sum_of_squared_changes
The total sum of squared changes, minimized by the (optionally weighted) squared-
change parsimony algorithm. This is equation 7 in (Maddison, 1991).

Author(s)

Stilianos Louca

References
W. P. Maddison (1991). Squared-change parsimony reconstructions of ancestral states for continuous-
valued characters on a phylogenetic tree. Systematic Zoology. 40:304-314.

See Also

asr_independent_contrasts asr_max_parsimony, asr_mk_model

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a continuous trait
tip_states = simulate_ou_model(tree, stationary_mean=0, spread=1, decay_rate=0.001)$tip_states

reconstruct node states based on simulated tip states
node_states = asr_squared_change_parsimony(tree, tip_states, weighted=TRUE)$ancestral_states

asr_subtree_averaging 19

asr_subtree_averaging Ancestral state reconstruction via subtree averaging.

Description

Reconstruct ancestral states in a phylogenetic tree for a continuous (numeric) trait by averaging
trait values over descending subtrees. That is, for each node the reconstructed state is set to the
arithmetic average state of all tips descending from that node.

Usage

asr_subtree_averaging(tree, tip_states, check_input=TRUE)

Arguments
tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.
tip_states A numeric vector of size Ntips, specifying the known state of each tip in the
tree.
check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.
Details

The function returns the estimated ancestral states (=averages) as well as the corresponding standard
deviations. Note that reconstructed states are local estimates, i.e. they only take into account the
tips descending from the reconstructed node.

The tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). Edge lengths and distances between tips and nodes are
not taken into account. All tip states are assumed to be known, and NA or NaN are not allowed in
tip_states.

Tips must be represented in tip_states in the same order as in tree$tip.label. The vector
tip_states need not include item names; if it does, however, they are checked for consistency (if
check_input==TRUE).

Value
A list with the following elements:

success Logical, indicating whether ASR was sucessful. If all input data are valid then
this will always be TRUE, but it is provided for consistency with other ASR func-
tions.

ancestral_states
A numeric vector of size Nnodes, listing the reconstructed state (=average over
descending tips) for each node. The entries in this vector will be in the order in
which nodes are indexed in the tree.

20 collapse_monofurcations

ancestral_stds A numeric vector of size Nnodes, listing the standard deviations corresponding
to ancestral_stds.
ancestral_counts

A numeric vector of size Nnodes, listing the number of (descending) tips used
to reconstruct the state of each node.

Author(s)

Stilianos Louca

See Also

asr_independent_contrasts, asr_squared_change_parsimony

Examples

generate random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

simulate a continuous trait
tip_states = simulate_ou_model(tree, stationary_mean=0, spread=1, decay_rate=0.001)$tip_states

reconstruct node states by averaging simulated tip states
node_states = asr_subtree_averaging(tree, tip_states)$ancestral_states

collapse_monofurcations

Remove monofurcations from a tree.

Description

Eliminate monofurcations (nodes with only a single child) from a phylogenetic tree, by connecting
their incoming and outgoing edge.

Usage

collapse_monofurcations(tree, force_keep_root=TRUE, as_edge_counts=FALSE)

Arguments

tree A rooted tree of class "phylo".

force_keep_root
Logical, indicating whether the root node should always be kept (i.e., even if it
only has a single child).

as_edge_counts Logical, indicating whether all edges should be assumed to have length 1. If
TRUE, the outcome is the same as if the tree had no edges.

collapse_monofurcations 21

Details

All tips in the input tree retain their original indices, however the returned tree may include fewer
nodes and edges. Edge and node indices may change.

If tree$edge. length is missing, then all edges in the input tree are assumed to have length 1.

Value

A list with the following elements:

tree A new tree of class "phylo", containing only bifurcations (and multifurcations,
if these existed in the input tree). The number of nodes in this tree, Nnodes_new,
may be lower than of the input tree.

new2o0ld_node Integer vector of length Nnodes_new, mapping node indices in the new tree to
node indices in the old tree.

Nnodes_removed Integer. Number of nodes (monofurcations) removed from the tree.

Author(s)

Stilianos Louca

See Also

multifurcations_to_bifurcations

Examples

generate a random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1), max_tips=Ntips)$tree

prune the tree to generate random monofurcations
random_tips = sample.int(n=Ntips, size=0.5 * Ntips, replace=FALSE)
tree = get_subtree_with_tips(tree, only_tips=random_tips, collapse_monofurcations=FALSE)$subtree

collapse monofurcations
new_tree = collapse_monofurcations(tree)$tree

print summary of old and new tree
cat(sprintf("0ld tree has %d nodes\n",tree$Nnode))
cat(sprintf("New tree has %d nodes\n"”,6new_tree$Nnode))

22

collapse_tree_at_resolution

collapse_tree_at_resolution

Collapse nodes of a tree at a phylogenetic resolution.

Description

Given a rooted tree and a phylogenetic resolution threshold, collapse all nodes whose distance to all
descending tips does not exceed the threshold (or whose sum of descending edge lengths does not
exceed the threshold), into new tips. This function can be used to obtain a "coarser” version of the
tree, or to cluster closely related tips into a single tip.

Usage

collapse_tree_at_resolution(tree,

Arguments

tree

resolution

by_edge_count

shorten

resolution =0,

by_edge_count = FALSE,

shorten = TRUE,
rename_collapsed_nodes = FALSE,

criterion = 'max_tip_depth")

A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

Numeric, specifying the phylogenetic resolution at which to collapse the tree.
This is the maximum distance a descending tip can have from a node, such that
the node is collapsed into a new tip. If set to O (default), then only nodes whose
descending tips are identical to the node will be collapsed.

Logical. Instead of considering edge lengths, consider edge counts as phyloge-
netic distance between nodes and tips. This is the same as if all edges had length
equal to 1.

Logical, indicating whether collapsed nodes should be turned into tips at the
same location (thus potentially shortening the tree). If FALSE, then the incoming
edge of each collapsed node is extended by some length L, where L is the dis-
tance of the node to its farthest descending tip (thus maintaining the height of
the tree).

rename_collapsed_nodes

criterion

Logical, indicating whether collapsed nodes should be renamed using a repre-
sentative tip name (the farthest descending tip). See details below.

Character, specifying the criterion to use for collapsing (i.e. how to interpret
resolution). ‘max_tip_depth’: Collapse nodes based on their maximum dis-
tance to any descending tip. ’sum_tip_paths’: Collapse nodes based on the
sum of descending edges (each edge counted once). 'max_tip_pair_dist’:
Collapse nodes based on the maximum distance between any pair of descending
tips.

collapse_tree_at_resolution 23

Details

The tree is traversed from root to tips and nodes are collapsed into tips as soon as the criterion
equals or falls below the resolution threshold.

The input tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). Tip labels and uncollapsed node labels of the collapsed
tree are inheritted from the original tree. If rename_collapsed_nodes==FALSE, then labels of
collapsed nodes will be the node labels from the original tree (in this case the original tree should
include node labels). If rename_collapsed_nodes==TRUE, each collapsed node is given the label
of its farthest descending tip. If shorten==TRUE, then edge lengths are the same as in the original
tree. If shorten==FALSE, then edges leading into collapsed nodes may be longer than before.

Value
A list with the following elements:

tree A new rooted tree of class "phylo", containing the collapsed tree.

root_shift Numeric, indicating the phylogenetic distance between the old and the new root.
Will always be non-negative.

collapsed_nodes
Integer vector, listing indices of collapsed nodes in the original tree (subset of
1,..,Nnodes).

farthest_tips Integer vector of the same length as collapsed_nodes, listing indices of the
farthest tips for each collapsed node. Hence, farthest_tips[n] will be the in-
dex of a tip in the original tree that descended from node collapsed_nodes[n]
and had the greatest distance from that node among all descending tips.

new2old_clade Integer vector of length equal to the number of tips+nodes in the collapsed tree,
with values in 1,..,Ntips+Nnodes, mapping tip/node indices of the collapsed tree
to tip/node indices in the original tree.

new2o0ld_edge Integer vector of length equal to the number of edges in the collapsed tree, with
values in 1,..,Nedges, mapping edge indices of the collapsed tree to edge indices
in the original tree.

Author(s)

Stilianos Louca

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=1000)$tree

print number of nodes
cat(sprintf(”Simulated tree has %d nodes\n",tree$Nnode))

collapse any nodes with tip-distances < 20
collapsed = collapse_tree_at_resolution(tree, resolution=20)$tree

print number of nodes
cat(sprintf(”Collapsed tree has %d nodes\n",collapsed$Nnode))

24

congruent_divergence_times

congruent_divergence_times

Extract dating anchors for a target tree, using a dated reference tree

Description

Given a reference tree and a target tree, this function maps target nodes to concordant reference
nodes when possible, and extracts divergence times of the mapped reference nodes from the refer-
ence tree. This function can be used to define secondary dating constraints for a larger target tree,
based on a time-calibrated smaller reference tree (Eastman et al. 2013). This only makes sense if
the reference tree is time-calibrated. A provided mapping specifies which and how tips in the target
tree correspond to tips in the reference tree.

Usage

congruent_divergence_times(reference_tree, target_tree, mapping)

Arguments

reference_tree A rooted tree object of class "phylo". Usually this tree will be time-calibrated

target_tree

mapping

(i.e. edge lengths represent time intervals).
A rooted tree object of class "phylo".

A table mapping a subset of target tips to a subset of reference tips, as described
by Eastman et al (2013). Multiple target tips may map to the same reference
tip, but not vice versa (i.e. every target tip can appear at most once in the map-
ping). In general, a tip mapped to in the reference tree is assumed to represent a
monophyletic group of tips in the target tree, although this assumption may be
violated in practice (Eastman et al. 2013).

The mapping must be in one of the following formats:

Option 1: A 2D integer array of size NM x 2 (with NM being the number of
mapped target tips), listing target tip indices mapped to reference tip indices
(mapping[m,1] (target tip) —> mapping[m,2] (reference tip)).

Option 2: A 2D character array of size NM x 2, listing target tip labels mapped
to reference tip labels.

Option 3: A data frame of size NM x 1, whose row names are target tip la-
bels and whose entries are either integers (reference tip indices) or characters
(reference tip labels). This is the format used by geiger: :congruify.phylo
(v.206).

Option 4: A vector of size NM, whose names are target tip labels and whose
entries are either integers (reference tip indices) or characters (reference tip la-
bels).

congruent_divergence_times 25

Details

Both the reference and target tree may include monofurcations and/or multifurcations. In principle,
neither of the two trees needs to be ultrametric, although in most applications reference_tree will
be ultrametric.

In special cases each reference tip may be found in the target tree, i.e. the reference tree is a subtree
of the target tree. This may occur e.g. if a smaller subtree of the target tree has been extracted and
dated, and subsequently the larger target tree is to be dated using secondary constraints inferred
from the dated subtree.

The function returns a table that maps a subset of target nodes to an equally sized subset of con-
cordant reference nodes. Ages (divergence times) of the mapped reference nodes are extracted and
associated with the concordant target nodes.

For bifurcating trees the average time complexity of this function is O(TNtips x log(RNtips) x NM),
where TNtips and RNtips are the number of tips in the target and reference tree, respectively. This
function is similar to geiger: :congruify.phylo (v.206). For large trees, this function tends to be
much faster than geiger: :congruify.phylo.

Value

A named list with the following elements:

Rnodes Integer vector of length NC (where NC is the number of concordant node pairs
found) and with values in 1,..,RNnodes, listing indices of reference nodes that
could be matched with (i.e. were concordant to) a target node. Entries in Rnodes
will correspond to entries in Tnodes and ages.

Tnodes Integer vector of length NC and with values in 1,..,TNnodes, listing indices of
target nodes that could be matched with (i.e. were concordant to) a reference
node. Entries in Tnodes will correspond to entries in Rnodes and ages.

ages Numeric vector of length NC, listing divergence times (ages) of the reference
nodes listed in Rnodes. These ages can be used as fixed anchors for time-
calibrating the target tree using a separate program (such as PATHdS).

Author(s)

Stilianos Louca

References
J. M. Eastman, L. J. Harmon, D. C. Tank (2013). Congruification: support for time scaling large
phylogenetic trees. Methods in Ecology and Evolution. 4:688-691.

See Also

extend_tree_to_height, date_tree_red, get_tips_for_mrcas, tree_distance

26 congruent_hbds_model

Examples

generate random tree (target tree)
Ntips = 10000
tree = castor::generate_random_tree(parameters=list(birth_rate_intercept=1), max_tips=Ntips)$tree

extract random subtree (reference tree)

Nsubtips =10

subtips = sample.int(n=Ntips,size=Nsubtips, replace=FALSE)
subtreeing = castor::get_subtree_with_tips(tree, only_tips=subtips)
subtree = subtreeing$subtree

map subset of target tips to reference tips
mapping = matrix(c(subtreeing$new2old_tip, (1:Nsubtips)),ncol=2,byrow=FALSE)

extract divergence times by congruification
congruification = congruent_divergence_times(subtree, tree, mapping)

cat("Concordant target nodes:\n")
print(congruification$target_nodes)

cat(”Ages of concordant nodes:\n")
print(congruification$ages)

congruent_hbds_model Generate a congruent homogenous-birth-death-sampling model.

Description

Given a homogenous birth-death-sampling (HBDS) model (or abstract congruence class), obtain
the congruent model (or member of the congruence class) with a specific speciation rate A, or
extinction rate y, or sampling rate v, or effective reproduction ratio R. or removal rate p + 1
(aka. "become uninfectious"" rate). All input and output time-profiles are specified as piecewise
polynomial curves (splines), defined on a discrete grid of ages. This function allows exploration
of a model’s congruence class, by obtaining various members of the congruence class depending
on the specified A, p, 1, R, or removal rate. For more details on HBDS models and congruence
classes see the documentation of simulate_deterministic_hbds.

Usage
congruent_hbds_model (age_grid,

PSR,

PDR,

lambda_psi,

lambda = NULL,
mu = NULL,
psi = NULL,
Reff = NULL,
removal_rate = NULL,

congruent_hbds_model 27

lambda®@
CSA_ages
CSA_pulled_probs NULL,
CSA_PSRs NULL,
splines_degree =1,

ODE_relative_dt 0.001,
ODE_relative_dy le-4)

NULL,
NULL,

Arguments

age_grid Numeric vector, listing discrete ages (time before present) on which the vari-
ous model variables (e.g., A\, u etc) are specified. Listed ages must be strictly
increasing, and must include the present-day (i.e. age 0).

PSR Numeric vector, of the same size as age_grid, specifying the pulled speciation
rate (PSR) (in units 1/time) at the ages listed in age_grid. The PSR is assumed
to vary polynomially between grid points (see argument splines_degree). Can
also be a single number, in which case PSR is assumed to be time-independent.

PDR Numeric vector, of the same size as age_grid, specifying the pulled diversifi-
cation rate (PDR) (in units 1/time) at the ages listed in age_grid. The PDR is as-
sumed to vary polynomially between grid points (see argument splines_degree).
The PDR of a HBDS model is defined as PDR = A — pp — ¢ + (1/X\)d\/dt
(where t denotes age). Can also be a single number, in which case PDR is as-
sumed to be time-independent.

lambda_psi Numeric vector, of the same size as age_grid, specifying the product of specia-
tion rate and sampling rate (A, in units 1/time”?2) at the ages listed in age_grid.
A1) is assumed to vary polynomially between grid points (see argument splines_degree).
Can also be a single number, in which case A is assumed to be time-independent.

lambda Numeric vector, of the same size as age_grid, specifying the speciation rate (A,
in units 1/time) at the ages listed in age_grid. The speciation rate is assumed to
vary polynomially between grid points (see argument splines_degree). Can
also be a single number, in which case) is assumed to be time-independent. By
providing A, one can select a specific model from the congruence class. Note
that exactly one of lambda, mu, psi, Reff or removal_rate must be provided.

mu Numeric vector, of the same size as age_grid, specifying the extinction rate (u,
in units 1/time) at the ages listed in age_grid. The extinction rate is assumed to
vary polynomially between grid points (see argument splines_degree). Can
also be a single number, in which case p is assumed to be time-independent. In
an epidemiological context, y typically corresponds to the recovery rate plus the
death rate of infected individuals. By providing p (together with 1ambda@, see
below), one can select a specific model from the congruence class. Note that
exactly one of lambda, mu, psi, Reff or removal_rate must be provided.

psi Numeric vector, of the same size as age_grid, specifying the (Poissonian)
sampling rate (¢, in units 1/time) at the ages listed in age_grid. The sam-
pling rate is assumed to vary polynomially between grid points (see argument
splines_degree). Can also be a single number, in which case v is assumed to
be time-independent. By providing 1/, one can select a specific model from the
congruence class. Note that exactly one of 1ambda, mu, psi, Reff or removal_rate
must be provided.

congruent_hbds_model

Reff Numeric vector, of the same size as age_grid, specifying the effective repro-
duction ratio (R., unitless) at the ages listed in age_grid. The R, is assumed to
vary polynomially between grid points (see argument splines_degree). Can
also be a single number, in which case R, is assumed to be time-independent.
By providing R. (together with 1lambda®, see below), one can select a specific
model from the congruence class. Note that exactly one of lambda, mu, psi,
Reff or removal_rate must be provided.

removal_rate Numeric vector, of the same size as age_grid, specifying the removal rate (u +
1), in units 1/time) at the ages listed in age_grid. IN an epidemiological context
this is also known as "become uninfectious" rate. The removal rate is assumed
to vary polynomially between grid points (see argument splines_degree). Can
also be a single number, in which case the removal rate is assumed to be time-
independent. By providing p + 1 (together with 1ambda@, see below), one can
select a specific model from the congruence class. Note that exactly one of
lambda, mu, psi, Reff or removal_rate must be provided.

lambda@ Numeric, specifying the speciation rate at the present-day (i.e., at age 0). Must
be provided if and only if one of mu, Reff or removal_rate is provided.

CSA_ages Optional numeric vector, listing the ages of concentrated sampling attempts, in
ascending order. Concentrated sampling is assumed to occur in addition to any
continuous (Poissonian) sampling specified by psi.

CSA_pulled_probs
Optional numeric vector of the same size as CSA_ages, listing pulled sampling
probabilities at each concentrated sampling attempt (CSA). Note that in contrast
to the sampling rates psi, the CSA_pulled_probs are interpreted as probabili-
ties and must thus be between 0 and 1. CSA_pulled_probs must be provided if
and only if CSA_ages is provided.

CSA_PSRs Optional numeric vector of the same size as CSA_ages, specifying the pulled
sampling rate (PSR) during each concentrated sampling attempt. While in prin-
ciple the PSR is already provided by the argument PSR, the PSR may be non-
continuous at CSAs, which makes a representation as piecewise polynomial
function difficult; hence, you must explicitly provide the correct PSR at each
CSA. CSA_PSRs must be provided if and only if CSA_ages is provided.

splines_degree Integer, either 0,1,2 or 3, specifying the polynomial degree of the provided
time-dependent variables between grid points in age_grid. For example, if
splines_degree==1, then the provided PDR, PSR and so on are interpreted as
piecewise-linear curves; if splines_degree==2 they are interpreted as quadratic
splines; if splines_degree==3 they are interpreted as cubic splines. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on.

ODE_relative_dt
Positive unitless number, specifying the default relative time step for internally
used ordinary differential equation solvers. Typical values are 0.01-0.001.

ODE_relative_dy
Positive unitless number, specifying the relative difference between subsequent
simulated and interpolated values, in internally used ODE solvers. Typical val-

congruent_hbds_model 29

ues are le-2 to le-5. A smaller ODE_relative_dy increases interpolation accu-
racy, but also increases memory requirements and adds runtime.

Details

The PDR, PSR and the product A\t are variables that are invariant across the entire congruence class
of an HBDS model, i.e. any two congruent models have the same PSR, PDR and product A%). Re-
ciprocally, any HBDS congruence class is fully determined by its PDR, PSR and Av. This function
thus allows "collapsing" a congruence class down to a single member (a specific HBDS model) by
specifying one or more additional variables over time (such as A, or ¢, or u and \g). Alternatively,
this function may be used to obtain alternative models that are congruent to some reference model,
for example to explore the robustness of specific epidemiological quantities of interest. The func-
tion returns a specific HBDS model in terms of the time profiles of various variables (such as A,

and).

In the current implementation it is assumed that any sampled lineages are immediately removed
from the pool, that is, this function cannot accommodate models with a non-zero retention prob-
ability upon sampling. This is a common assumption in molecular epidemiology. Note that in
this function age always refers to time before present, i.e., present day age is 0, and age increases
towards the root.

Value
A named list with the following elements:

success Logical, indicating whether the calculation was successful. If FALSE, then the
returned list includes an additional ‘error’ element (character) providing a de-
scription of the error; all other return variables may be undefined.

valid Logical, indicating whether the returned model appears to be biologically valid
(for example, does not have negative A, i or v). In principle, a congruence class
may include biologically invalid models, which might be returned depending on
the input to congruent_hbds_model. Note that only biologically valid models
can be subsequently simulated using simulate_deterministic_hbds.

ages Numeric vector of size NG, specifying the discrete ages (time before present) on
which all returned time-curves are specified. Will always be equal to age_grid.

lambda Numeric vector of size NG, listing the speciation rates \ of the returned model
at the ages given in ages[].

mu Numeric vector of size NG, listing the extinction rates p of the returned model
at the ages given in ages[].

psi Numeric vector of size NG, listing the (Poissonian) sampling rates ¢/ of the
returned model at the ages given in ages[].

lambda_psi Numeric vector of size NG, listing the product A\ at the ages given in ages[].

Reff Numeric vector of size NG, listing the effective reproduction ratio R. of the

returned model at the ages given in ages[].

removal_rate Numeric vector of size NG, listing the removal rate (u + 1, aka. "become
uninfectious" rate) of the returned model at the ages given in ages[].

Pmissing Numeric vector of size NG, listing the probability that a past lineage extant
during ages[] will be missing from a tree generated by the model.

30 congruent_hbds_model

CSA_probs Numeric vector of the same size as CSA_ages, listing the sampling probabilities
at each of the CSAs.

CSA_Pmissings Numeric vector of the same size as CSA_ages, listing the probability that a past
lineage extant during each of CSA_ages[] will be missing from a tree generated
by the model.

Author(s)

Stilianos Louca

References

T. Stadler, D. Kuehnert, S. Bonhoeffer, A. J. Drummond (2013). Birth-death skyline plot reveals
temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). PNAS. 110:228-233.

A. MacPherson, S. Louca, A. McLaughlin, J. B. Joy, M. W. Pennell (in review as of 2020). A gen-
eral birth-death-sampling model for epidemiology and macroevolution. DOI:10.1101/2020.10.10.334383

See Also

generate_tree_hbds, fit_hbds_model_parametric, simulate_deterministic_hbds

Examples

define an HBDS model with exponentially decreasing speciation/extinction rates

and constant Poissonian sampling rate psi

oldest_age= 10

age_grid seq(from=0, to=oldest_age,by=0.1) # choose a sufficiently fine age grid
lambda = 1xexp(0.01*age_grid) # define lambda on the age grid

mu 0.2xlambda # assume similarly shaped but smaller mu

simulate deterministic HBD model
scale LTT such that it is 100 at age 1

sim = simulate_deterministic_hbds(age_grid = age_grid,
lambda = lambda,
mu = mu,
psi =0.1,
ageo =1,
LTTO = 100)

calculate a congruent HBDS model with an alternative sampling rate
use the previously simulated variables to define the congruence class
new_psi = 0.1xexp(-0.01*sim$ages) # consider a psi decreasing with age

congruent = congruent_hbds_model (age_grid = sim$ages,
PSR = sim$PSR,
PDR = sim$PDR,
lambda_psi = sim$lambda_psi,
psi = new_psi)

compare the deterministic LTT of the two models
to confirm that the models are indeed congruent
if (!congruent$valid){

consentrait_depth 31

cat("WARNING: Congruent model is not biologically valid\n")
Yelse{

simulate the congruent model to get the LTT

csim = simulate_deterministic_hbds(age_grid = congruent$ages,

lambda = congruent$lambda,
mu = congruent$mu,

psi = congruent$psi,
ageo =1,

LTTO = 100)

plot deterministic LTT of the original and congruent model
plot(x = sim$ages, y = sim$LTT, type='l",
main="dLTT', xlab='age', ylab='lineages',
xlim=c(oldest_age,0), col='red')
lines(x= csim$ages, y=csim$LTT,
type='p', pch=21, col='blue')

3
consentrait_depth Calculate phylogenetic depth of a binary trait using the consenTRAIT
metric.
Description

Given a rooted phylogenetic tree and presences/absences of a binary trait for each tip, calculate the
mean phylogenetic depth at which the trait is conserved across clades, in terms of the consenTRAIT
metric introduced by Martiny et al (2013). This is the mean depth of clades that are positive in the
trait (i.e. in which a sufficient fraction of tips exhibits the trait).

Usage
consentrait_depth(tree,
tip_states,
min_fraction =0.9,
count_singletons = TRUE,
singleton_resolution= 0,
weighted = FALSE,
Npermutations = 0)
Arguments
tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.
tip_states A numeric vector of size Ntips indicating absence (value <=0) or presence (value

>0) of a particular trait at each tip of the tree. Note that tip_states[i] (where i is
an integer index) must correspond to the i-th tip in the tree.

min_fraction Minimum fraction of tips in a clade exhibiting the trait, for the clade to be con-
sidered "positive" in the trait. In the original paper by Martiny et al (2013), this
was 0.9.

32 consentrait_depth

count_singletons
Logical, specifying whether to include singletons in the statistics (tips positive
in the trait, but not part of a larger positive clade). The phylogenetic depth of
singletons is taken to be half the length of their incoming edge, as proposed by
Martiny et al (2013). If FALSE, singletons are ignored.
singleton_resolution
Numeric, specifying the phylogenetic resolution at which to resolve singletons.
Any clade found to be positive in a trait will be considered a singleton if the
distance of the clade’s root to all descending tips is below this threshold.

weighted Whether to weight positive clades by their number of positive tips. If FALSE,
each positive clades is weighted equally, as proposed by Martiny et al (2013).

Npermutations Number of random permutations for estimating the statistical significance of the
mean trait depth. If zero (default), the statistical significance is not calculated.

Details

This function calculates the "consenTRAIT" metric (or variants thereof) proposed by Martiny et al.
(2013) for measuring the mean phylogenetic depth at which a binary trait (e.g. presence/absence of
a particular metabolic function) is conserved across clades. A greater mean depth means that the
trait tends to be conserved in deeper-rooting clades. In their original paper, Martiny et al. proposed
to consider a trait as conserved in a clade (i.e. marking a clade as "positive" in the trait) if at
least 90% of the clade’s tips exhibit the trait (i.e. are "positive" in the trait). This fraction can be
controlled using the min_fraction parameter. The depth of a clade is taken as the average distance
of its tips to the clade’s root.

Note that the consenTRAIT metric does not treat "presence" and "absence" equally, i.e., if one were
to reverse all presences and absences then the consenTRAIT metric will generally have a different
value. This is because the focus is on the presence of the trait (e.g., presence of a metabolic function,
or presence of a morphological feature).

The default parameters of this function reflect the original choices made by Martiny et al. (2013),
however in some cases it may be sensible to adjust them. For example, if you suspect a high
risk of false positives in the detection of a trait, it may be worth setting count_singletons to
FALSE to avoid skewing the distribution of conservation depths towards shallower depths due to
false positives.

The statistical significance of the calculated mean depth, i.e. the probability of encountering such a
mean dept or higher by chance, is estimated based on a null model in which each tip is re-assigned
a presence or absence of the trait by randomly reshuffling the original tip_states.

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).
If tree$edge. length is missing, then every edge is assumed to have length 1.

Value

A list with the following elements:

mean_depth Mean phylogenetic depth of clades that are positive in the trait.
var_depth Variance of phylogenetic depths of clades that are positive in the trait.
min_depth Minimum phylogenetic depth of clades that are positive in the trait.

max_depth Maximum phylogenetic depth of clades that are positive in the trait.

consentrait_depth 33

Npositives Number of clades that are positive in the trait.

P Statistical significance (P-value) of mean_depth, under a null model of random
trait presences/absences (see details above). This is the probability that, under
the null model, the mean_depth would be at least as high as observed in the

data.
mean_random_depth

Mean random mean_depth, under a null model of random trait presences/absences
(see details above).

positive_clades
Integer vector, listing indices of tips and nodes (from 1 to Ntips+Nnodes) that
were found to be positive in the trait and counted towards the statistic.
positives_per_clade
Integer vector of size Ntips+Nnodes, listing the number of descending tips per
clade (tip or node) that were positive in the trait.
mean_depth_per_clade
Numeric vector of size Ntips+Nnodes, listing the mean phylogenetic depth of
each clade (tip or node), i.e. the average distance to all its descending tips.

Author(s)

Stilianos Louca

References
A. C. Martiny, K. Treseder and G. Pusch (2013). Phylogenetic trait conservatism of functional traits
in microorganisms. ISME Journal. 7:830-838.

See Also

get_trait_acf, discrete_trait_depth

Examples

Not run:
generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=1000)$tree

simulate binary trait evolution on the tree
Q = get_random_mk_transition_matrix(Nstates=2, rate_model="ARD", max_rate=0.1)
tip_states = simulate_mk_model(tree, Q)$tip_states

change states from 1/2 to @/1 (presence/absence)
tip_states = tip_states - 1

calculate phylogenetic conservatism of trait
results = consentrait_depth(tree, tip_states, count_singletons=FALSE, weighted=TRUE)
cat(sprintf("Mean depth = %g, std = %g\n",results$mean_depth,sqrt(results$var_depth)))

End(Not run)

34

count_lineages_through_time

count_lineages_through_time

Count number of lineages through time (LTT).

Description

Given a rooted timetree (i.e., a tree whose edge lengths represent time intervals), calculate the
number of lineages represented in the tree at various time points, otherwise known as "lineages

nn

through time

(LTT) curve. The root is interpreted as time 0, and the distance of any node or tip

from the root is interpreted as time elapsed since the root. Optionally, the slopes and relative slopes
of the LTT curve are also returned.

Usage

count_lineages_through_time(tree,

Arguments

tree

Ntimes

min_time

max_time

times

include_slopes

ultrametric

degree

Ntimes = NULL,
min_time = NULL,
max_time = NULL,
times = NULL,
include_slopes= FALSE,
ultrametric = FALSE,
degree =1,

regular_grid = TRUE)

A rooted tree of class "phylo"”, where edge lengths represent time intervals (or
similar).

Integer, number of equidistant time points at which to count lineages. Can also
be NULL, in which case times must be provided.

Minimum time (distance from root) to consider. If NULL, this will be set to the
minimum possible (i.e. 0). Only relevant if times==NULL.

Maximum time (distance from root) to consider. If NULL, this will be set to the
maximum possible. Only relevant if times==NULL.

Integer vector, listing time points (in ascending order) at which to count lineages.
Can also be NULL, in which case Ntimes must be provided.

Logical, specifying whether the slope and the relative slope of the returned
clades-per-time-point curve should also be returned.

Logical, specifying whether the input tree is guaranteed to be ultrametric, even
in the presence of some numerical inaccuracies causing some tips not have ex-
actly the same distance from the root. If you know the tree is ultrametric, then
this option helps the function choose a better time grid for the LTT.

Integer, specifying the "degree" of the LTT curve: LTT(t) will be the number
of lineages in the tree at time t that have at least n descending tips in the tree.
Typically order=1, which corresponds to the classical LTT curve.

count_lineages_through_time 35

regular_grid Logical, specifying whether the automatically generated time grid should be reg-
ular (equal distances between grid points). This option only matters if times==NULL.
If regular_grid==FALSE and times==NULL, the time grid will be irregular,
with grid point density being roughly proportional to the square root of the num-
ber of lineages at any particular time (i.e., the grid becomes finer towards the

tips).

Details

Given a sequence of time points between a tree’s root and tips, this function essentially counts how
many edges "cross" each time point (if degree==1). The slopes and relative slopes are calculated
from this curve using finite differences.

Note that the classical LTT curve (degree=1) is non-decreasing over time, whereas higher-degree
LTT’s may be decreasing as well as increasing over time.

If tree$edge. length is missing, then every edge in the tree is assumed to be of length 1. The tree
may include multifurcations as well as monofurcations (i.e. nodes with only one child). The tree
need not be ultrametric, although in general this function only makes sense for dated trees (e.g.,
where edge lengths are time intervals or similar).

Either Ntimes or times must be non-NULL, but not both. If times!=NULL, then min_time and
max_time must be NULL.

Value
A list with the following elements:
Ntimes Integer, indicating the number of returned time points. Equal to the provided
Ntimes if applicable.

times Numeric vector of size Ntimes, listing the time points at which the LTT was
calculated. If times was provided as an argument to the function, then this will
be the same as provided.

lineages Integer vector of size Ntimes, listing the number of lineages represented in the
tree at each time point that have at least degree descending tips, i.e. the LTT
curve.

slopes Numeric vector of size Ntimes, listing the slopes (finite-difference approxima-

tion of 1st derivative) of the LTT curve.

relative_slopes
Numeric vector of size Ntimes, listing the relative slopes of the LTT curve, i.e.
slopes divided by a sliding-window average of lineages.

Author(s)

Stilianos Louca

Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1), max_tips=1000)$tree

36 count_tips_per._node

calculate classical LTT curve
results = count_lineages_through_time(tree, Ntimes=100)

plot classical LTT curve
plot(results$times, results$lineages, type="1", xlab="time", ylab="# clades")

count_tips_per_node Count descending tips.

Description

Given a rooted phylogenetic tree, count the number of tips descending (directy or indirectly) from
each node.

Usage

count_tips_per_node(tree)

Arguments
tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.
Details

The asymptotic time complexity of this function is O(Nedges), where Nedges is the number of
edges.

Value

An integer vector of size Nnodes, with the i-th entry being the number of tips descending (directly
or indirectly) from the i-th node.

Author(s)

Stilianos Louca

See Also

get_subtree_at_node

count_transitions_between_clades 37

Examples

generate a tree using a simple speciation model
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=1000)$tree

count number of tips descending from each node
tips_per_node = count_tips_per_node(tree);

plot histogram of tips-per-node
barplot(table(tips_per_node[tips_per_node<10]), xlab="# tips"”, ylab="# nodes")

count_transitions_between_clades
Count the number of state transitions between tips or nodes.

Description

Given a rooted phylogenetic tree, one or more pairs of tips and/or nodes, and the state of some
discrete trait at each tip and node, calculate the number of state transitions along the shortest path
between each pair of tips/nodes.

Usage

count_transitions_between_clades(tree, A, B, states, check_input=TRUE)

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.

A An integer vector or character vector of size Npairs, specifying the first of the
two members of each pair of tips/nodes. If an integer vector, it must list indices
of tips (from 1 to Ntips) and/or nodes (from Ntips+1 to Ntips+Nnodes). If a
character vector, it must list tip and/or node names.

B An integer vector or character vector of size Npairs, specifying the second of the
two members of each pair of tips/nodes. If an integer vector, it must list indices
of tips (from 1 to Ntips) and/or nodes (from Ntips+1 to Ntips+Nnodes). If a
character vector, it must list tip and/or node names.

states Integer vector of length Ntips+Nnodes, listing the discrete state of each tip
and node in the tree. The order of entries must match the order of tips and
nodes in the tree; this requirement is only verified if states has names and
check_input==TRUE.

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.

38 date_tree_red

Details

The discrete state must be represented by integers (both negatives and positives are allowed); char-
acters and other data types are not allowed. If tip/node states are originally encoded as characters
rather than integers, you can use map_to_state_space to convert these to integers (for example
“male” & “female” may be represented as 1 & 2). Also note that a state must be provided for each
tip and ancestral node, not just for the tips. If you only know the states of tips, you can use an
ancestral state reconstruction tool to estimate ancestral states first.

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).
If A and/or B is a character vector, then tree$tip.label must exist. If node names are included in
A and/or B, then tree$node.label must also exist.

Value
An integer vector of size Npairs, with the i-th element being the number of state transitions between
tips/nodes ALi] and B[i] (along their shortest connecting path).

Author(s)

Stilianos Louca

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

pick 3 random pairs of tips or nodes

Npairs = 3

A = sample.int(n=(Ntips+tree$Nnode), size=Npairs, replace=FALSE)
B = sample.int(n=(Ntips+tree$Nnode), size=Npairs, replace=FALSE)

assign a random state to each tip & node in the tree
consider a binary trait
states = sample.int(n=2, size=Ntips+tree$Nnode, replace=TRUE)

calculate number of transitions for each tip pair
Ntransitions = count_transitions_between_clades(tree, A, B, states=states)

date_tree_red Date a tree based on relative evolutionary divergences.

Description

Given a rooted phylogenetic tree and a single node ("anchor’) of known age (distance from the
present), rescale all edge lengths so that the tree becomes ultrametric and edge lengths correspond
to time intervals. The function is based on relative evolutionary divergences (RED), which measure
the relative position of each node between the root and its descending tips (Parks et al. 2018). If
no anchor node is provided, the root is simply assumed to have age 1. This function provides a
heuristic quick-and-dirty way to date a phylogenetic tree.

date_tree_red 39

Usage

date_tree_red(tree, anchor_node = NULL, anchor_age = 1)

Arguments
tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.
anchor_node Integer, ranging between 1 and Nnodes. Index of the node to be used as dating
anchor. If NULL, the tree’s root is used as anchor.
anchor_age Positive numeric. Age of the anchor node.
Details

The RED of a node measures its relative placement between the root and the node’s descending tips
(Parks et al. 2018). The root’s RED is set to 0. Traversing from root to tips (preorder traversal), for
each node the RED is set to P + (a/(a + b)) - (1 — P), where P is the RED of the node’s parent, a
is the edge length connecting the node to its parent, and b is the average distance from the node to
its descending tips. The RED of all tips is set to 1.

For each edge, the RED difference between child & parent is used to set the new length of that edge,
multiplied by some common scaling factor to translate RED units into time units. The scaling factor
is chosen such that the new distance of the anchor node from its descending tips equals anchor_age.
All tips will have age 0. The topology of the dated tree, as well as tip/node/edge indices, remain
unchanged.

This function provides a heuristic approach to making a tree ultrametric, and has not been derived
from a specific evolutionary model. In particular, its statistical properties are unknown to the author.

The time complexity of this function is O(Nedges). The input tree may include multi-furcations
(i.e. nodes with more than 2 children) as well as mono-furcations (i.e. nodes with only one child).
If tree$edge. length is NULL, then all edges in the input tree are assumed to have length 1.

Value

A list with the following elements:

success Logical, indicating whether the dating was successful. If FALSE, all other return
values (except for error) may be undefined.
tree A new rooted tree of class "phylo", representing the dated tree.
REDs Numeric vector of size Nnodes, listing the RED of each node in the input tree.
error Character, listing any error message if success==FALSE.
Author(s)

Stilianos Louca

References

D. H. Parks, M. Chuvochina et al. (2018). A proposal for a standardized bacterial taxonomy based
on genome phylogeny. bioRxiv 256800. DOI:10.1101/256800

40 discrete_trait_depth

See Also

congruent_divergence_times

Examples

generate a random non-ultrametric tree
params = list(birth_rate_intercept=1, death_rate_intercept=0.38)
tree = generate_random_tree(params, max_time=1000, coalescent=FALSE)S$tree

make ultrametric, by setting the root to 2 million years
dated_tree = date_tree_red(tree, anchor_age=2e6)

discrete_trait_depth Calculate phylogenetic depth of a discrete trait.

Description

Given a rooted phylogenetic tree and the state of a discrete trait at each tip, calculate the mean
phylogenetic depth at which the trait is conserved across clades, using a modification of the con-
senTRAIT metric introduced by Martiny et al (2013). This is the mean depth of clades that are
"maximally uniform" in the trait (see below for details).

Usage
discrete_trait_depth(tree,
tip_states,
min_fraction =0.9,

count_singletons TRUE,
singleton_resolution = 0,

weighted = FALSE,
Npermutations =09)
Arguments
tree A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge.
tip_states A vector of size Ntips specifying the state at each tip. Note that tip_states[i]

(where i is an integer index) must correspond to the i-th tip in the tree. This
vector may be of any base data type, although character or integer are the most
typical types.

min_fraction Minimum fraction of tips in a clade that must have the dominant state, for the
clade to be considered "uniform" in the trait.

count_singletons
Logical, specifying whether to consider singleton clades in the statistics (e.g.,
tips not part of a larger uniform clade). The phylogenetic depth of singletons
is taken to be half the length of their incoming edge, as proposed by Martiny et
al (2013). If FALSE, singletons are ignored. If you suspect a high risk of false

discrete_trait_depth 41

positives in the detection of a trait, it may be worth setting count_singletons
to FALSE to avoid skewing the distribution of conservation depths towards shal-
lower depths due to false positives.

singleton_resolution
Numeric, specifying the phylogenetic resolution at which to resolve singletons.
A clade will be considered a singleton if the distance of the clade’s root to all
descending tips is below this threshold.

weighted Whether to weight uniform clades by their number of tips in the dominant state.
If FALSE, each uniform clades is weighted equally.

Npermutations Number of random permutations for estimating the statistical significance of the
mean trait depth. If zero (default), the statistical significance is not calculated.

Details

The depth of a clade is defined as the average distance of its tips to the clade’s root. The "domi-
nant" state of a clade is defined as the most frequent state among all of the clade’s tips. A clade is
considered "uniform" in the trait if the frequency of its dominant state is equal to or greater than
min_fraction. The clade is "maximally uniform" if it is uniform and not descending from another
uniform clade. The mean depth of the trait is defined as the average phylogenetic depth of all con-
sidered maximal uniform clades (whether a maximally uniform clade is considered in this statistic
depends on count_singletons and singleton_resolution). A greater mean depth means that
the trait tends to be conserved in deeper-rooting clades.

This function implements a modification of the "consenTRAIT" metric proposed by Martiny et al.
(2013) for measuring the mean phylogenetic depth at which a binary trait is conserved across clades.
Note that the original consenTRAIT metric by Martiny et al. (2013) does not treat the two states
of a binary trait ("presence" and "absence") equally, whereas the function discrete_trait_depth
does. If you want the original consenTRAIT metric for a binary trait, see the function consentrait_depth.

The statistical significance of the calculated mean depth, i.e. the probability of encountering such a
mean dept or higher by chance, is estimated based on a null model in which each tip is re-assigned a
state by randomly reshuffling the original tip_states. A low P value indicates that the trait exhibits
a phylogenetic signal, whereas a high P value means that there is insufficient evidence in the data to
suggest a phylogenetic signal (i.e., the trait’s phylogenetic conservatism is indistinguishable from
the null model of zero conservatism).

The tree may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).
If tree$edge. length is missing, then every edge is assumed to have length 1.

Value

A list with the following elements:
unique_states Vector of the same type as tip_states and of length Nstates, listing the unique
possible states of the trait.

mean_depth Numeric, specifying the mean phylogenetic depth of the trait, i.e., the mean
depth of considered maximally uniform clades.

var_depth Numeric, specifying the variance of phylogenetic depths of considered maxi-
mally uniform clades.

42

discrete_trait_depth

min_depth Numeric, specifying the minimum phylogenetic depth of considered maximally
uniform clades.

max_depth Numeric, specifying the maximum phylogenetic depth of considered maximally

uniform clades.

Nmax_uniform Number of considered maximal uniform clades.

mean_depth_per_state
Numeric vector of size Nstates. Mean depth of considered maximally uni-
form clades, separately for each state and in the same order as unique_states.
Hence, mean_depth_per_state[s] lists the mean depth of considered maxi-
mally uniform clades whose dominant state is unique_states[s].

var_depth_per_state
Numeric vector of size Nstates. Variance of depths of considered maximally uni-
form clades, separately for each state and in the same order as unique_states

min_depth_per_state
Numeric vector of size Nstates. Minimum phylogenetic depth of considered
maximally uniform clades, separately for each state and in the same order as
unique_states

max_depth_per_state
Numeric vector of size Nstates. Maximum phylogenetic depth of considered
maximally uniform clades, separately for each state and in the same order as
unique_states

Nmax_uniform_per_state
Integer vector of size Nstates. Number of considered maximally uniform clades,
seperately for each state and in the same order as unique_states

P Statistical significance (P-value) of mean_depth, under a null model of random
tip states (see details above). This is the probability that, under the null model,
the mean_depth would be at least as high as observed in the data.

mean_random_depth
Mean random mean_depth, under the null model of random tip states (see details
above).

Author(s)

Stilianos Louca

References

A. C. Martiny, K. Treseder and G. Pusch (2013). Phylogenetic trait conservatism of functional traits
in microorganisms. ISME Journal. 7:830-838.

See Also

get_trait_acf, consentrait_depth

evaluate_spline 43

Examples

Not run:
generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=1000)$tree

simulate discrete trait evolution on the tree

consider a trait with 3 discrete states

Q = get_random_mk_transition_matrix(Nstates=3, rate_model="ARD", max_rate=0.1)
tip_states = simulate_mk_model(tree, Q)$tip_states

calculate phylogenetic conservatism of trait
results = discrete_trait_depth(tree, tip_states, count_singletons=FALSE, weighted=TRUE)
cat(sprintf("Mean depth = %g, std = %g\n",results$mean_depth,sqrt(results$var_depth)))

End(Not run)

evaluate_spline Evaluate a scalar spline at arbitrary locations.

Description

Given a natural spline function Y : R — R, defined as a series of Y values on a discrete X
grid, evaluate its values (or derivative) at arbitrary X points. Supported splines degrees are 0 (Y is
piecewise constant), 1 (piecewise linear), 2 (piecewise quadratic) and 3 (piecewise cubic).

Usage
evaluate_spline(Xgrid,
Ygrid,
splines_degree,
Xtarget,
extrapolate = "const”,
derivative = 0)
Arguments
Xgrid Numeric vector, listing x-values in ascending order.
Ygrid Numeric vector of the same length as Xgrid, listing the values of Y on Xgrid.

splines_degree Integer, either 0, 1, 2 or 3, specifying the polynomial degree of the spline curve
Y between grid points. For example, 0 means Y is piecewise constant, 1 means
Y is piecewise linear and so on.

Xtarget Numeric vector, listing arbitrary X values on which to evaluate Y.

extrapolate Character, specifying how to extrapolate Y beyond Xgrid if needed. Avail-
able options are "const" (i.e. use the value of Y on the nearest Xgrid point) or
"splines" (i.e. use the polynomial coefficients from the nearest grid point).

derivative Integer, specifying which derivative to return. To return the spline’s value, set
derivative=0. Currently only the options 0,1,2 are supported.

44 exponentiate_matrix

Details

Spline functions are returned by some of castor’s fitting routines, so evaluate_spline is meant
to aid with the evaluation and plotting of such functions. A spline function of degree D > 1 has
continuous derivatives up to degree D — 1. The function evaluate_spline is much more efficient
if Xtarget is monotonically increasing or decreasing.

This function is used to evaluate the spline’s values at arbitrary points. To obtain the spline’s poly-
nomial coefficients, use spline_coefficients.

Value

A numeric vector of the same length as Xtarget, listing the values (or derivatives, if derivative>0)
of Y on Xtarget.

Author(s)

Stilianos Louca

See Also

spline_coefficients

Examples

specify Y on a coarse X grid
Xgrid = seq(from=0,to=10, length.out=10)
Ygrid = sin(Xgrid)

define a fine grid of target X values
Xtarget = seq(from=0,to=10,length.out=1000)

evaluate Y on Xtarget, either as piecewise linear or piecewise cubic function
Ytarget_lin = evaluate_spline(Xgrid,Ygrid,splines_degree=1,Xtarget=Xtarget)
Ytarget_cub = evaluate_spline(Xgrid,Ygrid,splines_degree=3,Xtarget=Xtarget)

plot both the piecewise linear and piecewise cubic curves
plot(x=Xtarget, y=Ytarget_cub, type='l', col='red', xlab='X"', ylab='Y")
lines(x=Xtarget, y=Ytarget_lin, type='l', col='blue', xlab='X', ylab='Y")

exponentiate_matrix Exponentiate a matrix.

Description

Calculate the exponential exp(7 - A) of some quadratic real-valued matrix A for one or more scalar
scaling factors T.

exponentiate_matrix 45

Usage

exponentiate_matrix(A, scalings=1, max_absolute_error=1e-3,
min_polynomials=1, max_polynomials=1000)

Arguments
A A real-valued quadratic matrix of size N x N.
scalings Vector of real-valued scalar scaling factors T, for each of which the exponential

exp(T - A) should be calculated.

max_absolute_error
Maximum allowed absolute error for the returned approximations. A smaller
allowed error implies a greater computational cost as more matrix polynomi-
als need to be included (see below). The returned approximations may have a
greater error if the parameter max_polynomials is set too low.

min_polynomials
Minimum number of polynomials to include in the approximations (see equation
below), even if max_absolute_error may be satisfied with fewer polynomials.
If you don’t know how to choose this, in most cases the default is fine. Note
that regardless of min_polynomials and max_absolute_error, the number of
polynomials used will not exceed max_polynomials.

max_polynomials
Maximum allowed number of polynomials to include in the approximations (see
equation below). Meant to provide a safety limit for the amount of memory and
the computation time required. For example, a value of 1000 means that up to
1000 matrices (powers of A) of size N x N may be computed and stored tem-
porarily in memory. Note that if max_polynomials is too low, the requested
accuracy (via max_absolute_error) may not be achieved. That said, for large
trees more memory may be required to store the actual result rather than the in-
termediate polynomials, i.e. for purposes of saving RAM it doesn’t make much
sense to choose max_polynomials much smaller than the length of scalings.

Details

Discrete character evolution Markov models often involve repeated exponentiations of the same
transition matrix along each edge of the tree (i.e. with the scaling T being the edge length). Matrix
exponentiation can become a serious computational bottleneck for larger trees or large matrices (i.e.
spanning multiple discrete states). This function pre-calculates polynomials A?/p! of the matrix,
and then uses linear combinations of the same polynomials for each requested T:

L P
exp(T - A) = ZTpi' + ..
p=0 P

This function thus becomes very efficient when the number of scaling factors is large (e.g. >10,000).
The number of polynomials included is determined based on the specified max_absolute_error,
and based on the largest (by magnitude) scaling factor requested. The function utilizes the balancing
algorithm proposed by James et al (2014, Algorithm 3) and the scaling & squaring method (Moler
and Van Loan, 2003) to improve the conditioning of the matrix prior to exponentiation.

46 extend_tree_to_height

Value

A 3D numeric matrix of size N x N x S, where N is the number of rows & column of the input
matrix A and S is the length of scalings. The [r,c,s]-th element of this matrix is the entry in the
r-th row and c-th column of exp(scalings[s] - A).

Author(s)

Stilianos Louca

References

R. James, J. Langou and B. R. Lowery (2014). On matrix balancing and eigenvector computation.
arXiv:1401.5766

C. Moler and C. Van Loan (2003). Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review. 45:3-49.

Examples

create a random 5 x 5 matrix
A = get_random_mk_transition_matrix(Nstates=5, rate_model="ER")

calculate exponentials exp(@.1*A) and exp(10*A)
exponentials = exponentiate_matrix(A, scalings=c(0.1,10))

print 1st exponential: exp(@.1*A)
print(exponentials[,,1]1)

print 2nd exponential: exp(10*A)
print(exponentials[,,21)

extend_tree_to_height Extend a rooted tree up to a specific height.

Description

Given a rooted phylogenetic tree and a specific distance from the root (“new height”), elongate
terminal edges (i.e. leading into tips) as needed so that all tips have a distance from the root equal to
the new height. If a tip already extends beyond the specified new height, its incoming edge remains
unchanged.

Usage

extend_tree_to_height(tree, new_height=NULL)

extend_tree_to_height 47

Arguments
tree A rooted tree of class "phylo”. The root is assumed to be the unique node with
no incoming edge.
new_height Numeric, specifying the phylogenetic distance from the root to which tips are to
be extended. If NULL or negative, then it is set to the maximum distance of any
tip from the root.
Details

The input tree may include multi-furcations (i.e. nodes with more than 2 children) as well as mono-
furcations (i.e. nodes with only one child). All tip, edge and node indices remain unchanged. This
function provides a quick-and-dirty way to make a tree ultrametric, or to correct small numerical
inaccuracies in supposed-to-be ultrametric trees.

Value
A list with the following elements:

tree A new rooted tree of class "phylo", representing the extended tree.

max_extension Numeric. The largest elongation added to a terminal edge.

Author(s)

Stilianos Louca

See Also

trim_tree_at_height

Examples

generate a random non-ultrametric tree

tree = generate_random_tree(list(birth_rate_intercept=1,death_rate_intercept=0.5),
max_time=1000,
coalescent=FALSE) $tree

print min & max distance from root
span = get_tree_span(tree)
cat(sprintf("Min & max tip height = %g & %g\n",span$min_distance, span$max_distance))

make tree ultrametric by extending terminal edges
extended = extend_tree_to_height(tree)$tree

print new min & max distance from root
span = get_tree_span(extended)
cat(sprintf("Min & max tip height = %g & %g\n",span$min_distance, span$max_distance))

48 extract_fasttree_constraints

extract_fasttree_constraints
Extract tree constraints in FastTree alignment format.

Description

Given a rooted phylogenetic tree, extract binary constraints in FastTree alignment format. Every
internal bifurcating node with more than 2 descending tips will constitute an separate constraint.

Usage

extract_fasttree_constraints(tree)

Arguments

tree A rooted tree of class "phylo".

Details

This function can be used to define constraints based on a backbone subtree, to be used to generate
a larger tree using FastTree (as of v2.1.11). Only bifurcating nodes with at least 3 descending tips
are used as constraints.

The constraints are returned as a 2D matrix; the actual fasta file with the constraint alignments can
be written easily from this matrix. For more details on FastTree constraints see the original FastTree
documentation.

Value

A list with the following elements:

Nconstraints Integer, specifying the number of constraints extracted.

)

constraints 2D character matrix of size Ntips x Nconstraints, with values '0’, 1’ or ’-’,
specifying which side ("left" or "right") of a constraint (node) each tip is found
on.

constraint2node

Integer vector of size Nconstraints, with values in 1,..,Nnodes, specifying the
original node index used to define each constraint.

Author(s)

Stilianos Louca

find_farthest_tips 49

Examples

generate a simple rooted tree, with tip names tip.1, tip.2,

Ntips = 10

tree = generate_random_tree(list(birth_rate_intercept=1),
max_tips=Ntips,
tip_basename="tip.")$tree

extract constraints
constraints = castor::extract_fasttree_constraints(tree)$constraints

print constraints to screen in fasta format
cat(paste(sapply(1:Ntips,
FUN=function(tip) sprintf(">%s\n%s\n",tree$tip.labell[tip],
paste(as.character(constraints[tip,]),collapse=""))),collapse=""))

find_farthest_tips Find farthest tip to each tip & node of a tree.

Description

Given a rooted phylogenetic tree and a subset of potential target tips, for each tip and node in the
tree find the farthest target tip. The set of target tips can also be taken as the whole set of tips in the
tree.

Usage

find_farthest_tips(tree,
only_descending_tips = FALSE,

target_tips = NULL,
as_edge_counts = FALSE,
check_input = TRUE)
Arguments
tree A rooted tree of class "phylo". The root is assumed to be the unique node with

no incoming edge.

only_descending_tips
A logical indicating whether the farthest tip to a node or tip should be chosen
from its descending tips only. If FALSE, then the whole set of possible target
tips is considered.

target_tips Optional integer vector or character vector listing the subset of target tips to
restrict the search to. If an integer vector, this should list tip indices (val-
ues in 1,..,Ntips). If a character vector, it should list tip names (in this case
tree$tip.label must exist). If target_tips is NULL, then all tips of the tree
are considered as target tips.

as_edge_counts Logical, specifying whether to count phylogenetic distance in terms of edge
counts instead of cumulative edge lengths. This is the same as setting all edge
lengths to 1.

50 find_farthest_tips

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.
Details

If only_descending_tips is TRUE, then only descending target tips are considered when searching
for the farthest target tip of a node/tip. In that case, if a node/tip has no descending target tip,
its farthest target tip is set to NA. If tree$edge.length is missing or NULL, then each edge is
assumed to have length 1. The tree may include multi-furcations as well as mono-furcations (i.e.
nodes with only one child).

The asymptotic time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.

Value
A list with the following elements:

farthest_tip_per_tip
An integer vector of size Ntips, listing the farthest target tip for each tip in the
tree. Hence, farthest_tip_per_tip[i] is the index of the farthest tip (from
the set of target tips), with respect to tip i (where i=1,..,Ntips). Some values
may appear multiple times in this vector, if multiple tips share the same farthest
target tip.

farthest_tip_per_node
An integer vector of size Nnodes, listing the index of the farthest target tip
for each node in the tree. Hence, farthest_tip_per_node[i] is the index
of the farthest tip (from the set of target tips), with respect to node i (where
i=1,..,Nnodes). Some values may appear multiple times in this vector, if multi-
ple nodes share the same farthest target tip.

farthest_distance_per_tip
Integer vector of size Ntips. Phylogenetic ("patristic") distance of each tip in the
tree to its farthest target tip. If only_descending_tips was set to TRUE, then
farthest_distance_per_tip[i] will be set to infinity for any tip i that is not
a target tip.

farthest_distance_per_node
Integer vector of size Nnodes. Phylogenetic ("patristic") distance of each node
in the tree to its farthest target tip. If only_descending_tips was set to TRUE,
then farthest_distance_per_node[i] will be set to infinity for any node i
that has no descending target tips.

Author(s)

Stilianos Louca

References

M. G. I. Langille, J. Zaneveld, J. G. Caporaso et al (2013). Predictive functional profiling of micro-
bial communities using 16S rRNA marker gene sequences. Nature Biotechnology. 31:814-821.

find_farthest_tip_pair 51

See Also

find_nearest_tips

Examples

generate a random tree

Ntips = 1000

parameters = list(birth_rate_intercept=1,death_rate_intercept=0.9)
tree = generate_random_tree(parameters,Ntips,coalescent=FALSE)$tree

pick a random set of "target” tips
target_tips = sample.int(n=Ntips, size=5, replace=FALSE)

find farthest target tip to each tip & node in the tree
results = find_farthest_tips(tree, target_tips=target_tips)

plot histogram of distances to target tips (across all tips of the tree)
distances = results$farthest_distance_per_tip
hist(distances, breaks=10, xlab="farthest distance”, ylab="number of tips”, prob=FALSE);

find_farthest_tip_pair
Find the two most distant tips in a tree.

Description

Given a phylogenetic tree, find the two most phylogenetically distant tips (to each other) in the tree.

Usage

find_farthest_tip_pair(tree, as_edge_counts = FALSE)

Arguments

tree A rooted tree of class "phylo". While the tree must be rooted for technical
reasons, the outcome does not actually depend on the rooting.

as_edge_counts Logical, specifying whether to count phylogenetic distance in terms of edge
counts instead of cumulative edge lengths. This is the same as setting all edge
lengths to 1.

Details

If tree$edge.length is missing or NULL, then each edge is assumed to have length 1. The tree
may include multi-furcations as well as mono-furcations (i.e. nodes with only one child).

The asymptotic time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.

52 find_nearest_tips

Value

A named list with the following elements:

tip1 An integer between 1 and Ntips, specifying the first of the two most distant tips.
tip2 An integer between 1 and Ntips, specifying the second of the two most distant

tips.
distance Numeric, specifying the phylogenetic (patristic) distance between the farthest_tip1

and farthest_tip2.

Author(s)

Stilianos Louca

See Also

find_nearest_tips, find_farthest_tips

Examples

generate a random tree

Ntips = 1000

parameters = list(birth_rate_intercept=1,death_rate_intercept=0.9)
tree = generate_random_tree(parameters,Ntips,coalescent=FALSE)$tree

find farthest pair of tips
results = find_farthest_tip_pair(tree)

print results
cat(sprintf("Tip %d and %d have distance %g\n",
results$tipl,results$tip2,results$distance))

find_nearest_tips Find nearest tip to each tip & node of a tree.

Description

Given a rooted phylogenetic tree and a subset of potential target tips, for each tip and node in the
tree find the nearest target tip. The set of target tips can also be taken as the whole set of tips in the
tree.

Usage

find_nearest_tips(tree,
only_descending_tips = FALSE,
target_tips NULL,
as_edge_counts FALSE,
check_input TRUE)

find_nearest_tips 53

Arguments

tree A rooted tree of class "phylo”. The root is assumed to be the unique node with
no incoming edge.

only_descending_tips
A logical indicating whether the nearest tip to a node or tip should be chosen
from its descending tips only. If FALSE, then the whole set of possible target
tips is considered.

target_tips Optional integer vector or character vector listing the subset of target tips to
restrict the search to. If an integer vector, this should list tip indices (val-
ues in 1,.,Ntips). If a character vector, it should list tip names (in this case
tree$tip. label must exist). If target_tips is NULL, then all tips of the tree
are considered as target tips.

as_edge_counts Logical, specifying whether to count phylogenetic distance in terms of edge
counts instead of cumulative edge lengths. This is the same as setting all edge
lengths to 1.

check_input Logical, whether to perform basic validations of the input data. If you know for
certain that your input is valid, you can set this to FALSE to reduce computation
time.
Details

Langille et al. (2013) introduced the Nearest Sequenced Taxon Index (NSTI) as a measure for how
well a set of microbial operational taxonomic units (OTUs) is represented by a set of sequenced
genomes of related organisms. Specifically, the NSTI of a microbial community is the average phy-
logenetic distance of any OTU in the community, to the closest relative with an available sequenced
genome ("target tips"). In analogy to the NSTI, the function find_nearest_tips provides a means
to find the nearest tip (from a subset of target tips) to each tip and node in a phylogenetic tree,
together with the corresponding phylogenetic ("patristic") distance.

If only_descending_tips is TRUE, then only descending target tips are considered when searching
for the nearest target tip of a node/tip. In that case, if a node/tip has no descending target tip, its
nearest target tip is set to NA. If tree$edge. length is missing or NULL, then each edge is assumed
to have length 1. The tree may include multi-furcations as well as mono-furcations (i.e. nodes with
only one child).

The asymptotic time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.

Value
A list with the following elements:

nearest_tip_per_tip
An integer vector of size Ntips, listing the nearest target tip for each tip in the
tree. Hence, nearest_tip_per_tip[i] is the index of the nearest tip (from the
set of target tips), with respect to tip i (where i=1,..,Ntips). Some values may
appear multiple times in this vector, if multiple tips share the same nearest target

tip.

54

find_nearest_tips

nearest_tip_per_node

An integer vector of size Nnodes, listing the index of the nearest target tip
for each node in the tree. Hence, nearest_tip_per_node[i] is the index
of the nearest tip (from the set of target tips), with respect to node i (where
i=1,..,Nnodes). Some values may appear multiple times in this vector, if multi-
ple nodes share the same nearest target tip.

nearest_distance_per_tip

Integer vector of size Ntips. Phylogenetic ("patristic") distance of each tip in the
tree to its nearest target tip. If only_descending_tips was set to TRUE, then
nearest_distance_per_tip[i] will be set to infinity for any tip i that is not a
target tip.

nearest_distance_per_node

Author(s)

Integer vector of size Nnodes. Phylogenetic ("patristic") distance of each node
in the tree to its nearest target tip. If only_descending_tips was set to TRUE,
then nearest_distance_per_node[i] will be set to infinity for any node i that
has no descending target tips.

Stilianos Louca

References

M. G. I. Langille, J. Zaneveld, J. G. Caporaso et al (2013). Predictive functional profiling of micro-
bial communities using 16S rRNA marker gene sequences. Nature Biotechnology. 31:814-821.

See Also

find_farthest_tips

Examples

generate a random tree

Ntips =

tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

pick a random set of "target" tips

target_tips

= sample.int(n=Ntips, size=as.integer(Ntips/10), replace=FALSE)

find nearest target tip to each tip & node in the tree

results

find_nearest_tips(tree, target_tips=target_tips)

plot histogram of distances to target tips (across all tips of the tree)

distances

results$nearest_distance_per_tip

hist(distances, breaks=10, xlab="nearest distance”, ylab="number of tips"”, prob=FALSE);

find_root 55

find_root Find the root of a tree.

Description

Find the root of a phylogenetic tree. The root is defined as the unique node with no parent.

Usage

find_root(tree)

Arguments

tree A tree of class "phylo". If the tree is not rooted, the function will return NA.

Details

By convention, the root of a "phylo" tree is typically the first node (i.e. with index Ntips+1), however
this is not always guaranteed. This function finds the root of a tree by searching for the node with
no parent. If no such node exists, NA is returned. If multiple such nodes exist, NA is returned. If
any node has more than 1 parent, NA is returned. Hence, this function can be used to test if a tree is
rooted purely based on the edge structure, assuming that the tree is connected (i.e. not a forest).

The asymptotic time complexity of this function is O(Nedges), where Nedges is the number of
edges in the tree.
Value

Index of the tree’s root, as listed in tree$edge. An integer ranging from Ntips+1 to Ntips+Nnodes,
where Ntips and Nnodes is the number of tips and nodes in the tree, respectively. By convention,
the root will typically be Ntips+1 but this is not guaranteed.

Author(s)

Stilianos Louca

See Also

find_root_of_monophyletic_tips, root_at_node, root_at_midpoint

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

reroot the tree at the 20-th node
new_root_node = 20
tree = root_at_node(tree, new_root_node, update_indices=FALSE)

56 find_root_of_monophyletic_tips

find new root index and compare with expectation
cat(sprintf("New root is %d, expected at %d\n",find_root(tree),new_root_node+Ntips))

find_root_of_monophyletic_tips
Find the node or tip that, as root, would make a set of target tips
monophyletic.

Description

Given a tree (rooted or unrooted) and a specific set of target tips, this function finds the tip or
node that, if turned into root, would make a set of target tips a monophyletic group that either
descends from a single child of the new root (if as_MRCA==FALSE) or whose MRCA is the new root
(if as_MRCA==TRUE).

Usage

find_root_of_monophyletic_tips(tree, monophyletic_tips, as_MRCA=TRUE, is_rooted=FALSE)

Arguments

tree A tree object of class "phylo". Can be unrooted or rooted.

monophyletic_tips
Character or integer vector, specifying the names or indices, respectively, of the
target tips that should be turned monophyletic. If an integer vector, its elements
must be between 1 and Ntips. If a character vector, its elements must be elements
in tree$tip.label.

as_MRCA Logical, specifying whether the new root should become the MRCA of the target
tips. If FALSE, the new root is chosen such that the MRCA of the target tips is
the child of the new root.

is_rooted Logical, specifying whether the input tree can be assumed to be rooted. If you
are sure that the input tree is rooted, set this to TRUE for computational efficiency,
otherwise to be on the safe side set this to FALSE.

Details

The input tree may include an arbitrary number of incoming and outgoing edges per node (but only
one edge per tip), and the direction of these edges can be arbitrary. Of course, the undirected graph
defined by all edges must still be a valid tree (i.e. a connected acyclic graph). Note that this function
does not change the tree, it just determines which tip or node should be made root for the target tips
to be a monophyletic group.

The asymptotic time complexity of this function is O(Nedges).

Value

A single integer between 1 and (Ntips+Nnodes), specifying the index of the tip or node that, if made
root, would make the target tips monophyletic. If this was not possible, NA is returned.

fit_and_compare_bm_models 57

Author(s)

Stilianos Louca

See Also

find_root

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

pick a random node and find all descending tips
MRCA = sample.int(tree$Nnode,size=1)
monophyletic_tips = get_subtree_at_node(tree, MRCA)$new2old_tip

change root of tree (change edge directions)
tree = root_at_node(tree, new_root_node=10, update_indices=FALSE)

determine root that would make target tips monophyletic
new_root = find_root_of_monophyletic_tips(tree, monophyletic_tips, as_MRCA=TRUE, is_rooted=FALSE)

compare expectation with result
cat(sprintf("MRCA = %d, new root node=%d\n" ,MRCA,new_root-Ntips))

fit_and_compare_bm_models
Fit and compare Brownian Motion models for multivariate trait evo-
lution between two data sets.

Description

Given two rooted phylogenetic trees and states of one or more continuous (numeric) traits on the
trees’ tips, fit a multivariate Brownian motion model of correlated evolution to each data set and
compare the fitted models. This function estimates the diffusivity matrix for each data set (i.e.,
each tree/tip-states set) via maximum-likelihood and assesses whether the log-difference between
the two fitted diffusivity matrixes is statistically significant, under the null hypothesis that the two
data sets exhibit the same diffusivity. Optionally, multiple trees can be used as input for each data
set, under the assumption that the trait evolved on each tree according to the same BM model. For
more details on how BM is fitted to each data set see the function fit_bm_model.

Usage

fit_and_compare_bm_models(treesT,
tip_statest,
trees2,
tip_states2,

58

Arguments

treesi

tip_states]

trees2

tip_states?2

Nbootstraps

Nsignificance

check_input

verbose

verbose_prefix

Details

fit_and_compare_bm_models

Nbootstraps =0,
Nsignificance = 0,
check_input = TRUE,
verbose = FALSE,
verbose_prefix = "")

Either a single rooted tree or a list of rooted trees, of class "phylo", correspond-
ing to the first data set on which a BM model is to be fitted. Edge lengths are
assumed to represent time intervals or a similarly interpretable phylogenetic dis-
tance.

Numeric state of each trait at each tip in each tree in the first data set. If trees]
is a single tree, then tip_states1 must either be a numeric vector of size Ntips
or a 2D numeric matrix of size Ntips x Ntraits, listing the trait states for each tip
in the tree. If trees1 is a list of Ntrees trees, then tip_states1 must be a list of
length Ntrees, each element of which lists the trait states for the corresponding
tree (as a vector or 2D matrix, similarly to the single-tree case).

Either a single rooted tree or a list of rooted trees, of class "phylo", correspond-
ing to the second data set on which a BM model is to be fitted. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance.

Numeric state of each trait at each tip in each tree in the second data set, similarly
to tip_statesl.

Integer, specifying the number of parametric bootstraps to perform for calculat-
ing the confidence intervals of BM diffusivities fitted to each data set. If <=0,
no bootstrapping is performed.

Integer, specifying the number of simulations to perform for assessing the sta-
tistical significance of the log-transformed difference between the diffusivities
fitted to the two data sets, i.e. of |log(D1) — log(D3)|. Set to 0 to not calculate
the statistical significance. See below for additional details.

Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Logical, specifying whether to print progress report messages to the screen.

Character, specifying a prefix to include in front of progress report messages on
each line. Only relevant if verbose==TRUE.

For details on the Brownian Motion model see fit_bm_model and simulate_bm_model. This func-
tion separately fits a single-variate or multi-variate BM model with constant diffusivity (diffusivity
matrix, in the multivariate case) to each data set; internally, this function applies fit_bm_model to

each data set.

If Nsignificance>0, the statistical significance of the log-transformed difference of the two fitted
diffusivity matrixes, |log(D1) — log(D2)], is assessed, under the null hypothesis that both data sets

fit_and_compare_bm_models 59

were generated by the same common BM model. The diffusivity of this common BM model is
estimated by fitting to both datasets at once, i.e. after merging the two datasets into a single dataset
of trees and tip states (see return variable fit_common below). For each of the Nsignificance
random simulations of the common BM model on the two tree sets, the diffusivities are again
separately fitted on the two simulated sets and the resulting log-difference is compared to the one
of the original data sets. The returned significance is the probability that the diffusivities would
have a log-difference larger than the observed one, if the two data sets had been generated under the
common BM model.

If trees$edge. length is missing, each edge in the tree is assumed to have length 1. The tree may
include multifurcations (i.e. nodes with more than 2 children) as well as monofurcations (i.e. nodes
with only one child). Note that multifurcations are internally expanded to bifurcations, prior to
model fitting.

Value
A list with the following elements:

success Logical, indicating whether the fitting was successful for both data sets. If
FALSE, then an additional return variable, error, will contain a description of
the error; in that case all other return variables may be undefined.

fit1 A named list containing the fitting results for the first data set, in the same format
as returned by fit_bm_model. In particular, the diffusivity fitted to the first data
set will be stored in fit1$diffusivity.

fit2 A named list containing the fitting results for the second data set, in the same
format as returned by fit_bm_model. In particular, the diffusivity fitted to the
second data set will be stored in fit2$diffusivity.

log_difference The absolute difference between the log-transformed diffusivities, i.e. |log(D1)—
log(D3)|. In the multivariate case, this will be a matrix of size Ntraits x Ntraits.

significance Numeric, statistical significance of the observed log-difference under the null
hypothesis that the two data sets were generated by a common BM model. Only
returned if Nsignificance>0.

fit_common A named list containing the fitting results for the two data sets combined, in the
same format as returned by fit_bm_model. The common diffusivity, fit_common$diffusivity
is used for the random simulations when assessing the statistical significance of
the log-difference of the separately fitted diffusivities. Only returned if Nsignificance>0.
Author(s)

Stilianos Louca

References
J. Felsenstein (1985). Phylogenies and the Comparative Method. The American Naturalist. 125:1-
15.

See Also

simulate_bm_model, fit_bm_model, get_independent_contrasts

60 fit_and_compare_sbm_const

Examples

simulate distinct BM models on two random trees

D1 =1

D2 =2

treel = generate_random_tree(list(birth_rate_factor=1),max_tips=100)$tree
tree2 = generate_random_tree(list(birth_rate_factor=1),max_tips=100)$tree
tip_statesl = simulate_bm_model(treel, diffusivity = D1)$tip_states
tip_states2 = simulate_bm_model(tree2, diffusivity = D2)$tip_states

fit and compare BM models between the two data sets

fit = fit_and_compare_bm_models(treesl = treel,
tip_statesi = tip_statesi,
trees2 = tree2,
tip_states2 = tip_states2,
Nbootstraps = 100,
Nsignificance = 100)

print summary of results
cat(sprintf("Fitted D1 = %g, D2 = %g, significance of log-diff. = %g\n",
fit$fit1$diffusivity, fit$fit2sdiffusivity, fit$significance))

fit_and_compare_sbm_const
Fit and compare Spherical Brownian Motion models for diffusive ge-
ographic dispersal between two data sets.

Description

Given two rooted phylogenetic trees and geographic coordinates of the trees’ tips, fit a Spherical
Brownian Motion (SBM) model of diffusive geographic dispersal with constant diffusivity to each
tree and compare the fitted models. This function estimates the diffusivity (D) for each data set
(i.e., each set of trees + tip-coordinates) via maximum-likelihood and assesses whether the log-
difference between the two fitted diffusivities is statistically significant, under the null hypothesis
that the two data sets exhibit the same diffusivity. Optionally, multiple trees can be used as input
for each data set, under the assumption that dispersal occurred according to the same diffusivity in
each tree of that dataset. For more details on how SBM is fitted to each data set see the function
fit_sbm_const.

Usage

fit_and_compare_sbm_const(treest,
tip_latitudes1,
tip_longitudesT,
trees2,
tip_latitudes2,
tip_longitudes2,
radius,
planar_approximation = FALSE,

fit_and_compare_sbm_const 61

Arguments

treesi

tip_latitudesi

tip_longitudesl

trees2

tip_latitudes?2

tip_longitudes?2

radius

only_basal_tip_pairs = FALSE,
only_distant_tip_pairs = FALSE,
min_MRCA_time =0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
min_diffusivity = NULL,
max_diffusivity = NULL,
Nbootstraps =0,
Nsignificance =0,
SBM_PD_functor = NULL,
verbose = FALSE,
verbose_prefix =""

Either a single rooted tree or a list of rooted trees, of class "phylo", correspond-
ing to the first data set on which an SBM model is to be fitted. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance.

Numeric vector listing the latitude (in decimal degrees) of each tip in each tree
in the first data set. If trees1 is a single tree, then tip_latitudesl must be
a numeric vector of size Ntips, listing the latitudes for each tip in the tree. If
trees1 is a list of Ntrees trees, then tip_latitudes1 must be a list of length
Ntrees, each element of which lists the latitudes for the corresponding tree (as a
vector, similarly to the single-tree case).

Similar to tip_latitudes1, but listing longitudes (in decimal degrees) of each
tip in each tree in the first data set.

Either a single rooted tree or a list of rooted trees, of class "phylo", correspond-
ing to the second data set on which an SBM model is to be fitted. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance.

Numeric vector listing the latitude (in decimal degrees) of each tip in each tree
in the second data set, similarly to tip_latitudesT.

Numeric vector listing the longitude (in decimal degrees) of each tip in each tree
in the second data set, similarly to tip_longitudes1.

Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

planar_approximation

Logical, specifying whether to estimate the diffusivity based on a planar approx-
imation of the SBM model, i.e. by assuming that geographic distances between
tips are as if tips are distributed on a 2D cartesian plane. This approximation is
only accurate if geographical distances between tips are small compared to the
sphere’s radius.

only_basal_tip_pairs

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

62

fit_and_compare_sbm_const

only_distant_tip_pairs
Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

min_MRCA_time Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips” MRCA
has at least this distance from the root. Set min_MRCA_time<=0 to disable this
filter.

max_MRCA_age Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.
max_phylodistance
Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.
min_diffusivity
Non-negative numeric, specifying the minimum possible diffusivity. If NULL,
this is automatically chosen.
max_diffusivity
Non-negative numeric, specifying the maximum possible diffusivity. If NULL,
this is automatically chosen.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for calculat-
ing the confidence intervals of SBM diffusivities fitted to each data set. If <=0,
no bootstrapping is performed.

Nsignificance Integer, specifying the number of simulations to perform for assessing the sta-
tistical significance of the linear difference and log-transformed difference be-
tween the diffusivities fitted to the two data sets, i.e. of |D; — Ds| and of
|log(D1) — log(D2)|. Set to 0 to not calculate statistical significances. See
below for additional details.

SBM_PD_functor SBM probability density functor object. Used internally and for debugging pur-
poses. Unless you know what you’re doing, you should keep this NULL.

verbose Logical, specifying whether to print progress report messages to the screen.

verbose_prefix Character, specifying a prefix to include in front of progress report messages on
each line. Only relevant if verbose==TRUE.

Details

For details on the Spherical Brownian Motion model see fit_sbm_const and simulate_sbm. This
function separately fits an SBM model with constant diffusivity to each of two data sets; internally,
this function applies fit_sbm_const to each data set.

If Nsignificance>@, the statistical significance of the linear difference (|[D; — Ds|) and log-
transformed difference (| log(D;)—log(D2)|) of the two fitted diffusivities is assessed under the null
hypothesis that both data sets were generated by the same common SBM model. The diffusivity of
this common SBM model is estimated by fitting to both datasets at once, i.e. after merging the two
datasets into a single dataset of trees and tip coordinates (see return variable fit_common below).
For each of the Nsignificance random simulations of the common SBM model on the two tree

fit_and_compare_sbm_const 63

sets, the diffusivities are again separately fitted on the two simulated sets and the resulting difference
and log-difference is compared to those of the original data sets. The returned 1lin_significance
(or log_significance) is the probability that the diffusivities would have a difference (or log-
difference) larger than the observed one, if the two data sets had been generated under the common
SBM model.

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. Trees may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value

A list with the following elements:

success Logical, indicating whether the fitting was successful for both data sets. If
FALSE, then an additional return variable, error, will contain a description of
the error; in that case all other return variables may be undefined.

fit1 A named list containing the fitting results for the first data set, in the same format
as returned by fit_sbm_const. In particular, the diffusivity fitted to the first
data set will be stored in fit1$diffusivity.

fit2 A named list containing the fitting results for the second data set, in the same
format as returned by fit_sbm_const. In particular, the diffusivity fitted to the
second data set will be stored in fit2$diffusivity.

lin_difference The absolute difference between the two diffusivities, i.e. |D; — Da|.

log_difference The absolute difference between the two log-transformed diffusivities, i.e. | log(D1)—
log(Dg)\.

lin_significance
Numeric, statistical significance of the observed lin-difference under the null
hypothesis that the two data sets were generated by a common SBM model.
Only returned if Nsignificance>0.

log_significance
Numeric, statistical significance of the observed log-difference under the null
hypothesis that the two data sets were generated by a common SBM model.
Only returned if Nsignificance>0.

fit_common A named list containing the fitting results for the two data sets combined, in the
same format as returned by fit_sbm_const. The common diffusivity, fit_common$diffusivity
is used for the random simulations when assessing the statistical significance of
the lin-difference and log-difference of the separately fitted diffusivities. Only
returned if Nsignificance>0.

Author(s)

Stilianos Louca

References

S. Louca (in review as of 2020). Phylogeographic estimation and simulation of global diffusive
dispersal. Systematic Biology.

64

See Also

fit_ bm_model

simulate_sbm, fit_sbm_const, fit_sbm_linear, fit_sbm_parametric

Examples

Not run:

simulate distinct SBM models on two random trees

radius = 6371 #

D1 =1 #
D2 =3 #
treel = generate_
tree2 = generate_
siml = simulate_
sim2 = simulate_

tip_latitudesl =
tip_longitudesl =
tip_latitudes2 =
tip_longitudes2 =

fit and compare

Earth's radius

diffusivity on 1st tree

diffusivity on 2nd tree
random_tree(list(birth_rate_factor=1),max_tips=100)$tree
random_tree(list(birth_rate_factor=1),max_tips=100)$tree
sbm(tree=treel, radius=radius, diffusivity=D1)
sbm(tree=tree2, radius=radius, diffusivity=D2)
sim1$tip_latitudes

sim1$tip_longitudes

sim2$tip_latitudes

sim2$tip_longitudes

SBM models between the two hypothetical data sets

fit = fit_and_compare_sbm_const(treesl = treel,

tip_latitudesl = tip_latitudesT,
tip_longitudesl = tip_longitudesT,
trees2 = tree2,

tip_latitudes2 = tip_latitudes2,
tip_longitudes2 = tip_longitudes2,

radius = radius,
Nbootstraps =0,
Nsignificance = 100)

print summary of results
cat(sprintf("Fitted D1 = %g, D2 = %g, significance of log-diff. = %g\n",
fit$fit1$diffusivity, fit$fit2$diffusivity, fit$log_significance))

End(Not run)

fit_bm_model

Fit a Brownian Motion model for multivariate trait evolution.

Description

Given a rooted phylogenetic tree and states of one or more continuous (numeric) traits on the tree’s
tips, fit a multivariate Brownian motion model of correlated co-evolution of these traits. This esti-
mates a single diffusivity matrix, which describes the variance-covariance structure of each trait’s
random walk. The model assumes a fixed diffusivity matrix on the entire tree. Optionally, multiple
trees can be used as input, under the assumption that the trait evolved on each tree according to the

same BM model.

fit_ bm_model 65

Usage

fit_bm_model(trees,
tip_states,
isotropic = FALSE,
Nbootstraps =
check_input

|
S

TRUE)

Arguments

trees Either a single rooted tree or a list of rooted trees, of class "phylo". The root of
each tree is assumed to be the unique node with no incoming edge. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance.

tip_states Numeric state of each trait at each tip in each tree. If trees was a single tree,
then tip_states must either be a numeric vector of size Ntips or a 2D numeric
matrix of size Ntips x Ntraits, listing the trait states for each tip in the tree. If
trees is a list of Ntrees trees, then tip_states must be a list of length Ntrees,
each element of which lists the trait states for the corresponding tree (as a vector
or 2D matrix, similarly to the single-tree case).

isotropic Logical, specifying whether diffusion should be assumed to be isotropic (i.e., in-
dependent of the direction). Hence, if isotropic=TRUE, then the diffusivity ma-
trix is forced to be diagonal, with all entries being equal. If isotropic=FALSE,
an arbitrary diffusivity matrix is fitted (i.e., the diffusivity matrix is only con-
strained to be symmetric and non-negative definite).

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for calculat-
ing the confidence intervals. If <=0, no bootstrapping is performed.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Details

The BM model is defined by the stochastic differential equation
dX =o-dW

where W is a multidimensional Wiener process with Ndegrees independent components and o is a
matrix of size Ntraits x Ndegrees. Alternatively, the same model can be defined as a Fokker-Planck
equation for the probability density p:

op 9?p
a n Z D” 8.%18.13] '

,J
The matrix D is referred to as the diffusivity matrix (or diffusion tensor), and 2D = o - oT. Note
that o can be obtained from D by means of a Cholesky decomposition.

The function uses phylogenetic independent contrasts (Felsenstein, 1985) to retrieve independent
increments of the multivariate random walk. The diffusivity matrix D is then fitted using maximum-
likelihood on the intrinsic geometry of positive-definite matrices. If multiple trees are provided as

66 fit_ bm_model

input, then independent contrasts are extracted from all trees and combined into a single set of
independent contrasts (i.e., as if they had been extracted from a single tree).

If trees$edge. length is missing, each edge in the tree is assumed to have length 1. The tree may
include multifurcations (i.e. nodes with more than 2 children) as well as monofurcations (i.e. nodes
with only one child). Note that multifurcations are internally expanded to bifurcations, prior to
model fitting.

Value
A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

diffusivity Either a single non-negative number (if tip_states was a vector) or a 2D
quadratic non-negative-definite matrix (if tip_states was a 2D matrix). The
fitted diffusivity matrix of the multivariate Brownian motion model.

loglikelihood The log-likelihood of the fitted model, given the provided tip states data.

AIC The AIC (Akaike Information Criterion) of the fitted model.
BIC The BIC (Bayesian Information Criterion) of the fitted model.
Ncontrasts Integer, number of independent contrasts used to estimate the diffusivity. This

corresponds to the number of independent data points used.

standard_errors
Either a single numeric or a 2D numeric matrix of size Ntraits x Ntraits, listing
the estimated standard errors of the estimated diffusivity, based on parametric
bootstrapping. Only returned if Nbootstraps>e.

CI5@lower Either a single numeric or a 2D numeric matrix of size Ntraits x Ntraits, list-
ing the lower bounds of the 50% confidence interval for the estimated diffusiv-
ity (25-75% percentile), based on parametric bootstrapping. Only returned if
Nbootstraps>0.

CI5Qupper Either a single numeric or a 2D numeric matrix of size Ntraits x Ntraits, listing
the upper bound of the 50% confidence interval for the estimated diffusivity,
based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI95lower Either a single numeric or a 2D numeric matrix of size Ntraits x Ntraits, listing
the lower bound of the 95% confidence interval for the estimated diffusivity
(2.5-97.5% percentile), based on parametric bootstrapping. Only returned if
Nbootstraps>0.

CI95upper Either a single numeric or a 2D numeric matrix of size Ntraits x Ntraits, listing
the upper bound of the 95% confidence interval for the estimated diffusivity,
based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. If L denotes the loglikelihood of new data generated by the fitted model
(under the same model) and M denotes the expectation of L, then consistency
is the probability that |L — M| will be greater or equal to | X — M|, where X
is the loglikelihood of the original data under the fitted model. Only returned if
Nbootstraps>0. A low consistency (e.g., <0.05) indicates that the fitted model
is a poor description of the data. See Lindholm et al. (2019) for background.

fit_hbds_model_on_grid 67

Author(s)

Stilianos Louca

References

J. Felsenstein (1985). Phylogenies and the Comparative Method. The American Naturalist. 125:1-
15.

A. Lindholm, D. Zachariah, P. Stoica, T. B. Schoen (2019). Data consistency approach to model
validation. IEEE Access. 7:59788-59796.

See Also

simulate_bm_model, get_independent_contrasts
Examples

generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1), 10000)$tree

Example 1: Scalar case

simulate scalar continuous trait on the tree
D=1

tip_states = simulate_bm_model(tree, diffusivity=D)$tip_states

estimate original diffusivity from the generated data
fit = fit_bm_model(tree, tip_states)
cat(sprintf("True D=%g, fitted D=%g\n",D,fit$diffusivity))

Example 2: Multivariate case

simulate vector-valued continuous trait on the tree
D = get_random_diffusivity_matrix(Ntraits=5)
tip_states = simulate_bm_model(tree, diffusivity=D)$tip_states

estimate original diffusivity matrix from the generated data
fit = fit_bm_model(tree, tip_states)

compare true and fitted diffusivity matrices
cat("True D:\n"); print(D)
cat("Fitted D:\n"); print(fit$diffusivity)

fit_hbds_model_on_grid
Fit a homogenous birth-death-sampling model on a discrete time grid.

68 fit_hbds_model_on_grid

Description

Given a timetree (potentially sampled through time and not necessarily ultrametric), fit a homoge-
nous birth-death-sampling (HBDS) model in which speciation, extinction and lineage sampling
occurs at some continuous (Poissonian) rates A, p and v, which are defined on a fixed grid of dis-
crete time points and assumed to vary polynomially between grid points. Sampled lineages are kept
in the pool of extant lineages at some “retention probability” x, which may also depend on time. In
addition, this model can include concentrated sampling attempts (CSAs) at a finite set of discrete
time points 1, .., t,,. “Homogenous” refers to the assumption that, at any given moment in time, all
lineages exhibit the same speciation/extinction/sampling rates. Every HBDS model is thus defined
based on the values that A, u, ¥ and « take over time, as well as the sampling probabilities p1, .., pm
and retention probabilities x1, .., Ky, during the concentrated sampling attempts. This function es-
timates the values of A, u, 1 and s on each grid point, as well as the p1, .., py, and K1, .., K, by
maximizing the corresponding likelihood of the timetree. Special cases of this model (when rates
are piecewise constant through time) are sometimes known as “birth-death-skyline plots” in the lit-
erature (Stadler 2013). In epidemiology, these models are often used to describe the phylogenies of
viral strains sampled over the course of the epidemic.

Usage
fit_hbds_model_on_grid(tree,
root_age = NULL,
oldest_age = NULL,
age_grid = NULL,
CSA_ages = NULL,
min_lambda =0,
max_lambda = +Inf,
min_mu =0,
max_mu = +Inf,
min_psi =0,
max_psi = +Inf,
min_kappa =0,
max_kappa =1,
min_CSA_probs =0,
max_CSA_probs =1,
min_CSA_kappas =0,
max_CSA_kappas =1,
guess_lambda = NULL,
guess_mu = NULL,
guess_psi = NULL,
guess_kappa = NULL,
guess_CSA_probs = NULL,
guess_CSA_kappas = NULL,
fixed_lambda = NULL,
fixed_mu = NULL,
fixed_psi = NULL,
fixed_kappa = NULL,
fixed_CSA_probs = NULL,

fixed_CSA_kappas = NULL,

fit_hbds_model_on_grid 69

Arguments

tree

root_age

oldest_age

age_grid

fixed_age_grid = NULL,
const_lambda = FALSE,
const_mu = FALSE,
const_psi = FALSE,
const_kappa = FALSE,
const_CSA_probs = FALSE,
const_CSA_kappas = FALSE,
splines_degree =1,
condition = "auto”,
ODE_relative_dt = 0.001,
ODE_relative_dy = le-3,
CSA_age_epsilon = NULL,
Ntrials =1,
max_start_attempts =1,
Nthreads =1,
max_model_runtime = NULL,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
fit_control = list(),
focal_param_values = NULL,
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix =""

A timetree of class "phylo", representing the time-calibrated reconstructed phy-
logeny of a set of extant and/or extinct species. Tips of the tree are interpreted
as terminally sampled lineages, while monofurcating nodes are interpreted as
non-terminally sampled lineages, i.e., lineages sampled at some past time point
and with subsequently sampled descendants.

Positive numeric, specifying the age of the tree’s root. Can be used to define a
time offset, e.g. if the last tip was not actually sampled at the present. If NULL,
this will be calculated from the tree and it will be assumed that the last tip was
sampled at the present.

Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is interpreted as the stem age. If oldest_age is less
than the root age, the tree is split into multiple subtrees at that age by treating
every edge crossing that age as the stem of a subtree, and each subtree is consid-
ered an independent realization of the HBDS model stemming at that age. This
can be useful for avoiding points in the tree close to the root, where estimation
uncertainty is generally higher. If oldest_age==NULL, it is automatically set to
the root age.

Numeric vector, listing ages in ascending order, on which A, 1, ¥ and k are fitted
and allowed to vary independently. This grid must cover at least the age range
from the present (age 0) to oldest_age. If NULL or of length <=1 (regardless of
value), then A, p, ¥ and k are assumed to be time-independent.

70

CSA_ages

min_lambda

max_lambda

min_mu

max_mu

min_psi

max_psi

min_kappa

max_kappa

min_CSA_probs

max_CSA_probs

min_CSA_kappas

fit_hbds_model_on_grid

Optional numeric vector, listing ages (in ascending order) at which concentrated
sampling attempts (CSAs) occurred. If NULL, it is assumed that no concentrated
sampling attempts took place and that all tips were sampled according to the
continuous sampling rate psi.

Numeric vector of length Ngrid (=max (1, length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted speciation rate A at each point in
the age grid. If a single numeric, the same lower bound applies at all ages.

Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted speciation rate A at each point in the age grid. If a single numeric,
the same upper bound applies at all ages. Use +Inf to omit upper bounds.

Numeric vector of length Ngrid, or a single numeric, specifying lower bounds
for the fitted extinction rate . at each point in the age grid. If a single numeric,
the same lower bound applies at all ages.

Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted extinction rate y at each point in the age grid. If a single numeric,
the same upper bound applies at all ages. Use +Inf to omit upper bounds.

Numeric vector of length Ngrid, or a single numeric, specifying lower bounds
for the fitted Poissonian sampling rate ¢/ at each point in the age grid. If a single
numeric, the same lower bound applies at all ages.

Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted Poissonian sampling rate) at each point in the age grid. If a single
numeric, the same upper bound applies at all ages. Use +Inf to omit upper
bounds.

Numeric vector of length Ngrid, or a single numeric, specifying lower bounds
for the fitted retention probability ~ at each point in the age grid. If a single
numeric, the same lower bound applies at all ages.

Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted retention probability ~ at each point in the age grid. If a single
numeric, the same upper bound applies at all ages. Use +Inf to omit upper
bounds.

Numeric vector of length NCSA (=length(CSA_ages)), or a single numeric,
specifying lower bounds for the fitted sampling probabilities ps,..,p,, at each
concentrated sampling attempt. If a single numeric, the same lower bound ap-
plies at all CSAs. Note that, since p1, p2, ... are probabilities, min_CSA_probs
should not be negative.

Numeric vector of length NCSA, or a single numeric, specifying upper bounds
for the fitted sampling probabilities p;, pa, ... at each concentrated sampling
attempt. If a single numeric, the same upper bound applies at all CSAs. Note
that, since pi, p2, ... are probabilities, max_CSA_probs should not be greater
than 1.

Numeric vector of length NCSA, or a single numeric, specifying lower bounds
for the fitted retention probabilities x;, k2, ... at each concentrated sampling
attempt. If a single numeric, the same lower bound applies at all CSAs. Note
that, since k1, ko, ... are probabilities, min_CSA_kappas should not be negative.

fit_hbds_model_on_grid 71

max_CSA_kappas Numeric vector of length NCSA, or a single numeric, specifying upper bounds

guess_lambda

guess_mu

guess_psi

guess_kappa

guess_CSA_probs

for the fitted sampling probabilities «1, k2, ... at each concentrated sampling
attempt. If a single numeric, the same upper bound applies at all CSAs. Note
that, since k1, ko, .. are probabilities, max_CSA_kappas should not be greater
than 1.

Initial guess for A at each age-grid point. Either NULL (an initial guess will be
computed automatically), or a single numeric (guessing the same) at all ages) or
a numeric vector of size Ngrid specifying a separate guess for A at each age-grid
point. To omit an initial guess for some but not all age-grid points, set their guess
values to NA. Guess values are ignored for non-fitted (i.e., fixed) parameters.

Initial guess for p at each age-grid point. Either NULL (an initial guess will
be computed automatically), or a single numeric (guessing the same p at all
ages) or a numeric vector of size Ngrid specifying a separate guess for x4 at each
age-grid point. To omit an initial guess for some but not all age-grid points,
set their guess values to NA. Guess values are ignored for non-fitted (i.e., fixed)
parameters.

Initial guess for ¢ at each age-grid point. Either NULL (an initial guess will
be computed automatically), or a single numeric (guessing the same) at all
ages) or a numeric vector of size Ngrid specifying a separate guess for ¢ at each
age-grid point. To omit an initial guess for some but not all age-grid points,
set their guess values to NA. Guess values are ignored for non-fitted (i.e., fixed)
parameters.

Initial guess for at each age-grid point. Either NULL (an initial guess will be
computed automatically), or a single numeric (guessing the same « at all ages) or
a numeric vector of size Ngrid specifying a separate guess for « at each age-grid
point. To omit an initial guess for some but not all age-grid points, set their guess
values to NA. Guess values are ignored for non-fitted (i.e., fixed) parameters.

Initial guess for the pi, p2, ... at each concentrated sampling attempt. Either
NULL (an initial guess will be computed automatically), or a single numeric
(guessing the same value at every CSA) or a numeric vector of size NCSA spec-
ifying a separate guess at each CSA. To omit an initial guess for some but not all
CSAs, set their guess values to NA. Guess values are ignored for non-fitted (i.e.,
fixed) parameters.

guess_CSA_kappas

fixed_lambda

Initial guess for the 1, k2, ... at each concentrated sampling attempt. Either
NULL (an initial guess will be computed automatically), or a single numeric
(guessing the same value at every CSA) or a numeric vector of size NCSA spec-
ifying a separate guess at each CSA. To omit an initial guess for some but not all
CSA:s, set their guess values to NA. Guess values are ignored for non-fitted (i.e.,
fixed) parameters.

Optional fixed (i.e. non-fitted) A values on one or more age-grid points. Either
NULL (X is not fixed anywhere), or a single numeric (A fixed to the same value
at all grid points) or a numeric vector of size Ngrid (if fixed_age_grid=NULL;
A fixed on one or more age-grid points, use NA for non-fixed values) or a nu-
meric vector of the same size as fixed_age_grid (if fixed_age_grid!=NULL,
in which case all entries in fixed_lambda must be finite numbers).

fit_hbds_model_on_grid

fixed_mu Optional fixed (i.e. non-fitted) p values on one or more age-grid points. Either
NULL (4 is not fixed anywhere), or a single numeric (x4 fixed to the same value
at all grid points) or a numeric vector of size Ngrid (if fixed_age_grid=NULL;
u fixed on one or more age-grid points, use NA for non-fixed values) or a nu-
meric vector of the same size as fixed_age_grid (if fixed_age_grid!=NULL,
in which case all entries in fixed_mu must be finite numbers).

fixed_psi Optional fixed (i.e. non-fitted) 1 values on one or more age-grid points. Either
NULL (%) is not fixed anywhere), or a single numeric (¢ fixed to the same value
at all grid points) or a numeric vector of size Ngrid (if fixed_age_grid=NULL;
1) fixed on one or more age-grid points, use NA for non-fixed values) or a nu-
meric vector of the same size as fixed_age_grid (if fixed_age_grid!=NULL,
in which case all entries in fixed_psi must be finite numbers).

fixed_kappa Optional fixed (i.e. non-fitted) x values on one or more age-grid points. Either
NULL (x is not fixed anywhere), or a single numeric (x fixed to the same value
at all grid points) or a numeric vector of size Ngrid (if fixed_age_grid=NULL;
x fixed on one or more age-grid points, use NA for non-fixed values) or a nu-
meric vector of the same size as fixed_age_grid (if fixed_age_grid!=NULL,
in which case all entries in fixed_kappa must be finite numbers).

fixed_CSA_probs
Optional fixed (i.e. non-fitted) p1, p2, ... values on one or more age-grid points.
Either NULL (none of the pi, po,... are fixed), or a single numeric (p1, p2,... are
fixed to the same value at all CSAs) or a numeric vector of size NCSA (one or
more of the p1, p2, ... are fixed, use NA for non-fixed values).

fixed_CSA_kappas
Optional fixed (i.e. non-fitted) k1, K2, ... values on one or more age-grid points.
Either NULL (none of the k1, ka,... are fixed), or a single numeric (x1, K2,... are
fixed to the same value at all CSAs) or a numeric vector of size NCSA (one or
more of the k1, ko, ... are fixed, use NA for non-fixed values).

fixed_age_grid Optional numeric vector, specifying an age grid on which fixed_lambda, fixed_mu,
fixed_psi and fixed_kappa (whichever is provided) are defined instead of on
the age_grid. If fixed_age_grid is provided, then each of fixed_lambda,
fixed_mu, fixed_psi and fixed_kappa must be defined (i.e. have a finite non-
negative value) on every point in fixed_age_grid. Entries in fixed_age_grid
must be in ascending order and must cover at least the ages 0 to oldest_age.
This option may be useful if you want to fit some parameters on a coarse grid,
but want to specify (fix) some other parameters on a much finer grid. Also note
that if fixed_age_grid is used, all parameters lambda, mu, psi and kappa are
internally re-interpolated onto fixed_age_grid when evaluating the likelihood;
hence, in general fixed_age_grid should be much finer than age_grid. In
most situations you would probably want to keep the default fixed_age_grid=NULL.

const_lambda Logical, specifying whether A should be assumed constant across the grid, i.e.
time-independent. Setting const_lambda=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If A is fixed on some grid points (i.e. via
fixed_lambda), then only the non-fixed lambdas are assumed to be identical to
one another.

const_mu Logical, specifying whether 1 should be assumed constant across the grid, i.e.
time-independent. Setting const_mu=TRUE reduces the number of free (i.e.,

fit_hbds_model_on_grid 73

independently fitted) parameters. If p is fixed on some grid points (i.e. via
fixed_mu), then only the non-fixed mus are assumed to be identical to one an-
other.

const_psi Logical, specifying whether v should be assumed constant across the grid, i.e.
time-independent. Setting const_psi=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If v is fixed on some grid points (i.e. via
fixed_psi), then only the non-fixed psis are assumed to be identical to one
another.

const_kappa Logical, specifying whether « should be assumed constant across the grid, i.e.
time-independent. Setting const_kappa=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If « is fixed on some grid points (i.e. via
fixed_kappa), then only the non-fixed kappas are assumed to be identical to
one another.

const_CSA_probs
Logical, specifying whether the p;, po, ... should be the same across all CSAs.
Setting const_CSA_probs=TRUE reduces the number of free (i.e., independently
fitted) parameters. If some of the p1, pa, ... are fixed (i.e. via fixed_CSA_probs),
then only the non-fixed CSA_probs are assumed to be identical to one another.

const_CSA_kappas
Logical, specifying whether the «1, K2, ... should be the same across all CSAs.

Setting const_CSA_kappas=TRUE reduces the number of free (i.e., indepen-
dently fitted) parameters. If some of the x1, Ko, ... are fixed (i.e. via fixed_CSA_kappas),
then only the non-fixed CSA_kappas are assumed to be identical to one another.

splines_degree Integer between 0 and 3 (inclusive), specifying the polynomial degree of A, u, 1
and between age-grid points. If 0, then A, i, 1 and « are considered piecewise
constant, if 1 they are considered piecewise linear, if 2 or 3 they are considered
to be splines of degree 2 or 3, respectively. The splines_degree influences
the analytical properties of the curve, e.g. splines_degree==1 guarantees a
continuous curve, splines_degree==2 guarantees a continuous curve and con-
tinuous derivative, and so on. A degree of 0 is generally not recommended. The
case splines_degree=0 is also known as “skyline” model.

non non

condition Character, either "crown", "stem", "none" or "auto", specifying on what to con-
dition the likelihood. If "crown", the likelihood is conditioned on the survival
of the two daughter lineages branching off at the root. If "stem", the likelihood
is conditioned on the survival of the stem lineage. Note that "crown" really
only makes sense when oldest_age is equal to the root age, while "stem" is
recommended if oldest_age differs from the root age. "none" is generally not
recommended. If "auto", the condition is chosen according to the above recom-
mendations.

ODE_relative_dt
Positive unitless number, specifying the default relative time step for the ordi-
nary differential equation solvers. Typical values are 0.01-0.001.

ODE_relative_dy
Positive unitless number, specifying the relative difference between subsequent
simulated and interpolated values, in internally used ODE solvers. Typical val-
ues are le-2 to le-5. A smaller ODE_relative_dy increases interpolation ac-
curacy, but also increases memory requirements and adds runtime (scaling with
the tree’s age span, not with Ntips).

74

CSA_age_epsilon

Ntrials

fit_hbds_model_on_grid

Non-negative numeric, in units of time, specfying the age radius around a con-
centrated sampling attempt, within which to assume that sampling events were
due to that concentrated sampling attempt. If NULL, this is chosen automatically
based on the anticipated scale of numerical rounding errors. Only relevant if
concentrated sampling attempts are included.

Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

max_start_attempts

Nthreads

Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly choosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Nbootstraps

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated parameters. Set to 0
for no bootstrapping.

Ntrials_per_bootstrap

fit_control

Integer, specifying the number of fitting trials to perform for each bootstrap sam-

pling. If NULL, this is set equal tomax (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-

mated confidence intervals; in some cases (e.g., for very large trees) this may

be useful if fitting takes a long time and confidence intervals are very narrow

anyway. Only relevant if Nbootstraps>0.

Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

focal_param_values

verbose

Optional list, listing combinations of parameter values of particular interest and
for which the log-likelihoods should be returned. Every element of this list
should itself be a named list, containing the elements 1ambda, mu, psi and kappa
(each being a numeric vector of size NG) as well as the elements CSA_probs and
CSA_kappas (each being a numeric vector of size NCSA). This may be used e.g.
for diagnostic purposes, e.g. to examine the shape of the likelihood function.

Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

fit_hbds_model_on_grid 75

diagnostics Logical, specifying whether to print detailed information (such as model likeli-
hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

Warning: In the absence of concentrated sampling attempts (NCSA=0), and without well-justified
a priori constraints on either A, u, 1 and/or k, it is generally impossible to reliably estimate A, u,
and « from timetrees alone. This routine (and any other software that claims to estimate A, y,) and
k solely from timetrees) should thus be treated with great suspicion. Many epidemiological models
make the (often reasonable assumption) that x = 0; note that even in this case, one generally can’t
co-estimate A, y and 1) from the timetree alone.

It is advised to provide as much information to the function fit_hbds_model_on_grid as pos-
sible, including reasonable lower and upper bounds (min_lambda, max_lambda, min_mu, max_mu,
min_psi, max_psi, min_kappa, max_kappa) and reasonable parameter guesses. It is also important
that the age_grid is sufficiently fine to capture the expected major variations of A, u, v and k over
time, but keep in mind the serious risk of overfitting when age_grid is too fine and/or the tree is too
small. The age_grid does not need to be uniform, i.e., you may want to use a finer grid in regions
where there’s more data (tips) available. If strong lower and upper bounds are not available and
fitting takes a long time to run, consider using the option max_model_runtime to limit how much
time the fitting allows for each evaluation of the likelihood.

Note that here "age" refers to time before present, i.e., age increases from tips to root and age 0 is
present-day. CSAs are enumerated in the order of increasing age, i.e., from the present to the past.
Similarly, the age grid specifies time points from the present towards the past.

Value

A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

loglikelihood The log-likelihood of the fitted model for the given timetree.

guess_loglikelihood
The log-likelihood of the guessed model for the given timetree.

param_fitted Named list, specifying the fixed and fitted model parameters. This list will con-
tain the elements lambda, mu, psi and kappa (each being a numeric vector of
size NG, listing A\,u, ¥ and x at each age-grid point) as well as the elements
CSA_probs and CSA_kappas (each being a numeric vector of size NCSA).

76

fit_hbds_model_on_grid

param_guess Named list, specifying the guessed model parameters. This list will contain the
elements lambda, mu, psi and kappa (each being a numeric vector of size NG)
as well as the elements CSA_probs and CSA_kappas (each being a numeric vec-
tor of size NCSA). Between grid points A should be interpreted as a piecewise
polynomial function (natural spline) of degree splines_degree; to evaluate this
function at arbitrary ages use the castor routine evaluate_spline. The same
also applies to u, ¥ and k.

age_grid Numeric vector of size NG, the age-grid on which A, y, ¥ and k are defined.
This will be the same as the provided age_grid, unless the latter was NULL or
of length <=1.

CSA_ages Numeric vector of size NCSA, ting listhe ages at which concentrated sampling
attempts occurred. This is the same as provided to the function.

NFP Integer, number of free (i.e., independently) fitted parameters. If none of the A,
w and p were fixed, and const_lambda=FALSE and const_mu=FALSE, then NFP
will be equal to 2*Ngrid+1.

Ndata Integer, the number of data points (sampling and branching events) used for
fitting.

AIC The Akaike Information Criterion for the fitted model, defined as 2k — 21log(L),
where k£ is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

condition Character, specifying what conditioning was root for the likelihood (e.g. "crown"
or "stem").

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

standard_errors
Named list specifying the standard errors of the parameters, based on parametric
bootstrapping. This list will contain the elements lambda, mu, psi and kappa
(each being a numeric vector of size NG) as well as the elements CSA_probs
and CSA_kappas (each being a numeric vector of size NCSA). Only included if
Nbootstraps>0. Note that the standard errors of non-fitted (i.e., fixed) parame-
ters will be zero.

CI5Qlower Named list specifying the lower end of the 50% confidence interval (i.e. the 25%
quantile) for each parameter, based on parametric bootstrapping. This list will
contain the elements lambda, mu, psi and kappa (each being a numeric vector
of size NG) as well as the elements CSA_probs and CSA_kappas (each being a
numeric vector of size NCSA). Only included if Nbootstraps>0.

fit_hbds_model_on_grid 77

CI5Qupper

CI95lower

CI95upper

consistency

Author(s)

Stilianos Louca

References

Similar to CI501lower, but listing the upper end of the 50% confidence inter-
val (i.e. the 75% quantile) for each parameter. For example, the confidence
interval for A at age age_grid[1] will be between CI501ower$lambdal[1] and
CI5Qupper$lambdal1]. Only included if Nbootstraps>0.

Similar to CI501lower, but listing the lower end of the 95% confidence interval
(i.e. the 2.5% quantile) for each parameter. Only included if Nbootstraps>0.

Similar to CI5@upper, but listing the upper end of the 95% confidence interval
(i.e. the 97.5% quantile) for each parameter. Only included if Nbootstraps>@.

Numeric between 0 and 1, estimated consistency of the data with the fitted
model. If L denotes the loglikelihood of new data generated by the fitted model
(under the same model) and M denotes the expectation of L, then consistency
is the probability that |L — M| will be greater or equal to | X — M|, where X
is the loglikelihood of the original data under the fitted model. Only returned if
Nbootstraps>0. A low consistency (e.g., <0.05) indicates that the fitted model
is a poor description of the data. See Lindholm et al. (2019) for background.

T. Stadler, D. Kuehnert, S. Bonhoeffer, A. J. Drummond (2013). Birth-death skyline plot reveals
temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). PNAS. 110:228-233.

A. Lindholm, D. Zachariah, P. Stoica, T. B. Schoen (2019). Data consistency approach to model
validation. IEEE Access. 7:59788-59796.

See Also

simulate_deterministic_hbds, fit_hbds_model_parametric

Examples

Not run:

define lambda & mu & psi as functions of time

Assuming an
time2lambda =
time2mu =
time2psi =

exponentially varying lambda & mu, and a constant psi
function(times){ 2xexp(@.1xtimes) }

function(times){ 0.1*exp(0.09xtimes) }
function(times){ rep(@0.2, times=length(times)) }

define concentrated sampling attempts

CSA_times =
CSA_probs =

c(3,4)
c(0.1, 0.2)

generate random tree based on lambda, mu & psi
assume that all sampled lineages are removed from the pool (i.e. kappa=0)
time_grid = seq(from=0, to=100, by=0.01)

simul = generate_tree_hbds(max_time =5,
time_grid = time_grid,
lambda = time2lambda(time_grid),

78

fit_hbds_model_on_grid

mu = time2mu(time_grid),
psi = time2psi(time_grid),
kappa =0,

CSA_times = CSA_times,

CSA_probs = CSA_probs,
CSA_kappas = 0)

tree = simul$tree
root_age = simul$root_age
cat(sprintf("Tree has %d tips\n”,length(tree$tip.label)))

Define an age grid on which lambda_function & mu_function shall be fitted
fit_age_grid = seq(from=0,to=root_age,length.out=3)

Fit an HBDS model on a grid

Assume that psi is known and that sampled lineages are removed from the pool
Hence, we only fit lambda & mu & CSA_probs

cat(sprintf("Fitting model to tree..\n"))

fit = fit_hbds_model_on_grid(tree,

root_age = root_age,

age_grid = fit_age_grid,

CSA_ages = rev(simul$final_time - CSA_times),
fixed_psi = time2psi(simul$final_time-fit_age_grid),

fixed_kappa =0,

fixed_CSA_kappas = 0,

Ntrials = 4,

Nthreads = 4,

Nbootstraps =0,

verbose = TRUE,

verbose_prefix =" "

if(1fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))
Yelse{
compare fitted lambda to true lambda
plot(x=fit$age_grid,
y=fit$param_fitted$lambda,
type='1l",
col="'#000000",
xlim=c(root_age,0),
xlab="age"',
ylab="lambda")
lines(x=simul$final_time-time_grid,
y=time2lambda(time_grid),
type='1",
col="#0000AA")

compare true and fitted model in terms of their LTTs
LTT = castor::count_lineages_through_time(tree, Ntimes=100, include_slopes=TRUE)
LTT$ages = root_age - LTT$times

cat(sprintf("Simulating deterministic HBDS (true model)..\n"))
aged = 0.5 # reference age at which to equate LTTs

fit_hbds_model_parametric

79

LTTO = approx(x=LTT$ages, y=LTT$lineages, xout=age@)$y # tree LTT at age®

fsim = simulate_deterministic_hbds(age_grid = fit$age_grid,
lambda = fit$param_fitted$lambda,
mu = fit$param_fitted$mu,
psi = fit$param_fitted$psi,
kappa = fit$param_fitted$kappa,
CSA_ages = fit$CSA_ages,
CSA_probs = fit$param_fitted$CSA_probs,
CSA_kappas = fit$param_fitted$CSA_kappas,
requested_ages = seq(@,root_age,length.out=200),
ageod = ageo,
LTTO = LTTo,
splines_degree = 1)

if(!fsim$success){
cat(sprintf ("ERROR: Could not simulate fitted model: %s\n",fsim$error))
stop()
3
plot(x=LTT$ages, y=LTT$lineages, type='l', col="#00Q0AA', lwd=2, xlim=c(root_age,@))
lines(x=fsim$ages, y=fsim$LTT, type='l', col='#000000', lwd=2)

End(Not run)

fit_hbds_model_parametric
Fit a parametric homogenous birth-death-sampling model to a time-
tree.

Description

Given a timetree (potentially sampled through time and not necessarily ultrametric), fit a homoge-
nous birth-death-sampling (HBDS) model in which speciation, extinction and lineage sampling
occurs at some continuous (Poissonian) rates A, 4 and v, which are given as parameterized func-
tions of time before present. Sampled lineages are kept in the pool of extant lineages at some
“retention probability” x, which may also depend on time. In addition, this model can include con-
centrated sampling attempts (CSAs) at a finite set of discrete time points 1, .., t,,. “Homogenous”
refers to the assumption that, at any given moment in time, all lineages exhibit the same specia-
tion/extinction/sampling rates. Every HBDS model is thus defined based on the values that A, p,
1 and « take over time, as well as the sampling probabilities p1, .., p,,, and retention probabilities
K1, .., km during the concentrated sampling attempts; each of these parameters, in turn, is assumed
to be determined by a finite set of parameters. This function estimates these parameters by max-
imizing the corresponding likelihood of the timetree. Special cases of this model are sometimes
known as “birth-death-skyline plots” in the literature (Stadler 2013). In epidemiology, these models
are often used to describe the phylogenies of viral strains sampled over the course of the epidemic.

Usage

fit_hbds_model_parametric(tree,
param_values,

param_guess = NULL,

80

Arguments

tree

param_values

param_guess

param_min

fit_hbds_model_parametric

param_min = -Inf,
param_max = +Inf,
param_scale = NULL,
root_age = NULL,
oldest_age = NULL,
lambda =0,

mu =0,

psi =0,
kappa =0,
age_grid = NULL,
CSA_ages = NULL,
CSA_probs = NULL,
CSA_kappas =0,
condition = "auto”,
ODE_relative_dt 0.001,
ODE_relative_dy = le-3,
CSA_age_epsilon = NULL,
Ntrials =1,
max_start_attempts =1,
Nthreads =1,
max_model_runtime = NULL,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
fit_control = list(),
focal_param_values = NULL,
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix =""

A timetree of class "phylo", representing the time-calibrated reconstructed phy-
logeny of a set of extant and/or extinct species. Tips of the tree are interpreted
as terminally sampled lineages, while monofurcating nodes are interpreted as
non-terminally sampled lineages, i.e., lineages sampled at some past time point
and with subsequently sampled descendants.

Numeric vector, specifying fixed values for a some or all model parameters.
For fitted (i.e., non-fixed) parameters, use NaN or NA. For example, the vector
c(1.5,NA,40) specifies that the 1st and 3rd model parameters are fixed at the
values 1.5 and 40, respectively, while the 2nd parameter is to be fitted. The
length of this vector defines the total number of model parameters. If entries in
this vector are named, the names are taken as parameter names. Names should
be included if the functions lambda, mu, psi, kappa, CSA_psi and CSA_kappa
query parameter values by name (as opposed to numeric index).

Numeric vector of size NP, specifying a first guess for the value of each model
parameter. For fixed parameters, guess values are ignored. Can be NULL only if
all model parameters are fixed.

Optional numeric vector of size NP, specifying lower bounds for model parame-

fit_hbds_model_parametric 81

param_max

param_scale

root_age

oldest_age

lambda

mu

psi

kappa

ters. If of size 1, the same lower bound is applied to all parameters. Use -Inf to
omit a lower bound for a parameter. If NULL, no lower bounds are applied. For
fixed parameters, lower bounds are ignored.

Optional numeric vector of size NP, specifying upper bounds for model param-
eters. If of size 1, the same upper bound is applied to all parameters. Use +Inf
to omit an upper bound for a parameter. If NULL, no upper bounds are applied.
For fixed parameters, upper bounds are ignored.

Optional numeric vector of size NP, specifying typical scales for model parame-
ters. If of size 1, the same scale is assumed for all parameters. If NULL, scales are
determined automatically. For fixed parameters, scales are ignored. It is strongly
advised to provide reasonable scales, as this facilitates the numeric optimization
algorithm.

Positive numeric, specifying the age of the tree’s root. Can be used to define a
time offset, e.g. if the last tip was not actually sampled at the present. If NULL,
this will be calculated from the tree and it will be assumed that the last tip was
sampled at the present.

Strictly positive numeric, specifying the oldest time before present (“‘age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is interpreted as the stem age. If oldest_age is less
than the root age, the tree is split into multiple subtrees at that age by treating
every edge crossing that age as the stem of a subtree, and each subtree is consid-
ered an independent realization of the HBDS model stemming at that age. This
can be useful for avoiding points in the tree close to the root, where estimation
uncertainty is generally higher. If oldest_age==NULL, it is automatically set to
the root age.

Function specifying the speciation rate at any given age (time before present)
and for any given parameter values. This function must take exactly two argu-
ments, the 1st one being a numeric vector (one or more ages) and the 2nd one
being a numeric vector of size NP (parameter values), and return a numeric vec-
tor of the same size as the 1st argument with strictly positive entries. Can also
be a single numeric (i.e., lambda is fixed).

Function specifying the extinction rate at any given age and for any given param-
eter values. This function must take exactly two arguments, the 1st one being a
numeric vector (one or more ages) and the 2nd one being a numeric vector of
size NP (parameter values), and return a numeric vector of the same size as the
st argument with non-negative entries. Can also be a single numeric (i.e., mu
is fixed).

Function specifying the continuous (Poissonian) lineage sampling rate at any
given age and for any given parameter values. This function must take exactly
two arguments, the 1st one being a numeric vector (one or more ages) and the
2nd one being a numeric vector of size NP (parameter values), and return a
numeric vector of the same size as the 1st argument with non-negative entries.
Can also be a single numeric (i.e., psi is fixed).

Function specifying the retention probability for continuously sampled lineages,
at any given age and for any given parameter values. This function must take
exactly two arguments, the 1st one being a numeric vector (one or more ages)

82

age_grid

CSA_ages

CSA_probs

CSA_kappas

condition

ODE_relative_dt

ODE_relative_dy

CSA_age_epsilon

fit_hbds_model_parametric

and the 2nd one being a numeric vector of size NP (parameter values), and return
a numeric vector of the same size as the 1st argument with non-negative entries.
The retention probability is the probability of a sampled lineage remaining in
the pool of extant lineages. Can also be a single numeric (i.e., kappa is fixed).

Numeric vector, specifying ages at which the 1lambda, mu, psi and kappa func-
tionals should be evaluated. This age grid must be fine enough to capture the
possible variation in A, u, 1 and x over time, within the permissible parameter
range. Listed ages must be strictly increasing, and must cover at least the full
considered age interval (from O to oldest_age). Can also be NULL or a vector
of size 1, in which case A, u, ¢ and k are assumed to be time-independent.

Optional numeric vector, listing ages (in ascending order) at which concentrated
sampling attempts occurred. If NULL, it is assumed that no concentrated sam-
pling attempts took place and that all tips were sampled according to the contin-
uous sampling rate psi.

Function specifying the sampling probabilities during the various concentrated
sampling attempts, depending on parameter values. Hence, for any choice of pa-
rameters, CSA_probs must return a numeric vector of the same size as CSA_ages.
Can also be a single numeric (i.e., concentrated sampling probability is fixed).

Function specifying the retention probabilities during the various concentrated
sampling attempts, depending on parameter values. Hence, for any choice of pa-
rameters, CSA_kappas must return a numeric vector of the same size as CSA_ages.
Can also be a single numeric (i.e., retention probability during concentrated sam-
plings is fixed).

non non

Character, either "crown", "stem", "none" or "auto", specifying on what to con-
dition the likelihood. If "crown", the likelihood is conditioned on the survival
of the two daughter lineages branching off at the root. If "stem", the likelihood
is conditioned on the survival of the stem lineage. Note that "crown" really
only makes sense when oldest_age is equal to the root age, while "stem" is
recommended if oldest_age differs from the root age. "none" is usually not
recommended. If "auto", the condition is chosen according to the above recom-
mendations.

Positive unitless number, specifying the default relative time step for the ordi-
nary differential equation solvers. Typical values are 0.01-0.001.

Positive unitless number, specifying the relative difference between subsequent
simulated and interpolated values, in internally used ODE solvers. Typical val-
ues are le-2 to le-5. A smaller ODE_relative_dy increases interpolation ac-
curacy, but also increases memory requirements and adds runtime (scaling with
the tree’s age span, not with Ntips).

Non-negative numeric, in units of time, specfying the age radius around a con-
centrated sampling attempt, within which to assume that sampling events were
due to that concentrated sampling attempt. If NULL, this is chosen automatically
based on the anticipated scale of numerical rounding errors. Only relevant if
concentrated sampling attempts are included.

fit_hbds_model_parametric 83

Ntrials

Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

max_start_attempts

Nthreads

Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly chosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime

Nbootstraps

Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated model parameters. Set
to O for no bootstrapping.

Ntrials_per_bootstrap

fit_control

Integer, specifying the number of fitting trials to perform for each bootstrap sam-

pling. If NULL, this is set equal to max (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-

mated confidence intervals; in some cases (e.g., for very large trees) this may

be useful if fitting takes a long time and confidence intervals are very narrow

anyway. Only relevant if Nbootstraps>0.

Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

focal_param_values

Optional numeric matrix having NP columns and an arbitrary number of rows,
listing combinations of parameter values of particular interest and for which the
log-likelihoods should be returned. This may be used for diagnostic purposes,
e.g., to examine the shape of the likelihood function.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

diagnostics Logical, specifying whether to print detailed information (such as model likeli-

hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is designed to estimate a finite set of scalar parameters (py, .., p, € R) that determine
the speciation rate)\, the extinction rate yu, the sampling rate 1, the retention rate x, the concen-
trated sampling probabilities p1, .., p,, and the concentrated retention probabilities k1, .., Ky, DY

84 fit_hbds_model_parametric

maximizing the likelihood of observing a given timetree under the HBDS model. Note that the ages
(times before present) of the concentrated sampling attempts are assumed to be known and are not
fitted.

Itis generally advised to provide as much information to the function fit_hbds_model_parametric
as possible, including reasonable lower and upper bounds (param_min and param_max), a reason-
able parameter guess (param_guess) and reasonable parameter scales param_scale. If some model
parameters can vary over multiple orders of magnitude, it is advised to transform them so that they
vary across fewer orders of magnitude (e.g., via log-transformation). It is also important that the
age_grid is sufficiently fine to capture the variation of A, u, 1) and « over time, since the likelihood
is calculated under the assumption that these functions vary linearly between grid points.

Note that in this function age always refers to time before present, i.e., present day age is 0 and
age increases from tips to root. The functions lambda, mu, psi and kappa should be functions of
age, not forward time. Similarly, concentrated sampling attempts (CSAs) are enumerated in order
of increasing age, i.e., starting with the youngest CSA and moving towards older CSAs.

Value

A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description
of the error; in that case all other return variables may be undefined.
objective_value
The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

loglikelihood The log-likelihood of the fitted model for the given timetree.

param_fitted Numeric vector of size NP (number of model parameters), listing all fitted or
fixed model parameters in their standard order (see details above). If param_names
was provided, elements in fitted_params will be named.

param_guess Numeric vector of size NP, listing guessed or fixed values for all model pa-
rameters in their standard order. If param_names was provided, elements in
param_guess will be named.

guess_loglikelihood
The loglikelihood of the data for the initial parameter guess (param_guess).

focal_loglikelihoods

A numeric vector of the same size as nrow(focal_param_values), listing log-
likelihoods for each of the focal parameter conbinations listed in focal_loglikelihoods.

NFP Integer, number of fitted (i.e., non-fixed) model parameters.

Ndata Number of data points used for fitting, i.e., the number of sampling and branch-
ing events that occurred between ages 0 and oldest_age.

AIC The Akaike Information Criterion for the fitted model, defined as 2k — 2log(L),

where k£ is the number of fitted parameters and L is the maximized likelihood.

fit_hbds_model_parametric 85

BIC The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (Ndata), and L is the maximized likelihood.

condition Character, specifying what conditioning was root for the likelihood (e.g. "crown"
or "stem").
converged Logical, specifying whether the maximum likelihood was reached after conver-

gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.
trial_start_objectives
Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.
trial_objective_values
Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.
trial_Nstart_attempts
Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.
trial_Niterations
Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.
trial_Nevaluations
Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.
standard_errors
Numeric vector of size NP, estimated standard error of the parameters, based on
parametric bootstrapping. Only returned if Nbootstraps>0.

medians Numeric vector of size NP, median the estimated parameters across parametric
bootstraps. Only returned if Nbootstraps>0.

CI50Qlower Numeric vector of size NP, lower bound of the 50% confidence interval (25-
75% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI5Qupper Numeric vector of size NP, upper bound of the 50% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI951lower Numeric vector of size NP, lower bound of the 95% confidence interval (2.5-
97.5% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI95upper Numeric vector of size NP, upper bound of the 95% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted model
(Lindholm et al. 2019). See the documentation of fit_hbds_model_on_grid
for an explanation.

86 fit_hbds_model_parametric

Author(s)

Stilianos Louca

References

T. Stadler, D. Kuehnert, S. Bonhoeffer, A. J. Drummond (2013). Birth-death skyline plot reveals
temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). PNAS. 110:228-233.

A. Lindholm, D. Zachariah, P. Stoica, T. B. Schoen (2019). Data consistency approach to model
validation. IEEE Access. 7:59788-59796.

See Also

generate_tree_hbds, simulate_deterministic_hbds

Examples

Not run:

Generate a random tree with exponentially varying lambda & mu and constant psi
assume that all sampled lineages are removed from the pool (i.e. kappa=0)
time_grid = seq(from=0, to=100, by=0.01)

root_age =5
tree = generate_tree_hbds(max_time = root_age,
time_grid = time_grid,
lambda = 2xexp(@.1xtime_grid),
mu = 0.1*%exp(0.09*time_grid),
psi =0.1,
kappa = 0)%tree

cat(sprintf("Tree has %d tips\n",length(tree$tip.label)))

Define a parametric HBDS model, with exponentially varying lambda & mu

Assume that the sampling rate is constant but unknown

The model thus has 5 parameters: lambda®, mu@, alpha, beta, psi

lambda_function = function(ages,params){
return(params['lambda@'J*exp(-params['alpha'Jxages));

3

mu_function = function(ages,params){
return(params['mu@' Jxexp(-params['beta']*ages));

3

psi_function = function(ages,params){
return(rep(params['psi'],length(ages)))

3

Define an age grid on which lambda_function & mu_function shall be evaluated
Should be sufficiently fine to capture the variation in lambda & mu
age_grid = seq(from=0,to=root_age,by=0.01)

Perform fitting
cat(sprintf("Fitting model to tree..\n"))
fit = fit_hbds_model_parametric(tree,
root_age = root_age,

fit_hbd_model_on_grid

param_values =
param_guess =
param_min =
param_max =
param_scale =
lambda =
mu =
psi =
kappa =
age_grid =
Ntrials =
Nthreads =
if(!fit$success){

87

c(lambda®=NA, mu@=NA, alpha=NA, beta=NA, psi=NA),

c(1,1,0,0,0.5),
c(0,0,-1,-1,0),
c(19,10,1,1,10),

1, # all params are in the order of 1
lambda_function,

mu_function,

psi_function,

9,

age_grid,

4, # perform 4 fitting trials
2) # use 2 CPUs

cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))

Yelse{

cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n", 6 fit$loglikelihood))

print fitted parameters
print(fit$param_fitted)
}

End(Not run)

fit_hbd_model_on_grid Fit a homogenous birth-death model on a discrete time grid.

Description

Given an ultrametric timetree, fit a homogenous birth-death (HBD) model in which speciation and
extinction rates (A and mu) are defined on a fixed grid of discrete time points and assumed to
vary polynomially between grid points. “Homogenous” refers to the assumption that, at any given
moment in time, all lineages exhibit the same speciation/extinction rates (in the literature this is
sometimes referred to simply as “birth-death model”). Every HBD model is defined based on the
values that A and p take over time as well as the sampling fraction p (fraction of extant species
sampled). This function estimates the values of A and p at each grid point by maximizing the
likelihood (Morlon et al. 2011) of the timetree under the resulting HBD model.

Usage

fit_hbd_model_on_grid(tree,
oldest_age
ageo
age_grid
min_lambda
max_lambda
min_mu
max_mu
min_rhoo
max_rhoo
guess_lambda

88

Arguments

tree

oldest_age

ageo

age_grid

min_lambda

max_lambda

min_mu

max_mu

fit_hbd_model_on_grid

guess_mu = NULL,
guess_rhoo =1,
fixed_lambda = NULL,
fixed_mu = NULL,
fixed_rho@ = NULL,
const_lambda = FALSE,
const_mu = FALSE,
splines_degree =1,
condition = "auto”,
relative_dt = le-3,
Ntrials =1,
Nthreads =1,
max_model_runtime = NULL,
fit_control = list())

A rooted ultrametric timetree of class "phylo", representing the time-calibrated
reconstructed phylogeny of a set of extant sampled species.

Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which rho is defined. If age©>0, then rho@
refers to the sampling fraction at age age®, i.e. the fraction of lineages extant at
age0 that are included in the tree. See below for more details.

Numeric vector, listing ages in ascending order, on which A and p are allowed to
vary independently. This grid must cover age®. If splines_degree>@ (see op-
tion below) then the age grid must also cover oldest_age. If NULL or of length
<=1 (regardless of value), then A and are assumed to be time-independent.

Numeric vector of length Ngrid (=max (1, length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted A at each point in the age grid. If a
single numeric, the same lower bound applies at all ages.

Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted A at each point in the age grid. If a single numeric, the same upper
bound applies at all ages. Use +Inf to omit upper bounds.

Numeric vector of length Ngrid, or a single numeric, specifying lower bounds
for the fitted p at each point in the age grid. If a single numeric, the same lower
bound applies at all ages.

Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted w at each point in the age grid. If a single numeric, the same upper

fit_hbd_model_on_grid

min_rhoo

max_rho@
guess_lambda

guess_mu

guess_rho@

fixed_lambda

fixed_mu

fixed_rho@

const_lambda

const_mu

splines_degree

89

bound applies at all ages. Use +Inf to omit upper bounds.

Numeric, specifying a lower bound for the fitted sampling fraction p (fraction
of extant species included in the tree).

Numeric, specifying an upper bound for the fitted sampling fraction p.

Initial guess for A at each age-grid point. Either NULL (an initial guess will be
computed automatically), or a single numeric (guessing the same)\ at all ages) or
a numeric vector of size Ngrid specifying a separate guess for \ at each age-grid
point. To omit an initial guess for some but not all age-grid points, set their guess
values to NA. Guess values are ignored for non-fitted (i.e., fixed) parameters.
Initial guess for p at each age-grid point. Either NULL (an initial guess will
be computed automatically), or a single numeric (guessing the same p at all
ages) or a numeric vector of size Ngrid specifying a separate guess for u at each
age-grid point. To omit an initial guess for some but not all age-grid points,
set their guess values to NA. Guess values are ignored for non-fitted (i.e., fixed)
parameters.

Numeric, specifying an initial guess for the sampling fraction p at age@. Setting
this to NULL or NA is the same as setting it to 1.

Optional fixed (i.e. non-fitted) A values on one or more age-grid points. Either
NULL (A is not fixed anywhere), or a single numeric (A fixed to the same value
at all grid points) or a numeric vector of size Ngrid (A fixed on one or more
age-grid points, use NA for non-fixed values).

Optional fixed (i.e. non-fitted) p values on one or more age-grid points. Either
NULL (u is not fixed anywhere), or a single numeric (u fixed to the same value
at all grid points) or a numeric vector of size Ngrid (u fixed on one or more
age-grid points, use NA for non-fixed values).

Numeric between 0 and 1, optionallly specifying a fixed value for the sampling
fraction p. If NULL or NA, the sampling fraction p is estimated, however note that
this may not always be meaningful (Stadler 2009, Stadler 2013).

Logical, specifying whether A should be assumed constant across the grid, i.e.
time-independent. Setting const_lambda=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If A is fixed on some grid points (i.e. via
fixed_lambda), then only the non-fixed lambdas are assumed to be identical to
one another.

Logical, specifying whether 1 should be assumed constant across the grid, i.e.
time-independent. Setting const_mu=TRUE reduces the number of free (i.e.,
independently fitted) parameters. If p is fixed on some grid points (i.e. via
fixed_mu), then only the non-fixed mus are assumed to be identical to one an-
other.

Integer between 0 and 3 (inclusive), specifying the polynomial degree of A and p
between age-grid points. If 0, then A and x4 are considered piecewise constant, if
1 then A and p are considered piecewise linear, if 2 or 3 then A and y are consid-
ered to be splines of degree 2 or 3, respectively. The splines_degree influences
the analytical properties of the curve, e.g. splines_degree==1 guarantees a
continuous curve, splines_degree==2 guarantees a continuous curve and con-
tinuous derivative, and so on. A degree of 0 is generally not recommended, de-
spite the fact that it has been historically popular. The case splines_degree=0
is also known as “skyline” model.

90 fit_hbd_model_on_grid

"non "non non

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier. "none" is generally not
recommended.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime
Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

Details

Warning: Unless well-justified constraints are imposed on either A and/or p and p, it is generally
impossible to reliably estimate A and p from extant timetrees alone (Louca and Pennell, 2020). This
routine (and any other software that claims to estimate A\ and pu solely from extant timetrees) should
thus be used with great suspicion. If your only source of information is an extant timetree, and you
have no a priori information on how A or p might have looked like, you should consider using the
more appropriate routines fit_hbd_pdr_on_grid and fit_hbd_psr_on_grid instead.

If age0>0, the input tree is essentially trimmed at age®@ (omitting anything younger than age@),
and the various variables are fitted to this new (shorter) tree, with time shifted appropriately. For
example, the fitted rho@ is thus the sampling fraction at age®, i.e. the fraction of lineages extant at
age0 that are represented in the timetree.

It is generally advised to provide as much information to the function fit_hbd_model_on_grid
as possible, including reasonable lower and upper bounds (min_lambda, max_lambda, min_mu,

fit_hbd_model_on_grid

91

max_mu, min_rho@® and max_rho@) and a reasonable parameter guess (guess_lambda, guess_mu
and guess_rho@). It is also important that the age_grid is sufficiently fine to capture the ex-
pected major variations of A\ and p over time, but keep in mind the serious risk of overfitting when
age_grid is too fine and/or the tree is too small.

Value

A list with the following elements:

Success

objective_value

objective_name

loglikelihood
fitted_lambda

fitted_mu

fitted_rho

guess_lambda

guess_mu

guess_rho@

age_grid

NFP

AIC

BIC

condition

Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

The log-likelihood of the fitted model for the given timetree.

Numeric vector of size Ngrid, listing fitted or fixed speciation rates A at each
age-grid point. Between grid points A should be interpreted as a piecewise poly-
nomial function (natural spline) of degree splines_degree; to evaluate this
function at arbitrary ages use the castor routine evaluate_spline.

Numeric vector of size Ngrid, listing fitted or fixed extinction rates y at each
age-grid point. Between grid points x should be interpreted as a piecewise poly-
nomial function (natural spline) of degree splines_degree; to evaluate this
function at arbitrary ages use the castor routine evaluate_spline.

Numeric, specifying the fitted or fixed sampling fraction p.

Numeric vector of size Ngrid, specifying the initial guess for A at each age-grid
point.

Numeric vector of size Ngrid, specifying the initial guess for at each age-grid
point.

Numeric, specifying the initial guess for p.

The age-grid on which A and p are defined. This will be the same as the provided
age_grid, unless the latter was NULL or of length <=1.

Integer, number of free (i.e., independently) fitted parameters. If none of the A,
w and p were fixed, and const_lambda=FALSE and const_mu=FALSE, then NFP
will be equal to 2*Ngrid+1.

The Akaike Information Criterion for the fitted model, defined as 2k — 2log(L),
where £k is the number of fitted parameters and L is the maximized likelihood.

The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

Character, specifying what conditioning was root for the likelihood (e.g. "crown"
or "stem").

92 fit_hbd_model_on_grid

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

Author(s)

Stilianos Louca

References

T. Stadler (2009). On incomplete sampling under birth-death models and connections to the sampling-
based coalescent. Journal of Theoretical Biology. 261:58-66.

T. Stadler (2013). How can we improve accuracy of macroevolutionary rate estimates? Systematic
Biology. 62:321-329.

H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd
loglikelihood_hbd
fit_hbd_model_parametric
fit_hbd_pdr_on_grid
fit_hbd_pdr_parametric
fit_hbd_psr_on_grid

Examples
Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000
rho = 0.5 # sampling fraction

time_grid = seq(from=0, to=100, by=0.01)

lambdas = 2xexp(@.1*xtime_grid)

mus = 1.5%exp(0.09*time_grid)

sim = generate_random_tree(parameters = list(rarefaction=rho),
max_tips = Ntips/rho,
coalescent = TRUE,

fit_hbd_model_parametric

added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)

tree = sim$tree
root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Fit mu on grid

Assume that lambda & rho are known

Ngrid =5

age_grid = seq(from=0,to=root_age,length.out=Ngrid)
fit = fit_hbd_model_on_grid(tree,

age_grid = age_grid,

max_mu = 100,

fixed_lambda= approx(x=time_grid,y=lambdas,xout=sim$final_time-age_grid)$y,
fixed_rho® = rho,

condition = "crown”,

Ntrials = 10,# perform 10 fitting trials

Nthreads = 2,# use two CPUs

max_model_runtime = 1) # limit model evaluation to 1 second
if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n"”,fit$error))
Yelse{
cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",6 fit$loglikelihood))

plot fitted & true mu

plot(x = fit$age_grid,
y = fit$fitted_mu,
main = 'Fitted & true mu',
xlab = 'age',
ylab = "'mu',
type = 'b’',
col = 'red',
xlim = c(root_age,0))
lines(x = sim$final_time-time_grid,
y = mus,
type ='1",
col = 'blue');

get fitted mu as a function of age
mu_fun = approxfun(x=fit$age_grid, y=fit$fitted_mu)
3

End(Not run)

fit_hbd_model_parametric
Fit a parametric homogenous birth-death model to a timetree.

94 fit_ hbd_model_parametric

Description

Given an ultrametric timetree, fit a homogenous birth-death (HBD) model in which speciation and
extinction rates (A and p) are given as parameterized functions of time before present. “Homoge-
nous” refers to the assumption that, at any given moment in time, all lineages exhibit the same
speciation/extinction rates (in the literature this is sometimes referred to simply as “birth-death
model”). Every HBD model is defined based on the values that A and p take over time as well as
the sampling fraction p (fraction of extant species sampled); in turn, A, u and p can be parame-
terized by a finite set of parameters. This function estimates these parameters by maximizing the
likelihood (Morlon et al. 2011) of the timetree under the resulting HBD model.

Usage

fit_hbd_model_parametric(tree,
param_values,

param_guess = NULL,
param_min = -Inf,
param_max = +Inf,
param_scale = NULL,
oldest_age = NULL,
ageo =0,
lambda,
mu =0,
rhoo =1,
age_grid = NULL,
condition = "auto”,
relative_dt = le-3,
Ntrials =1,
max_start_attempts =1,
Nthreads =1,
max_model_runtime = NULL,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
fit_algorithm = "nlminb",
fit_control = list(),
focal_param_values = NULL,
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix =""

Arguments

tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated

reconstructed phylogeny of a set of extant sampled species.

param_values Numeric vector, specifying fixed values for a some or all model parameters.
For fitted (i.e., non-fixed) parameters, use NaN or NA. For example, the vector
c(1.5,NA,40) specifies that the 1st and 3rd model parameters are fixed at the
values 1.5 and 40, respectively, while the 2nd parameter is to be fitted. The
length of this vector defines the total number of model parameters. If entries in

fit_hbd_model_parametric 95

param_guess

param_min

param_max

param_scale

oldest_age

ageo

lambda

mu

this vector are named, the names are taken as parameter names. Names should
be included if you’d like returned parameter vectors to have named entries, or if
the functions lambda, mu or rho query parameter values by name (as opposed to
numeric index).

Numeric vector of size NP, specifying a first guess for the value of each model
parameter. For fixed parameters, guess values are ignored. Can be NULL only if
all model parameters are fixed.

Optional numeric vector of size NP, specifying lower bounds for model parame-
ters. If of size 1, the same lower bound is applied to all parameters. Use -Inf to
omit a lower bound for a parameter. If NULL, no lower bounds are applied. For
fixed parameters, lower bounds are ignored.

Optional numeric vector of size NP, specifying upper bounds for model param-
eters. If of size 1, the same upper bound is applied to all parameters. Use +Inf
to omit an upper bound for a parameter. If NULL, no upper bounds are applied.
For fixed parameters, upper bounds are ignored.

Optional numeric vector of size NP, specifying typical scales for model parame-
ters. If of size 1, the same scale is assumed for all parameters. If NULL, scales are
determined automatically. For fixed parameters, scales are ignored. It is strongly
advised to provide reasonable scales, as this facilitates the numeric optimization
algorithm.

Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which rho is defined. If age©>0, then rho@
refers to the sampling fraction at age age®, i.e. the fraction of lineages extant at
age0 that are included in the tree. See below for more details.

Function specifying the speciation rate at any given age (time before present)
and for any given parameter values. This function must take exactly two argu-
ments, the 1st one being a numeric vector (one or more ages) and the 2nd one
being a numeric vector of size NP (parameter values), and return a numeric vec-
tor of the same size as the 1st argument with strictly positive entries. Can also
be a single number (i.e., lambda is fixed).

Function specifying the extinction rate at any given age and for any given param-
eter values. This function must take exactly two arguments, the 1st one being a
numeric vector (one or more ages) and the 2nd one being a numeric vector of
size NP (parameter values), and return a numeric vector of the same size as the
st argument with non-negative entries. Can also be a single number (i.e., mu is
fixed).

96

fit_hbd_model_parametric

rho@ Function specifying the sampling fraction (fraction of extant species sampled
at age@) for any given parameter values. This function must take exactly one
argument, a numeric vector of size NP (parameter values), and return a numeric
between 0 (exclusive) and 1 (inclusive). Can also be a single number (i.e., thoO
is fixed).

age_grid Numeric vector, specifying ages at which the 1ambda and mu functionals should
be evaluated. This age grid must be fine enough to capture the possible variation
in A and p over time, within the permissible parameter range. If of size 1,
then lambda & mu are assumed to be time-independent. Listed ages must be
strictly increasing, and must cover at least the full considered age interval (from
0 to oldest_age). Can also be NULL or a vector of size 1, in which case the
speciation rate and extinction rate is assumed to be time-independent.

"non "non non

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier. "none" is generally not
recommended.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

max_start_attempts
Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly choosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime
Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_hbd_model_parametric 97

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated model parameters. Set
to O for no bootstrapping.

Ntrials_per_bootstrap
Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

fit_algorithm Character, specifying which optimization algorithm to use. Either "nlminb" or
"subplex" are allowed.

fit_control Named list containing options for the nlminb or subplex optimization routine,
depending on the choice of fit_algorithm. For example, for "nlminb" com-
monly modified options are iter.max, eval.max or rel.tol. For a complete
list of options and default values see the documentation of nlminb in the stats
package or of nloptr in the nloptr package.

focal_param_values
Optional numeric matrix having NP columns and an arbitrary number of rows,
listing combinations of parameter values of particular interest and for which the
log-likelihoods should be returned. This may be used for diagnostic purposes,
e.g., to examine the shape of the likelihood function.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

diagnostics Logical, specifying whether to print detailed information (such as model likeli-

hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is designed to estimate a finite set of scalar parameters (p1, .., p, € R) that determine
the speciation rate A, the extinction rate 1 and the sampling fraction p, by maximizing the likelihood
of observing a given timetree under the HBD model. For example, the investigator may assume that
both X\ and y vary exponentially over time, i.e. they can be described by A(t) = A, - e~*! and
w(t) = po - e~ Pt (where \,, 1, are unknown present-day rates and «, 3 are unknown factors, and ¢
is time before present), and that the sampling fraction p is known. In this case the model has 4 free
parameters, p; = Ao, P2 = o, P3 = « and py = 3, each of which may be fitted to the tree.

It is generally advised to provide as much information to the function fit_hbd_model_parametric
as possible, including reasonable lower and upper bounds (param_min and param_max), a reason-
able parameter guess (param_guess) and reasonable parameter scales param_scale. If some model
parameters can vary over multiple orders of magnitude, it is advised to transform them so that they
vary across fewer orders of magnitude (e.g., via log-transformation). It is also important that the
age_grid is sufficiently fine to capture the variation of lambda and mu over time, since the likeli-
hood is calculated under the assumption that both vary linearly between grid points.

98 fit_hbd_model_parametric

Value
A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.
objective_value
The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximume-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

param_fitted Numeric vector of size NP (number of model parameters), listing all fitted or
fixed model parameters in their standard order (see details above). If param_names
was provided, elements in fitted_params will be named.

param_guess Numeric vector of size NP, listing guessed or fixed values for all model pa-
rameters in their standard order. If param_names was provided, elements in
param_guess will be named.

loglikelihood The log-likelihood of the fitted model for the given timetree.
NFP Integer, number of fitted (i.e., non-fixed) model parameters.

AIC The Akaike Information Criterion for the fitted model, defined as 2k — 21log(L),
where k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

condition Character, specifying what conditioning was root for the likelihood (e.g. "crown"
or "stem").
converged Logical, specifying whether the maximum likelihood was reached after conver-

gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).
Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.
Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.
trial_start_objectives
Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.
trial_objective_values
Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.
trial_Nstart_attempts
Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

fit_hbd_model_parametric 99

trial_Niterations
Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations
Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

standard_errors

Numeric vector of size NP, estimated standard error of the parameters, based on
parametric bootstrapping. Only returned if Nbootstraps>0.

medians Numeric vector of size NP, median the estimated parameters across parametric
bootstraps. Only returned if Nbootstraps>0.

CI50lower Numeric vector of size NP, lower bound of the 50% confidence interval (25-
75% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI5Qupper Numeric vector of size NP, upper bound of the 50% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI95lower Numeric vector of size NP, lower bound of the 95% confidence interval (2.5-
97.5% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI95upper Numeric vector of size NP, upper bound of the 95% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted model
(Lindholm et al. 2019). See the documentation of fit_hbds_model_on_grid
for an explanation.

Author(s)

Stilianos Louca

References
H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

A. Lindholm, D. Zachariah, P. Stoica, T. B. Schoen (2019). Data consistency approach to model
validation. IEEE Access. 7:59788-59796.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd
loglikelihood_hbd
fit_hbd_model_on_grid
fit_hbd_pdr_on_grid
fit_hbd_pdr_parametric

100 fit_hbd_model_parametric

Examples
Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000
rho = 0.5 # sampling fraction

time_grid = seq(from=0, to=100, by=0.01)

lambdas = 2*xexp(@.1xtime_grid)

mus = 1.5%exp(0.09*time_grid)

tree = generate_random_tree(parameters = list(rarefaction=rho),
max_tips = Ntips/rho,
coalescent = TRUE,

added_rates_times time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)$tree

root_age = castor::get_tree_span(tree)$max_distance

cat(sprintf("Tree has %d tips, spans %g Myr\n”,length(tree$tip.label),root_age))

Define a parametric HBD model, with exponentially varying lambda & mu
Assume that the sampling fraction is known

The model thus has 4 parameters: lambda®, mu@, alpha, beta
lambda_function = function(ages,params){
return(params['lambda@’' Jxexp(-params['alpha']*ages));

3

mu_function = function(ages,params){
return(params['mu@' Jxexp(-params['beta’']J*ages));

3

rho_function = function(params){

return(rho) # rho does not depend on any of the parameters

3

Define an age grid on which lambda_function & mu_function shall be evaluated
Should be sufficiently fine to capture the variation in lambda & mu
age_grid = seq(from=0,to=100,by=0.01)

Perform fitting
Lets suppose extinction rates are already known
cat(sprintf("Fitting model to tree..\n"))
fit = fit_hbd_model_parametric(tree,
param_values = c(lambda®=NA, mu@=3, alpha=NA, beta=-0.09),

param_guess = c¢(1,1,0,0),

param_min = ¢(0,0,-1,-1),

param_max = c(10,10,1,1),

param_scale =1, # all params are in the order of 1
lambda = lambda_function,

mu = mu_function,

rho@ = rho_function,

age_grid = age_grid,

Ntrials =10, # perform 10 fitting trials
Nthreads =2, # use 2 CPUs
max_model_runtime = 1, # limit model evaluation to 1 second
fit_control = list(rel.tol=1e-6))

if(!fit$success){

fit_hbd_pdr_on_best_grid_size 101

cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))

Yelse{

cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",fit$loglikelihood))
print(fit)

3

End(Not run)

fit_hbd_pdr_on_best_grid_size
Fit pulled diversification rates of birth-death models on a time grid
with optimal size.

Description

Given an ultrametric timetree, estimate the pulled diversification rate of homogenous birth-death
(HBD) models that best explains the tree via maximum likelihood, automatically determining the
optimal time-grid size based on the data. Every HBD model is defined by some speciation and
extinction rates (A and u) over time, as well as the sampling fraction p (fraction of extant species
sampled). “Homogenous” refers to the assumption that, at any given moment in time, all lineages
exhibit the same speciation/extinction rates. For any given HBD model there exists an infinite
number of alternative HBD models that predict the same deterministic lineages-through-time curve
and yield the same likelihood for any given reconstructed timetree; these “congruent” models cannot
be distinguished from one another solely based on the tree.

Each congruence class is uniquely described by the “pulled diversification rate” (PDR; Louca et al
2018), defined as PDR = A—u+\"1d)\/dr (where T is time before present) as well as the product
pA, (where), is the present-day speciation rate). That is, two HBD models are congruent if and
only if they have the same PDR and the same product pA,. This function is designed to estimate
the generating congruence class for the tree, by fitting the PDR on a grid of discrete times as well
as the product p),. Internally, the function uses fit_hbd_pdr_on_grid to perform the fitting. The
"best" grid size is determined based on some optimality criterion, such as AIC.

Usage

fit_hbd_pdr_on_best_grid_size(tree,

oldest_age = NULL,

ageo
grid_sizes

0,
c(1,10),

uniform_grid FALSE,
criterion "AIC",
exhaustive TRUE,
min_PDR -Inf,
max_PDR +Inf,
min_rholambda® le-10,
max_rholambda@ +Inf,
guess_PDR NULL,
guess_rholambda@ NULL,

102

Arguments

tree

oldest_age

ageod

grid_sizes

uniform_grid

criterion

exhaustive

min_PDR

fit_hbd_pdr_on_best_grid_size

fixed_PDR = NULL,
fixed_rholambda® = NULL,
splines_degree =1,
condition = "auto”,
relative_dt = le-3,
Ntrials =1,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
Nthreads =1,
max_model_runtime = NULL,
fit_control = list(),
verbose = FALSE,
verbose_prefix =""

A rooted ultrametric timetree of class "phylo"”, representing the time-calibrated
phylogeny of a set of extant sampled species.

Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age. If oldest_age is less than
the root age, the tree is split into multiple subtrees at that age by treating every
edge crossing that age as the stem of a subtree, and each subtree is considered
an independent realization of the HBD model stemming at that age. This can be
useful for avoiding points in the tree close to the root, where estimation uncer-
tainty is generally higher. If oldest_age==NULL, it is automatically set to the
root age.

Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting. If age@>0, the tree essentially is trimmed at age®, omitting
anything younger than age®, and the PDR and p), are fitted to the trimmed tree
while shifting time appropriately.

Numeric vector, listing alternative grid sizes to consider.

Logical, specifying whether to use uniform time grids (equal time intervals) or
non-uniform time grids (more grid points towards the present, where more data
are available).

Character, specifying which criterion to use for selecting the best grid. Options
are "AIC" and "BIC".

Logical, whether to try all grid sizes before choosing the best one. If FALSE,
the grid size is gradually increased until the selection criterio (e.g., AIC) starts
becoming worse, at which point the search is halted. This avoids fitting models
with excessive grid sizes when an optimum already seems to have been found at
a smaller grid size.

Numeric vector of length Ngrid (=max (1, length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted PDR at each point in the age grid. If
a single numeric, the same lower bound applies at all ages. Note that in general
the PDR may be negative as well as positive.

fit_hbd_pdr_on_best_grid_size 103

max_PDR

min_rholambda®@

max_rholambda®@

guess_PDR

Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted PDR at each point in the age grid. If a single numeric, the same
upper bound applies at all ages. Use +Inf to omit upper bounds.

Strictly positive numeric, specifying the lower bound for the fitted pA, (sam-
pling fraction times present-day extinction rate).

Strictly positive numeric, specifying the upper bound for the fitted p),. Set to
+Inf to omit this upper bound.

Initial guess for the PDR at each age-grid point. Either NULL (an initial guess
will be computed automatically), or a single numeric (guessing a constant PDR
at all ages), or a function handle (for generating guesses at each grid point;
this function may also return NA at some time points for which a guess shall be
computed automatically).

guess_rholambda®

fixed_PDR

Numeric, specifying an initial guess for the product p\,. If NULL, a guess will
be computed automatically.

Optional fixed (i.e. non-fitted) PDR values. Either NULL (none of the PDR values
are fixed) or a function handle specifying the PDR for any arbitrary age (PDR
will be fixed at any age for which this function returns a finite number). The
function fixed_PDR() need not return finite values for all times, in fact doing
so would mean that the PDR is not fitted anywhere.

fixed_rholambda®

splines_degree

condition

relative_dt

Numeric, optionally specifying a fixed value for the product pA,. If NULL or NA,
the product p, is estimated.

Integer between O and 3 (inclusive), specifying the polynomial degree of the
PDR between age-grid points. If 0, then the PDR is considered to be piecewise
constant, if 1 then the PDR is considered piecewise linear, if 2 or 3 then the PDR
is considered to be a spline of degree 2 or 3, respectively. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on. A degree of 0 is generally not recom-
mended.

"non "non non

Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

104 fit_hbd_pdr_on_best_grid_size

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nbootstraps Integer, specifying an optional number of bootstrap samplings to perform, for
estimating standard errors and confidence intervals of maximum-likelihood fit-
ted parameters. If 0, no bootstrapping is performed. Typical values are 10-100.
At each bootstrap sampling, a random timetree is generated under the birth-
death model according to the fitted PDR and p),, the parameters are estimated
anew based on the generated tree, and subsequently compared to the original
fitted parameters. Each bootstrap sampling will use roughly the same informa-
tion and similar computational resources as the original maximum-likelihood fit
(e.g., same number of trials, same optimization parameters, same initial guess,
etc). Bootstrapping is only performed for the best grid size.

Ntrials_per_bootstrap
Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime
Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

It is generally advised to provide as much information to the function fit_hbd_pdr_on_best_grid_size
as possible, including reasonable lower and upper bounds (min_PDR, max_PDR, min_rholambda®@
and max_rholambda®) and a reasonable parameter guess (guess_PDR and guess_rholambda®).

Value

A list with the following elements:

fit_hbd_pdr_on_best_grid_size 105

Success

best_fit

grid_sizes
AICs

BICs

Author(s)

Stilianos Louca

References

Logical, indicating whether the function executed successfully. If FALSE, the
returned list will include an additional “error” element (character) providing a
description of the error; in that case all other return variables may be undefined.

A named list containing the fitting results for the best grid size. This list has the
same structure as the one returned by fit_hbd_pdr_on_grid.

Numeric vector, listing the grid sizes as provided during the function call.

Numeric vector of the same length as grid_sizes, listing the AIC for each
considered grid size. Note that some entries may be NA, if the corresponding
grid sizes were not considered (if exhaustive=FALSE).

Numeric vector of the same length as grid_sizes, listing the BIC for each
considered grid size. Note that some entries may be NA, if the corresponding
grid sizes were not considered (if exhaustive=FALSE).

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-

tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd
loglikelihood_hbd
fit_hbd_model_parametric
fit_hbd_model_on_grid

fit_hbd_pdr_parametric
fit_hbd_pdr_on_grid

fit_hbd_psr_on_grid

fit_hbd_psr_on_best_grid_size

model_adequacy_hbd

evaluate_spline

Generate a random tree with exponentially varying lambda & mu

Examples
Not run:
Ntips = 10000
rho = 0.5 #

time_grid = seq(f
lambdas = 2*exp

sampling fraction
rom=0, to=100, by=0.01)
(0.1*time_grid)

106 fit_hbd_pdr_on_grid

mus = 1.5%exp(0.09*time_grid)

sim = generate_random_tree(parameters = list(rarefaction=rho),
max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)

tree = sim$tree
root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Fit PDR on grid, with the grid size chosen automatically between 1 and 5
fit = fit_hbd_pdr_on_best_grid_size(tree,

max_PDR = 100,
grid_sizes = c(1:5),
exhaustive = FALSE,
uniform_grid = FALSE,
Ntrials =10,
Nthreads = 4,
verbose = TRUE,

max_model_runtime = 1)
if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n"”,fit$error))
Yelse{
best_fit = fit$best_fit
cat(sprintf("Fitting succeeded:\nBest grid size=%d\n",length(best_fit$age_grid)))
plot fitted PDR

plot(x = best_fit$age_grid,
y = best_fit$fitted_PDR,
main = 'Fitted PDR',
xlab = 'age',
ylab = 'PDR',
type = 'b',
xlim = c(root_age,0))

get fitted PDR as a function of age
PDR_fun = approxfun(x=best_fit$age_grid, y=best_fit$fitted_PDR)

End(Not run)

fit_hbd_pdr_on_grid Fit pulled diversification rates of birth-death models on a time grid.

Description

Given an ultrametric timetree, estimate the pulled diversification rate of homogenous birth-death
(HBD) models that best explains the tree via maximum likelihood. Every HBD model is defined by
some speciation and extinction rates (A and p) over time, as well as the sampling fraction p (fraction
of extant species sampled). “Homogenous” refers to the assumption that, at any given moment in
time, all lineages exhibit the same speciation/extinction rates. For any given HBD model there exists

fit_hbd_pdr_on_grid

107

an infinite number of alternative HBD models that predict the same deterministic lineages-through-
time curve and yield the same likelihood for any given reconstructed timetree; these “congruent”
models cannot be distinguished from one another solely based on the tree.

Each congruence class is uniquely described by the “pulled diversification rate” (PDR; Louca et al
2018), defined as PDR = A\— p-+\~1d\/dr (where 7 is time before present) as well as the product
pAo (Where)\, is the present-day speciation rate). That is, two HBD models are congruent if and
only if they have the same PDR and the same product pA,. This function is designed to estimate
the generating congruence class for the tree, by fitting the PDR on a grid of discrete times as well

as the product pA,.

Usage

fit_hbd_pdr_on_grid(tree,
oldest_age NULL,
ageo Q,
age_grid NULL,
min_PDR -Inf,
max_PDR +Inf,
min_rholambda® le-10,
max_rholambda® +Inf,
guess_PDR NULL,
guess_rholambda@ NULL,
fixed_PDR NULL,
fixed_rholambda® NULL,
splines_degree 1,
condition "auto”,
relative_dt le-3,
Ntrials 1,
Nbootstraps Q,
Ntrials_per_bootstrap = NULL,
Nthreads 1,
max_model_runtime NULL,
fit_control list(),
verbose FALSE,
verbose_prefix "y

Arguments
tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated
phylogeny of a set of extant sampled species.
oldest_age Strictly positive numeric, specifying the oldest time before present (“‘age”) to

consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

108

ageod

age_grid

min_PDR

max_PDR

min_rholambda®@

max_rholambda@

guess_PDR

fit_hbd_pdr_on_grid

Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which rholambda@ is defined. If age©>9,
then rholambda@ refers to the product of the sampling fraction at age age® and
the speciation rate at age age@. See below for more details.

Numeric vector, listing ages in ascending order at which the PDR is allowed to
vary independently. This grid must cover at least the age range from age@ to
oldest_age. If NULL or of length <=1 (regardless of value), then the PDR is
assumed to be time-independent.

Numeric vector of length Ngrid (=max (1, length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted PDR at each point in the age grid.
If a single numeric, the same lower bound applies at all ages. Use -Inf to omit
lower bounds.

Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted PDR at each point in the age grid. If a single numeric, the same
upper bound applies at all ages. Use +Inf to omit upper bounds.

Strictly positive numeric, specifying the lower bound for the fitted pA, (sam-
pling fraction times present-day extinction rate).

Strictly positive numeric, specifying the upper bound for the fitted pA,. Set to
+Inf to omit this upper bound.

Initial guess for the PDR at each age-grid point. Either NULL (an initial guess
will be computed automatically), or a single numeric (guessing the same PDR
at all ages) or a numeric vector of size Ngrid specifying a separate guess at each
age-grid point. To omit an initial guess for some but not all age-grid points,
set their guess values to NA. Guess values are ignored for non-fitted (i.e., fixed)
parameters.

guess_rholambda@

fixed_PDR

Numeric, specifying an initial guess for the product pA,. If NULL, a guess will
be computed automatically.

Optional fixed (i.e. non-fitted) PDR values on one or more age-grid points.
Either NULL (PDR is not fixed anywhere), or a single numeric (PDR fixed to the
same value at all grid points) or a numeric vector of size Ngrid (PDR fixed at
one or more age-grid points, use NA for non-fixed values).

fixed_rholambda®

splines_degree

condition

Numeric, optionally specifying a fixed value for the product pA,. If NULL or NA,
the product p), is estimated.

Integer between 0 and 3 (inclusive), specifying the polynomial degree of the
PDR between age-grid points. If 0, then the PDR is considered piecewise con-
stant, if 1 then the PDR is considered piecewise linear, if 2 or 3 then the PDR is
considered to be a spline of degree 2 or 3, respectively. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on. A degree of 0 is generally not recom-
mended.

non "non non

Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the

fit_hbd_pdr_on_grid 109

likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nbootstraps Integer, specifying an optional number of bootstrap samplings to perform, for
estimating standard errors and confidence intervals of maximum-likelihood fit-
ted parameters. If 0, no bootstrapping is performed. Typical values are 10-100.
At each bootstrap sampling, a random timetree is generated under the birth-
death model according to the fitted PDR and p),, the parameters are estimated
anew based on the generated tree, and subsequently compared to the original
fitted parameters. Each bootstrap sampling will use roughly the same informa-
tion and similar computational resources as the original maximum-likelihood fit
(e.g., same number of trials, same optimization parameters, same initial guess,
etc).

Ntrials_per_bootstrap
Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal tomax (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>@.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime
Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

110 fit_hbd_pdr_on_grid

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

If age0>0, the input tree is essentially trimmed at age® (omitting anything younger than age®), and
the PDR and rholambda® are fitted to this new (shorter) tree, with time shifted appropriately. The
fitted rholambda® is thus the product of the sampling fraction at age® and the speciation rate at
age®. Note that the sampling fraction at age®@ is simply the fraction of lineages extant at age® that
are represented in the timetree.

It is generally advised to provide as much information to the function fit_hbd_pdr_on_grid as
possible, including reasonable lower and upper bounds (min_PDR, max_PDR, min_rholambda®@ and
max_rholambda®) and a reasonable parameter guess (guess_PDR and guess_rholambda®). It is
also important that the age_grid is sufficiently fine to capture the expected major variations of the
PDR over time, but keep in mind the serious risk of overfitting when age_grid is too fine and/or
the tree is too small.

Value
A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

objective_value
The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

loglikelihood The log-likelihood of the fitted model for the given timetree.

fitted_PDR Numeric vector of size Ngrid, listing fitted or fixed pulled diversification rates
(PDR) at each age-grid point. Between grid points the fitted PDR should be in-
terpreted as a piecewise polynomial function (natural spline) of degree splines_degree;
to evaluate this function at arbitrary ages use the castor routine evaluate_spline.

fitted_rholambda@
Numeric, specifying the fitted or fixed product pA(0).

guess_PDR Numeric vector of size Ngrid, specifying the initial guess for the PDR at each
age-grid point.

guess_rholambda®
Numeric, specifying the initial guess for pA(0).

age_grid The age-grid on which the PDR is defined. This will be the same as the provided
age_grid, unless the latter was NULL or of length <=1.

NFP Integer, number of fitted (i.e., non-fixed) parameters. If none of the PDRs or
pA0 were fixed, this will be equal to Ngrid+1.

fit_hbd_pdr_on_grid 111

AIC The Akaike Information Criterion for the fitted model, defined as 2k — 21log(L),
where £ is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

bootstrap_estimates
If Nbootstraps>0, this will be a named list containing the elements PDR (nu-
meric matrix of size Nbootstraps x Ngrid, listing the fitted PDR at each grid
point and for each bootstrap) and rholambda@ (a numeric vector of size Nbootstraps,
listing the fitted p), for each bootstrap).

standard_errors
If Nbootstraps>0, this will be a named list containing the elements PDR (nu-
meric vector of size Ngrid, listing bootstrap-estimated standard errors for the
fitted PDRs) and rholambda® (a single numeric, bootstrap-estimated standard
error for the fitted pA,).

medians If Nbootstraps>0, this will be a named list containing the elements PDR (nu-
meric vector of size Ngrid, listing median fitted PDRs across bootstraps) and
rholambda® (a single numeric, median fitted p\, across bootstraps).

CI50lower If Nbootstraps>0, this will be a named list containing the elements PDR (nu-
meric vector of size Ngrid, listing bootstrap-estimated lower bounds of the 50-
percent confidence intervals for the fitted PDRs) and rholambda® (a single nu-
meric, bootstrap-estimated lower bound of the 50-percent confidence intervals
for the fitted pA,).

CI5Qupper Similar to CI5@lower, listing upper bounds of 50-percentile confidence inter-
vals.

CI95lower Similar to CI50lower, listing lower bounds of 95-percentile confidence inter-
vals.

CI95upper Similar to CI95lower, listing upper bounds of 95-percentile confidence inter-
vals.

Author(s)

Stilianos Louca

References

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

112 fit_hbd_pdr_on_grid

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd
loglikelihood_hbd
fit_hbd_model_parametric
fit_hbd_model_on_grid
fit_hbd_pdr_parametric
model_adequacy_hbd

evaluate_spline

Examples

Not run:

Generate a random tree with exponentially varying lambda & mu

Ntips = 10000

rho = 0.5 # sampling fraction

time_grid = seq(from=0, to=100, by=0.01)

lambdas = 2*xexp(@.1xtime_grid)

mus = 1.5%exp(0.09*time_grid)

sim = generate_random_tree(parameters = list(rarefaction=rho),
max_tips = Ntips/rho,
coalescent = TRUE,

added_rates_times time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc mus)

tree = sim$tree
root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

calculate true PDR

lambda_slopes = diff(lambdas)/diff(time_grid);
lambda_slopes = c(lambda_slopes[1],lambda_slopes)
PDRs = lambdas - mus - (lambda_slopes/lambdas)

Fit PDR on grid

Ngrid =10

age_grid = seq(from=0,to=root_age,length.out=Ngrid)
fit = fit_hbd_pdr_on_grid(tree,

age_grid = age_grid,

min_PDR = -100,

max_PDR = +100,

condition = "crown”,

Ntrials = 10,# perform 10 fitting trials
Nthreads = 2,# use two CPUs

max_model_runtime = 1) # limit model evaluation to 1 second
if(!fit$success){

fit_hbd_pdr_parametric 113

cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))
Yelse{
cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",f fit$loglikelihood))

plot fitted & true PDR

plot(x = fit$age_grid,
y = fit$fitted_PDR,
main = 'Fitted & true PDR',
xlab = 'age',
ylab = 'PDR',
type = 'b',
col = 'red',
xlim = c(root_age,0))
lines(x = sim$final_time-time_grid,
y = PDRs,
type ='1l",
col = 'blue');

get fitted PDR as a function of age
PDR_fun = approxfun(x=fit$age_grid, y=fit$fitted_PDR)
3

End(Not run)

fit_hbd_pdr_parametric
Fit parameterized pulled diversification rates of birth-death models.

Description

Given an ultrametric timetree, estimate the pulled diversification rate (PDR) of homogenous birth-
death (HBD) models that best explains the tree via maximum likelihood, assuming that the PDR
is given as a parameterized function of time before present. Every HBD model is defined by some
speciation and extinction rates (A and p) over time, as well as the sampling fraction p (fraction of
extant species sampled). “Homogenous” refers to the assumption that, at any given moment in time,
all lineages exhibit the same speciation/extinction rates. For any given HBD model there exists an
infinite number of alternative HBD models that generate extant trees with the same probability
distributions and yield the same likelihood for any given extant timetree; these “congruent” models
cannot be distinguished from one another solely based on an extant timetree.

Each congruence class is uniquely described by its PDR, defined as PDR = X\ — u + A~ 1d\/dr
(where 7 is time before present) as well as the product pA, (where A, is the present-day speciation
rate). That is, two HBD models are congruent if and only if they have the same PDR and the same
product pA,. This function is designed to estimate the generating congruence class for the tree, by
fitting a finite number of parameters defining the PDR and pA,.

Usage

fit_hbd_pdr_parametric(tree,

114

Arguments

tree

param_values

param_guess

param_min

param_max

param_scale

fit_hbd_pdr_parametric

param_values,

param_guess = NULL,
param_min = -Inf,
param_max = +Inf,
param_scale = NULL,
oldest_age = NULL,
ageo =0,

PDR,

rholambda®,

age_grid = NULL,
condition = "auto”,
relative_dt = le-3,
Ntrials =1,
max_start_attempts = 1,
Nthreads =1,
max_model_runtime = NULL,
fit_control = list())

A rooted ultrametric timetree of class "phylo", representing the time-calibrated
phylogeny of a set of extant sampled species.

Numeric vector, specifying fixed values for a some or all model parameters.
For fitted (i.e., non-fixed) parameters, use NaN or NA. For example, the vector
c(1.5,NA,40) specifies that the 1st and 3rd model parameters are fixed at the
values 1.5 and 40, respectively, while the 2nd parameter is to be fitted. The
length of this vector defines the total number of model parameters. If entries in
this vector are named, the names are taken as parameter names. Names should
be included if you’d like returned parameter vectors to have named entries, or if
the functions PDR or rho query parameter values by name (as opposed to numeric
index).

Numeric vector of size NP, specifying a first guess for the value of each model
parameter. For fixed parameters, guess values are ignored. Can be NULL only if
all model parameters are fixed.

Optional numeric vector of size NP, specifying lower bounds for model parame-
ters. If of size 1, the same lower bound is applied to all parameters. Use -Inf to
omit a lower bound for a parameter. If NULL, no lower bounds are applied. For
fixed parameters, lower bounds are ignored.

Optional numeric vector of size NP, specifying upper bounds for model param-
eters. If of size 1, the same upper bound is applied to all parameters. Use +Inf
to omit an upper bound for a parameter. If NULL, no upper bounds are applied.
For fixed parameters, upper bounds are ignored.

Optional numeric vector of size NP, specifying typical scales for model parame-
ters. If of size 1, the same scale is assumed for all parameters. If NULL, scales are
determined automatically. For fixed parameters, scales are ignored. It is strongly
advised to provide reasonable scales, as this facilitates the numeric optimization
algorithm.

fit_hbd_pdr_parametric 115

oldest_age Strictly positive numeric, specifying the oldest time before present (“‘age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

ageod Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which rholambda@ is defined. If age@>0,
then rholambda@ refers to the product of the sampling fraction at age age® and
the speciation rate at age age@. See below for more details.

PDR Function specifying the pulled diversification rate at any given age (time before
present) and for any given parameter values. This function must take exactly two
arguments, the 1st one being a numeric vector (one or more ages) and the 2nd
one being a numeric vector of size NP (parameter values), and return a numeric
vector of the same size as the 1st argument. Can also be a single number (i.e.,
PDR is fixed).

rholambda@ Function specifying the product pA, (sampling fraction times speciation rate
at age0) for any given parameter values. This function must take exactly one
argument, a numeric vector of size NP (parameter values), and return a strictly
positive numeric. Can also be a single number (i.e., tholambda0 is fixed).

age_grid Numeric vector, specifying ages at which the PDR function should be evaluated.
This age grid must be fine enough to capture the possible variation in the PDR
over time, within the permissible parameter range. If of size 1, then the PDR
is assumed to be time-independent. Listed ages must be strictly increasing, and
must cover at least the full considered age interval (from age® to oldest_age).
Can also be NULL or a vector of size 1, in which case the PDR is assumed to be
time-independent.

non non non

condition Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

116 fit_hbd_pdr_parametric

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

max_start_attempts
Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly choosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime
Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

Details

This function is designed to estimate a finite set of scalar parameters (p1, .., p, € R) that determine
the PDR and the product p), (sampling fraction times present-dat extinction rate), by maximizing
the likelihood of observing a given timetree under the HBD model. For example, the investigator
may assume that the PDR varies exponentially over time, i.e. can be described by PDR(t) =
A - e~ Bt (where A and B are unknown coefficients and ¢ is time before present), and that the
product p), is unknown. In this case the model has 3 free parameters, p; = A, po = B and
P3 = pAs, each of which may be fitted to the tree.

If age©>0, the input tree is essentially trimmed at age@ (omitting anything younger than age®), and
the PDR and rholambda® are fitted to this new (shorter) tree, with time shifted appropriately. The
fitted rholambda® is thus the product of the sampling fraction at age®@ and the speciation rate at
age@. Note that the sampling fraction at age® is simply the fraction of lineages extant at age® that
are represented in the timetree. Most users will typically want to leave age0=0.

It is generally advised to provide as much information to the function fit_hbd_pdr_parametric as
possible, including reasonable lower and upper bounds (param_min and param_max), a reasonable
parameter guess (param_guess) and reasonable parameter scales param_scale. If some model
parameters can vary over multiple orders of magnitude, it is advised to transform them so that they
vary across fewer orders of magnitude (e.g., via log-transformation). It is also important that the
age_grid is sufficiently fine to capture the variation of the PDR over time, since the likelihood is
calculated under the assumption that both vary linearly between grid points.

Value

A list with the following elements:

fit_hbd_pdr_parametric

Success

objective_value

objective_name

param_fitted

param_guess

loglikelihood
NFP
AIC

BIC

converged

Niterations

Nevaluations

117

Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

Numeric vector of size NP (number of model parameters), listing all fitted or
fixed model parameters in their standard order (see details above). If param_names
was provided, elements in fitted_params will be named.

Numeric vector of size NP, listing guessed or fixed values for all model param-
eters in their standard order.

The log-likelihood of the fitted model for the given timetree.
Integer, number of fitted (i.e., non-fixed) model parameters.

The Akaike Information Criterion for the fitted model, defined as 2k — 21log(L),
where £ is the number of fitted parameters and L is the maximized likelihood.

The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

trial_start_objectives

Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.

trial_objective_values

Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.

trial_Nstart_attempts

Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

trial_Niterations

Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations

Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

118 fit_hbd_pdr_parametric

Author(s)

Stilianos Louca

References
H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd
loglikelihood_hbd
fit_hbd_model_on_grid
fit_hbd_model_parametric
fit_hbd_pdr_on_grid
fit_hbd_psr_parametric

model_adequacy_hbd

Examples

Not run:

Generate a random tree with exponentially varying lambda & mu

Ntips = 10000

rho = 0.5 # sampling fraction

time_grid = seq(from=0, to=100, by=0.01)

lambdas = 2*xexp(@.1xtime_grid)

mus = 1.5%exp(0.09*time_grid)

tree = generate_random_tree(parameters = list(rarefaction=rho),
max_tips = Ntips/rho,
coalescent = TRUE,

added_rates_times time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)$tree

root_age = castor::get_tree_span(tree)$max_distance

cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Define a parametric HBD congruence class, with exponentially varying PDR
The model thus has 3 parameters

PDR_function = function(ages,params){

return(params['A' Jxexp(-params['B'Jxages));

3

rholambda@_function = function(params){

return(params['rholambda@'])

}

fit_hbd_psr_on_best_grid_size 119

Define an age grid on which PDR_function shall be evaluated
Should be sufficiently fine to capture the variation in the PDR
age_grid = seq(from=0,to=100,by=0.01)

Perform fitting
cat(sprintf("Fitting class to tree..\n"))
fit = fit_hbd_pdr_parametric(tree,
param_values = c(A=NA, B=NA, rholambda@=NA),

param_guess = c¢(1,0,1),

param_min = c(-10,-10,0),

param_max = c(10,10,10),

param_scale =1, # all params are in the order of 1
PDR = PDR_function,

rholambda@ = rholambda®@_function,

age_grid = age_grid,

Ntrials =10, # perform 10 fitting trials
Nthreads =2, # use 2 CPUs

1, # limit model evaluation to 1 second
list(rel.tol=1e-6))

max_model_runtime
fit_control

if(1fit$success){

cat(sprintf ("ERROR: Fitting failed: %s\n",fit$error))

Yelse{

cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n",6 fit$loglikelihood))
print(fit)

3

End(Not run)

fit_hbd_psr_on_best_grid_size
Fit pulled speciation rates of birth-death models on a time grid with
optimal size.

Description

Given an ultrametric timetree, estimate the pulled speciation rate of homogenous birth-death (HBD)
models that best explains the tree via maximum likelihood, automatically determining the optimal
time-grid size based on the data. Every HBD model is defined by some speciation and extinction
rates (A and) over time, as well as the sampling fraction p (fraction of extant species sampled).
“Homogenous” refers to the assumption that, at any given moment in time, all lineages exhibit
the same speciation/extinction rates. For any given HBD model there exists an infinite number
of alternative HBD models that predict the same deterministic lineages-through-time curve and
yield the same likelihood for any given reconstructed timetree; these “congruent” models cannot be
distinguished from one another solely based on the tree.

Each congruence class is uniquely described by the “pulled speciation rate” (PSR), defined as the
relative slope of the deterministic LTT over time, PSR = —M —ldMm /dt (where 7 is time before
present). In other words, two HBD models are congruent if and only if they have the same PSR.
This function is designed to estimate the generating congruence class for the tree, by fitting the PSR

120

fit_hbd_psr_on_best_grid_size

on a discrete time grid. Internally, the function uses fit_hbd_psr_on_grid to perform the fitting.
The "best" grid size is determined based on some optimality criterion, such as AIC.

Usage

fit_hbd_psr_on_best_grid_size(tree,

Arguments

tree

oldest_age

ageo

grid_sizes

uniform_grid

oldest_age = NULL,
ageo =0,
grid_sizes = c(1,10),
uniform_grid = FALSE,
criterion = "AIC",
exhaustive = TRUE,
min_PSR =0,
max_PSR = +Inf,
guess_PSR = NULL,
fixed_PSR = NULL,
splines_degree =1,
condition = "auto”,
relative_dt = le-3,
Ntrials =1,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
Nthreads =1,
max_model_runtime = NULL,
fit_control = list(),
verbose = FALSE,
verbose_prefix =""

A rooted ultrametric timetree of class "phylo", representing the time-calibrated
phylogeny of a set of extant sampled species.

Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age. If oldest_age is less than
the root age, the tree is split into multiple subtrees at that age by treating every
edge crossing that age as the stem of a subtree, and each subtree is considered
an independent realization of the HBD model stemming at that age. This can be
useful for avoiding points in the tree close to the root, where estimation uncer-
tainty is generally higher. If oldest_age==NULL, it is automatically set to the
root age.

Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting. If age@>9, the tree essentially is trimmed at age®, omitting any-
thing younger than age®, and the PSR is fitted to the trimmed tree while shifting
time appropriately.

Numeric vector, listing alternative grid sizes to consider.

Logical, specifying whether to use uniform time grids (equal time intervals) or
non-uniform time grids (more grid points towards the present, where more data

fit_hbd_psr_on_best_grid_size 121

criterion

exhaustive

min_PSR

max_PSR

guess_PSR

fixed_PSR

splines_degree

condition

are available).

Character, specifying which criterion to use for selecting the best grid. Options
are "AIC" and "BIC".

Logical, whether to try all grid sizes before choosing the best one. If FALSE,
the grid size is gradually increased until the selection criterio (e.g., AIC) starts
becoming worse, at which point the search is halted. This avoids fitting models
with excessive grid sizes when an optimum already seems to have been found at
a smaller grid size.

Numeric vector of length Ngrid (=max (1, length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted PSR at each point in the age grid.
If a single numeric, the same lower bound applies at all ages. Note that the PSR
is never negative.

Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted PSR at each point in the age grid. If a single numeric, the same
upper bound applies at all ages. Use +Inf to omit upper bounds.

Initial guess for the PSR at each age-grid point. Either NULL (an initial guess
will be computed automatically), or a single numeric (guessing a constant PSR
at all ages), or a function handle (for generating guesses at each grid point;
this function may also return NA at some time points for which a guess shall be
computed automatically).

Optional fixed (i.e. non-fitted) PSR values. Either NULL (none of the PSR values
are fixed) or a function handle specifying the PSR for any arbitrary age (PSR
will be fixed at any age for which this function returns a finite number). The
function fixed_PSR() need not return finite values for all times, in fact doing
so would mean that the PSR is not fitted anywhere.

Integer between 0 and 3 (inclusive), specifying the polynomial degree of the
PSR between age-grid points. If 0, then the PSR is considered piecewise con-
stant, if 1 then the PSR is considered piecewise linear, if 2 or 3 then the PSR is
considered to be a spline of degree 2 or 3, respectively. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on. A degree of 0 is generally not recom-
mended.

"non non non

Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

122 fit_hbd_psr_on_best_grid_size

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nbootstraps Integer, specifying an optional number of bootstrap samplings to perform, for es-
timating standard errors and confidence intervals of maximum-likelihood fitted
parameters. If 0, no bootstrapping is performed. Typical values are 10-100. At
each bootstrap sampling, a random timetree is generated under the birth-death
model according to the fitted PSR, the parameters are estimated anew based on
the generated tree, and subsequently compared to the original fitted parameters.
Each bootstrap sampling will use roughly the same information and similar com-
putational resources as the original maximum-likelihood fit (e.g., same number
of trials, same optimization parameters, same initial guess, etc). Bootstrapping
is only performed for the best grid size.

Ntrials_per_bootstrap
Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal tomax (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime
Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

Itis generally advised to provide as much information to the function fit_hbd_psr_on_best_grid_size
as possible, including reasonable lower and upper bounds (min_PSR and max_PSR) and a reasonable
parameter guess (guess_PSR).

fit_hbd_psr_on_best_grid_size 123

Value

A list with the following elements:

success Logical, indicating whether the function executed successfully. If FALSE, the
returned list will include an additional “error” element (character) providing a
description of the error; in that case all other return variables may be undefined.

best_fit A named list containing the fitting results for the best grid size. This list has the
same structure as the one returned by fit_hbd_psr_on_grid.

grid_sizes Numeric vector, listing the grid sizes as provided during the function call.

AICs Numeric vector of the same length as grid_sizes, listing the AIC for each

considered grid size. Note that some entries may be NA, if the corresponding
grid sizes were not considered (if exhaustive=FALSE).

BICs Numeric vector of the same length as grid_sizes, listing the BIC for each
considered grid size. Note that some entries may be NA, if the corresponding
grid sizes were not considered (if exhaustive=FALSE).

Author(s)

Stilianos Louca

References

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd
loglikelihood_hbd
fit_hbd_model_parametric
fit_hbd_model_on_grid
fit_hbd_pdr_parametric
fit_hbd_pdr_on_grid
fit_hbd_psr_on_grid
fit_hbd_pdr_on_best_grid_size
model_adequacy_hbd

Examples
Not run:
Generate a random tree with exponentially varying lambda & mu
Ntips = 10000

rho = 0.5 # sampling fraction

124 fit_hbd_psr_on_grid

time_grid = seq(from=0, to=100, by=0.01)

lambdas = 2*xexp(@.1xtime_grid)

mus = 1.5%exp(0.09*time_grid)

sim = generate_random_tree(parameters = list(rarefaction=rho),
max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)

tree = sim$tree
root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Fit PSR on grid, with the grid size chosen automatically between 1 and 5
fit = fit_hbd_psr_on_best_grid_size(tree,

max_PSR = 100,
grid_sizes = c(1:5),
exhaustive = FALSE,
uniform_grid = FALSE,
Ntrials =10,
Nthreads = 4,
verbose = TRUE,

max_model_runtime = 1)
if(1fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))
Yelse{
best_fit = fit$best_fit
cat(sprintf("Fitting succeeded:\nBest grid size=%d\n",length(best_fit$age_grid)))
plot fitted PSR

plot(x = best_fit$age_grid,
y = best_fit$fitted_PSR,
main = 'Fitted PSR',
xlab = 'age',
ylab = 'PSR',
type = 'b',
xlim = c(root_age,0))

get fitted PSR as a function of age
PSR_fun = approxfun(x=best_fit$age_grid, y=best_fit$fitted_PSR)
3

End(Not run)

fit_hbd_psr_on_grid Fit pulled speciation rates of birth-death models on a time grid.

Description

Given an ultrametric timetree, estimate the pulled speciation rate of homogenous birth-death (HBD)
models that best explains the tree via maximum likelihood. Every HBD model is defined by some
speciation and extinction rates (A and p) over time, as well as the sampling fraction p (fraction of

fit_hbd_psr_on_grid 125

extant species sampled). “Homogenous” refers to the assumption that, at any given moment in time,
all lineages exhibit the same speciation/extinction rates. For any given HBD model there exists an
infinite number of alternative HBD models that predict the same deterministic lineages-through-
time curve and yield the same likelihood for any given reconstructed timetree; these “congruent”
models cannot be distinguished from one another solely based on the tree.

Each congruence class is uniquely described by the “pulled speciation rate” (PSR), defined as the
relative slope of the deterministic LTT over time, PSR = —M —Lam /dr (where 7 is time before
present). In other words, two HBD models are congruent if and only if they have the same PSR.
This function is designed to estimate the generating congruence class for the tree, by fitting the PSR
on a discrete time grid.

Usage

fit_hbd_psr_on_grid(tree,
oldest_age = NULL,
ageo =0,
age_grid = NULL,
min_PSR =0,
max_PSR = +Inf,
guess_PSR = NULL,
fixed_PSR = NULL,
splines_degree =1,
condition = "auto”,
relative_dt = le-3,
Ntrials =1,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
Nthreads =1,
max_model_runtime = NULL,
fit_control = list(),
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix =""

Arguments
tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated
phylogeny of a set of extant sampled species.
oldest_age Strictly positive numeric, specifying the oldest time before present (“‘age”) to

consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

126

ageod

age_grid

min_PSR

max_PSR

guess_PSR

fixed_PSR

splines_degree

condition

relative_dt

fit_hbd_psr_on_grid

Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting. If age@>0, the tree essentially is trimmed at age®, omitting any-
thing younger than age®, and the PSR is fitted to the trimmed tree while shifting
time appropriately.

Numeric vector, listing ages in ascending order at which the PSR is allowed to
vary independently. This grid must cover at least the age range from age@ to
oldest_age. If NULL or of length <=1 (regardless of value), then the PSR is
assumed to be time-independent.

Numeric vector of length Ngrid (=max (1, length(age_grid))), or a single nu-
meric, specifying lower bounds for the fitted PSR at each point in the age grid.
If a single numeric, the same lower bound applies at all ages. Note that the PSR
is never negative.

Numeric vector of length Ngrid, or a single numeric, specifying upper bounds
for the fitted PSR at each point in the age grid. If a single numeric, the same
upper bound applies at all ages. Use +Inf to omit upper bounds.

Initial guess for the PSR at each age-grid point. Either NULL (an initial guess
will be computed automatically), or a single numeric (guessing the same PSR at
all ages) or a numeric vector of size Ngrid specifying a separate guess at each
age-grid point. To omit an initial guess for some but not all age-grid points,
set their guess values to NA. Guess values are ignored for non-fitted (i.e., fixed)
parameters.

Optional fixed (i.e. non-fitted) PSR values on one or more age-grid points. Ei-
ther NULL (PSR is not fixed anywhere), or a single numeric (PSR fixed to the
same value at all grid points) or a numeric vector of size Ngrid (PSR fixed at
one or more age-grid points, use NA for non-fixed values).

Integer between O and 3 (inclusive), specifying the polynomial degree of the
PSR between age-grid points. If 0, then the PSR is considered piecewise con-
stant, if 1 then the PSR is considered piecewise linear, if 2 or 3 then the PSR is
considered to be a spline of degree 2 or 3, respectively. The splines_degree
influences the analytical properties of the curve, e.g. splines_degree==1 guar-
antees a continuous curve, splines_degree==2 guarantees a continuous curve
and continuous derivative, and so on. A degree of 0 is generally not recom-
mended.

"non "non non

Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to
the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-

fit_hbd_psr_on_grid 127

ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nbootstraps Integer, specifying an optional number of bootstrap samplings to perform, for es-
timating standard errors and confidence intervals of maximum-likelihood fitted
parameters. If 0, no bootstrapping is performed. Typical values are 10-100. At
each bootstrap sampling, a random timetree is generated under the birth-death
model according to the fitted PSR, the parameters are estimated anew based on
the generated tree, and subsequently compared to the original fitted parameters.
Each bootstrap sampling will use roughly the same information and similar com-
putational resources as the original maximum-likelihood fit (e.g., same number
of trials, same optimization parameters, same initial guess, etc).

Ntrials_per_bootstrap
Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime
Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

diagnostics Logical, specifying whether to print detailed information (such as model likeli-

hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

It is generally advised to provide as much information to the function fit_hbd_psr_on_grid as
possible, including reasonable lower and upper bounds (min_PSR and max_PSR) and a reasonable
parameter guess (guess_PSR). It is also important that the age_grid is sufficiently fine to capture
the expected major variations of the PSR over time, but keep in mind the serious risk of overfitting
when age_grid is too fine and/or the tree is too small.

128 fit_hbd_psr_on_grid

Value
A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.
objective_value
The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

loglikelihood The log-likelihood of the fitted model for the given timetree.

fitted_PSR Numeric vector of size Ngrid, listing fitted or fixed pulled speciation rates (PSR)
at each age-grid point. Between grid points the fitted PSR should be interpreted
as a piecewise polynomial function (natural spline) of degree splines_degree;
to evaluate this function at arbitrary ages use the castor routine evaluate_spline.

guess_PSR Numeric vector of size Ngrid, specifying the initial guess for the PSR at each
age-grid point.

age_grid The age-grid on which the PSR is defined. This will be the same as the provided
age_grid, unless the latter was NULL or of length <=1.

NFP Integer, number of fitted (i.e., non-fixed) parameters. If none of the PSRs were
fixed, this will be equal to Ngrid.

AIC The Akaike Information Criterion for the fitted model, defined as 2k — 21log(L),

where k£ is the number of fitted parameters, and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

bootstrap_estimates
If Nbootstraps>0, this will be a numeric matrix of size Nbootstraps x Ngrid,
listing the fitted PSR at each grid point and for each bootstrap.

standard_errors
If Nbootstraps>0, this will be a numeric vector of size NGrid, listing bootstrap-
estimated standard errors for the fitted PSR at each grid point.

CI5@lower If Nbootstraps>0, this will be a numeric vector of size Ngrid, listing bootstrap-
estimated lower bounds of the 50-percent confidence intervals for the fitted PSR
at each grid point.

fit_hbd_psr_on_grid

CI5Qupper

CI95lower

CI95upper

Author(s)

Stilianos Louca

References

129

Similar to CI5@0lower, listing upper bounds of 50-percentile confidence inter-
vals.

Similar to CI501lower, listing lower bounds of 95-percentile confidence inter-
vals.

Similar to CI951lower, listing upper bounds of 95-percentile confidence inter-
vals.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-

tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

See Also

simulate_deterministic_hbd
loglikelihood_hbd
fit_hbd_model_parametric
fit_hbd_model_on_grid
fit_hbd_pdr_parametric
fit_hbd_pdr_on_grid

fit_hbd_psr_on_best_grid_size

model_adequacy_hbd

Generate a random tree with exponentially varying lambda & mu

Examples
Not run:
Ntips = 10000
rho = 0.5 #

sampling fraction

time_grid = seq(from=0, to=100, by=0.01)

lambdas = 2xexp(@.1xtime_grid)

mus = 1.5%exp(0.09*time_grid)

sim = generate_random_tree(parameters = list(rarefaction=rho),
max_tips = Ntips/rho,
coalescent = TRUE,

tree = sim$tree
root_age = castor
cat(sprintf("Tree

added_rates_times time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc mus)

::get_tree_span(tree)$max_distance
has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

130

Fit PSR on grid
oldest_age=root_age/2 # only consider recent times when
Ngrid =10
age_grid = seq(from=0,to=oldest_age,length.out=Ngrid)
fit = fit_hbd_psr_on_grid(tree,

oldest_age = oldest_age,

age_grid = age_grid,
min_PSR =0,
max_PSR = +100,
condition = "crown",
Ntrials =10,
Nthreads = 4,

fit_hbd_psr_parametric

max_model_runtime = 1) # limit model evaluation to 1 second

if(!fit$success){
cat(sprintf("ERROR: Fitting failed: %s\n"”,fit$error))
Yelse{

cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n", 6 fit$loglikelihood))

plot fitted PSR

plot(x = fit$age_grid,
y = fit$fitted_PSR,
main = 'Fitted PSR',
xlab = 'age',
ylab = 'PSR',
type = 'b’',

xlim = c(root_age,0))

plot deterministic LTT of fitted model

plot(x = fit$age_grid,
y = fit$fitted_LTT,
main = 'Fitted dLTT',
xlab = 'age',
ylab = 'lineages',
type = 'b’',
log ="y',

xlim = c(root_age,0))
get fitted PSR as a function of age
PSR_fun = approxfun(x=fit$age_grid, y=fit$fitted_PSR)
3

End(Not run)

fit_hbd_psr_parametric

Fit parameterized pulled speciation rates of birth-death models.

Description

Given an ultrametric timetree, estimate the pulled speciation rate (PSR) of homogenous birth-death
(HBD) models that best explains the tree via maximum likelihood, assuming that the PSR is given as

fit_hbd_psr_parametric 131

a parameterized function of time before present. Every HBD model is defined by some speciation
and extinction rates (A and u) over time, as well as the sampling fraction p (fraction of extant
species sampled). “Homogenous” refers to the assumption that, at any given moment in time, all
lineages exhibit the same speciation/extinction rates. For any given HBD model there exists an
infinite number of alternative HBD models that generate extant trees with the same probability
distributions and yield the same likelihood for any given extant timetree; these “congruent” models
cannot be distinguished from one another solely based on an extant timetree.

Each congruence class is uniquely described by its PSR, defined as PSR = A - (1 — E), where 7
is time before present and 1 — E(7) is the probability that a lineage alive at age 7 will survive to
the present and be included in the extant tree. That is, two HBD models are congruent if and only
if they have the same PSR profile. This function is designed to estimate the generating congruence
class for the tree, by fitting a finite number of parameters defining the PSR.

Usage

fit_hbd_psr_parametric(tree,
param_values,

param_guess = NULL,
param_min = -Inf,
param_max = +Inf,
param_scale = NULL,
oldest_age = NULL,
ageo =0,
PSR,
age_grid = NULL,
condition = "auto”,
relative_dt = le-3,
Ntrials =1,
max_start_attempts = 1,
Nthreads =1,
max_model_runtime = NULL,
fit_control = list(),
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix =""

Arguments

tree A rooted ultrametric timetree of class "phylo", representing the time-calibrated

phylogeny of a set of extant sampled species.

param_values Numeric vector, specifying fixed values for a some or all model parameters.
For fitted (i.e., non-fixed) parameters, use NaN or NA. For example, the vector
c(1.5,NA,40) specifies that the 1st and 3rd model parameters are fixed at the
values 1.5 and 40, respectively, while the 2nd parameter is to be fitted. The
length of this vector defines the total number of model parameters. If entries in
this vector are named, the names are taken as parameter names. Names should
be included if you’d like returned parameter vectors to have named entries, or
if the function PSR queries parameter values by name (as opposed to numeric
index).

132

param_guess

param_min

param_max

param_scale

oldest_age

ageo

PSR

age_grid

condition

fit_hbd_psr_parametric

Numeric vector of size NP, specifying a first guess for the value of each model
parameter. For fixed parameters, guess values are ignored. Can be NULL only if
all model parameters are fixed.

Optional numeric vector of size NP, specifying lower bounds for model parame-
ters. If of size 1, the same lower bound is applied to all parameters. Use -Inf to
omit a lower bound for a parameter. If NULL, no lower bounds are applied. For
fixed parameters, lower bounds are ignored.

Optional numeric vector of size NP, specifying upper bounds for model param-
eters. If of size 1, the same upper bound is applied to all parameters. Use +Inf
to omit an upper bound for a parameter. If NULL, no upper bounds are applied.
For fixed parameters, upper bounds are ignored.

Optional numeric vector of size NP, specifying typical scales for model parame-
ters. If of size 1, the same scale is assumed for all parameters. If NULL, scales are
determined automatically. For fixed parameters, scales are ignored. It is strongly
advised to provide reasonable scales, as this facilitates the numeric optimization
algorithm.

Strictly positive numeric, specifying the oldest time before present (“age”) to
consider when calculating the likelihood. If this is equal to or greater than the
root age, then oldest_age is taken as the stem age, and the classical formula by
Morlon et al. (2011) is used. If oldest_age is less than the root age, the tree is
split into multiple subtrees at that age by treating every edge crossing that age as
the stem of a subtree, and each subtree is considered an independent realization
of the HBD model stemming at that age. This can be useful for avoiding points
in the tree close to the root, where estimation uncertainty is generally higher. If
oldest_age==NULL, it is automatically set to the root age.

Non-negative numeric, specifying the youngest age (time before present) to con-
sider for fitting, and with respect to which PSR is defined. See below for more
details. Most users will typically keep age0=0.

Function specifying the pulled speciation rate at any given age (time before
present) and for any given parameter values. This function must take exactly
two arguments, the 1st one being a numeric vector (one or more ages) and the
2nd one being a numeric vector of size NP (parameter values), and return a
numeric vector of the same size as the 1st argument.

Numeric vector, specifying ages at which the PSR function should be evaluated.
This age grid must be fine enough to capture the possible variation in the PSR
over time, within the permissible parameter range. If of size 1, then the PSR
is assumed to be time-independent. Listed ages must be strictly increasing, and
must cover at least the full considered age interval (from age® to oldest_age).
Can also be NULL or a vector of size 1, in which case the PSR is assumed to be
time-independent.

"non "non non

Character, either "crown", "stem", "auto", "stemN" or "crownN" (where N is an
integer >=2), specifying on what to condition the likelihood. If "crown", the
likelihood is conditioned on the survival of the two daughter lineages branching
off at the root at that time. If "stem", the likelihood is conditioned on the survival
of the stem lineage, with the process having started at oldest_age. Note that
"crown" and "crownN"" really only make sense when oldest_age is equal to

fit_hbd_psr_parametric 133

the root age, while "stem" is recommended if oldest_age differs from the root
age. If "stem2", the condition is that the process yielded at least two sampled
tips, and similarly for "stem3" etc. If "crown3", the condition is that a splitting
occurred at the root age, both child clades survived, and in total yielded at least 3
sampled tips (and similarly for "crown4" etc). If "auto", the condition is chosen
according to the recommendations mentioned earlier.

relative_dt Strictly positive numeric (unitless), specifying the maximum relative time step
allowed for integration over time, when calculating the likelihood. Smaller val-
ues increase integration accuracy but increase computation time. Typical values
are 0.0001-0.001. The default is usually sufficient.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

max_start_attempts
Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly choosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

max_model_runtime
Optional numeric, specifying the maximum number of seconds to allow for each
evaluation of the likelihood function. Use this to abort fitting trials leading to
parameter regions where the likelihood takes a long time to evaluate (these are
often unlikely parameter regions).

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

diagnostics Logical, specifying whether to print detailed information (such as model likeli-

hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is designed to estimate a finite set of scalar parameters (p1, .., p, € R) that determine
the PSR and the product p), (sampling fraction times present-dat extinction rate), by maximizing
the likelihood of observing a given timetree under the HBD model. For example, the investigator
may assume that the PSR varies exponentially over time, i.e. can be described by PSR(t) =
A - e~ Bt (where A and B are unknown coefficients and ¢ is time before present); in this case the
model has 2 free parameters, p; = A and po = B, each of which may be fitted to the tree. It
is also possible to include explicit dependencies on environmental parameters (e.g., temperature).

134 fit_hbd_psr_parametric

For example, the investigator may assume that the PSR depends exponentially on global average
temperature, i.e. can be described by PSR(t) = A - e~ BT(®) (where A and B are unknown fitted
parameters and 7'(¢) is temperature at time ¢). To incorporate such environmental dependencies,
one can simply define the function PSR appropriately.

If age©>0, the input tree is essentially trimmed at age@ (omitting anything younger than age®), and
the PSR is fitted to this new (shorter) tree, with time shifted appropriately. The fitted PSR(t) is thus
the product of the speciation rate at time ¢ and the probability of a lineage being in the tree at time
age@. Most users will typically want to leave age0=0.

It is generally advised to provide as much information to the function fit_hbd_psr_parametric as
possible, including reasonable lower and upper bounds (param_min and param_max), a reasonable
parameter guess (param_guess) and reasonable parameter scales param_scale. If some model
parameters can vary over multiple orders of magnitude, it is advised to transform them so that they
vary across fewer orders of magnitude (e.g., via log-transformation). It is also important that the
age_grid is sufficiently fine to capture the variation of the PSR over time, since the likelihood is
calculated under the assumption that both vary linearly between grid points.

Value

A list with the following elements:

success Logical, indicating whether model fitting succeeded. If FALSE, the returned list
will include an additional “error” element (character) providing a description of
the error; in that case all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

param_fitted Numeric vector of size NP (number of model parameters), listing all fitted or
fixed model parameters in their standard order (see details above). If param_names
was provided, elements in fitted_params will be named.

param_guess Numeric vector of size NP, listing guessed or fixed values for all model param-
eters in their standard order.

loglikelihood The log-likelihood of the fitted model for the given timetree.
NFP Integer, number of fitted (i.e., non-fixed) model parameters.

AIC The Akaike Information Criterion for the fitted model, defined as 2k — 21log(L),
where k£ is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (number of branching times), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

fit_hbd_psr_parametric 135

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.
trial_start_objectives

Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.

trial_objective_values

Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.

trial_Nstart_attempts

Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

trial_Niterations

Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations

Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

Author(s)

Stilianos Louca

References

H. Morlon, T. L. Parsons, J. B. Plotkin (2011). Reconciling molecular phylogenies with the fossil
record. Proceedings of the National Academy of Sciences. 108:16327-16332.

S. Louca et al. (2018). Bacterial diversification through geological time. Nature Ecology & Evolu-
tion. 2:1458-1467.

S. Louca and M. W. Pennell (2020). Extant timetrees are consistent with a myriad of diversification
histories. Nature. 580:502-505.

S. Louca (2020). Simulating trees with millions of species. Bioinformatics. 36:2907-2908.

See Also

simulate_deterministic_hbd
loglikelihood_hbd
fit_hbd_model_on_grid
fit_hbd_model_parametric
fit_hbd_pdr_on_grid
fit_hbd_pdr_parametric
model_adequacy_hbd

136

fit_hbd_psr_parametric

Generate a random tree with exponentially varying lambda & mu

Examples
Not run:
Ntips = 10000
rho = 0.5 # sampling fraction
time_grid = seq(from=0, to=100, by=0.01)
lambdas = 2*xexp(@.1xtime_grid)
mus = 1.5%exp(0.09*xtime_grid)

tree = generate_random_tree(parameters = list(rarefaction=rho),
max_tips = Ntips/rho,
coalescent = TRUE,
added_rates_times = time_grid,
added_birth_rates_pc = lambdas,
added_death_rates_pc = mus)$tree

root_age = castor::get_tree_span(tree)$max_distance
cat(sprintf("Tree has %d tips, spans %g Myr\n",length(tree$tip.label),root_age))

Define a parametric HBD congruence class, with exponentially varying PSR

The model thus has 2 parameters

PSR_function = function(ages,params){
return(params['A' Jxexp(-params['B'Jxages));

}

Define an age grid on which PSR_function shall be evaluated
Should be sufficiently fine to capture the variation in the PSR
age_grid = seq(from=0,to=100,by=0.01)

Perform fitting

cat(sprintf("Fitting class to tree..\n"))

fit = fit_hbd_psr_parametric(tree,
param_values
param_guess
param_min
param_max
param_scale
PSR
age_grid
Ntrials
Nthreads

c(A=NA,

=c(1,0),

c(-10,-

B=NA),

10),

c(10,10),

1, # all params are in the order of 1
PSR_function,

age_grid,

10,
2!

perform 10 fitting trials
use 2 CPUs

max_model_runtime = 1, # limit model evaluation to 1 second
= list(rel.tol=1e-6))

fit_control
if(!fit$success){

cat(sprintf("ERROR: Fitting failed: %s\n",fit$error))

Yelse{

cat(sprintf("Fitting succeeded:\nLoglikelihood=%g\n", 6 fit$loglikelihood))

print(fit)
3

End(Not run)

fit mk 137

fit_mk Fit a Markov (Mk) model for discrete trait evolution.

Description

Estimate the transition rate matrix of a continuous-time Markov model for discrete trait evolution
("Mk model") via maximum-likelihood, based on one or more phylogenetic trees and its tips’ states.

Usage
fit_mk(trees,
Nstates,
tip_states = NULL,
tip_priors = NULL,
rate_model = "ER",
root_prior = "auto"”,
oldest_ages = NULL,
guess_transition_matrix = NULL,
Ntrials =1,
max_model_runtime = NULL,
optim_algorithm = "nlminb",
optim_max_iterations = 200,
optim_rel_tol = le-8,
check_input = TRUE,
Nthreads =1,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
verbose = FALSE,
diagnostics = FALSE,
verbose_prefix ="M
Arguments
trees Either a single phylogenetic tree of class "phylo", or a list of phylogenetic trees.
Edge lengths should correspond (or be analogous) to time. The trees don’t need
to be ultrametric.
Nstates Integer, specifying the number of possible discrete states that the trait can have.
tip_states Either an integer vector of size Ntips (only permitted if trees[] is a single tree) or
a list containing Ntrees such integer vectors (if trees[] is a list of trees), listing the
state of each tip in each tree. Note that tip_states cannot include NAs or NaNs;
if the states of some tips are uncertain, you should use the option tip_priors
instead. Can also be NULL, in which case tip_priors must be provided.
tip_priors Either a numeric matrix of size Ntips x Nstates (only permitted if trees[] is a

single tree), or a list containing Ntrees such matrixes (if trees[] is a list of trees),
listing the likelihood of each state at each tip in each tree. Can also be NULL,

138

rate_model

root_prior

oldest_ages

fit_ mk

in which case tip_states must be provided. Hence, tip_priors[t][i,s] is
the likelihood of the observed state of tip i in tree t, if the tip’s true state was
in state s. For example, if you know for certain that a tip is in state k, then set
tip_priors[t][i,s]=1 for s=k and tip_priors[t][i,s]=0 for all other s.

Rate model to be used for the transition rate matrix. Can be "ER" (all rates
equal), "SYM" (transition rate i—>j is equal to transition rate j—>i), "ARD" (all
rates can be different), "SUEDE" (only stepwise transitions i—>i+1 and i—>i-1
allowed, all "up’ transitions are equal, all ’down’ transitions are equal) or "SRD"
(only stepwise transitions i—>i+1 and i—>i-1 allowed, and each rate can be differ-
ent). Can also be an index matrix that maps entries of the transition matrix to the
corresponding independent rate parameter to be fitted. Diagonal entries should
map to 0, since diagonal entries are not treated as independent rate parameters
but are calculated from the remaining entries in the transition rate matrix. All
other entries that map to O represent a transition rate of zero. The format of
this index matrix is similar to the format used by the ace function in the ape
package. rate_model is only relevant if transition_matrix==NULL.

Prior probability distribution of the root’s states, used to calculate the model’s
overall likelihood from the root’s marginal ancestral state likelihoods. Can
be "flat" (all states equal), "empirical" (empirical probability distribution
of states across the tree’s tips), "stationary" (stationary probability distribu-
tion of the transition matrix), "likelihoods" (use the root’s state likelihoods as
prior), "max_likelihood" (put all weight onto the state with maximum likeli-
hood) or “auto” (will be chosen automatically based on some internal logic). If
"stationary" and transition_matrix==NULL, then a transition matrix is first
fitted using a flat root prior, and then used to calculate the stationary distribution.
root_prior can also be a non-negative numeric vector of size Nstates and with
total sum equal to 1.

Optional numeric or numeric vector of size Ntrees, specifying the oldest age
(time before present) for each tree to consider when fitting the Mk model. If
NULL, the entire trees are considered from the present all the way to their root.
If non-NULL, then each tree is “cut” at the corresponding oldest age, yielding
multiple subtrees, each of which is assumed to be an independent realization of
the Mk process. If oldest_ages is a single numeric, then all trees are cut at the
same oldest age. This option may be useful if temporal variation is suspected in
the Mk rates, and only data near the present are to be used for fitting to avoid
violating the assumptions of a constant-rates Mk model.

guess_transition_matrix

Ntrials

Optional 2D numeric matrix, specifying a reasonable first guess for the transition
rate matrix. May contain NA. May also be NULL, in which case a reasonable first
guess is automatically generated.

Number of trials (starting points) for fitting the transition rate matrix. A higher
number may reduce the risk of landing in a local non-global optimum of the
likelihood function, but will increase computation time during fitting.

max_model_runtime

Optional positive numeric, specifying the maximum time (in seconds) allowed
for a single evaluation of the likelihood function. If a specific Mk model takes
longer than this threshold to evaluate, then its likelihood is set to -Inf. This

fit mk 139

option can be used to avoid badly parameterized models during fitting and can

thus reduce fitting time. If NULL or <=0, this option is ignored.
optim_algorithm

Either "optim" or "nlminb", specifying which optimization algorithm to use for

maximum-likelihood estimation of the transition matrix.
optim_max_iterations

Maximum number of iterations (per fitting trial) allowed for optimizing the like-

lihood function.

optim_rel_tol Relative tolerance (stop criterion) for optimizing the likelihood function.

check_input Logical, specifying whether to perform some basic checks on the validity of the
input data. If you are certain that your input data are valid, you can set this to
FALSE to reduce computation.

Nthreads Number of parallel threads to use for running multiple fitting trials simultane-
ously. This only makes sense if your computer has multiple cores/CPUs and
if Ntrials>1. This option is ignored on Windows, because Windows does not
support forking.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated rate parameters. Set to
0 for no bootstrapping.
Ntrials_per_bootstrap
Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
diagnostics Logical, specifying whether to print detailed diagnostic messages, mainly for
debugging purposes.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

The trait’s states must be represented by integers within 1,..,Nstates, where Nstates is the total num-
ber of possible states. If the states are originally in some other format (e.g. characters or factors),
you should map them to a set of integers 1,..,Nstates. The order of states (if relevant) should be
reflected in their integer representation. For example, if your original states are "small", "medium"
and "large" and rate_model=="SUEDE", it is advised to represent these states as integers 1,2,3. You
can easily map any set of discrete states to integers using the function map_to_state_space.

This function allows the specification of the precise tip states (if these are known) using the vector
tip_states. Alternatively, if some tip states are not fully known, you can pass the state likeli-
hoods using the matrix tip_priors. Note that exactly one of the two arguments, tip_states or
tip_priors, must be non-NULL.

Tips must be represented in tip_states or tip_priors in the same order as in tree$tip.label.
None of the input vectors or matrixes need include row or column names; if they do, however, they
are checked for consistency (if check_input==TRUE).

140 fit_ mk

The tree is either assumed to be complete (i.e. include all possible species), or to represent a random
subset of species chosen independently of their states. If the tree is not complete and tips are not
chosen independently of their states, then this method will not be valid.

fit_Mk uses maximum-likelihood to estimate each free parameter of the transition rate matrix.
The number of free parameters depends on the rate_model considered; for example, ER implies a
single free parameter, while ARD implies Nstates x (Nstates-1) free parameters. If multiple trees are
provided as input, the likelihood is the product of likelihoods for each tree, i.e. as if each tree was
an independent realization of the same Markov process.

This function is similar to asr_mk_model, but focused solely on fitting the transition rate matrix
(i.e., without estimating ancestral states) and with the ability to utilize multiple trees at once.

Value
A named list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, an additional
element error (of type character) is included containing an explanation of the
error; in that case the value of any of the other elements is undetermined.

Nstates Integer, the number of states assumed for the model.

transition_matrix
A matrix of size Nstates x Nstates, the fitted transition rate matrix of the model.
The [r,c]-th entry is the transition rate from state r to state c.

loglikelihood Numeric, the log-likelihood of the observed tip states under the fitted model.

Niterations Integer, the number of iterations required to reach the maximum log-likelihood.
Depending on the optimization algorithm used (see optim_algorithm), this
may be NA.

Nevaluations Integer, the number of evaluations of the likelihood function required to reach
the maximum log-likelihood. Depending on the optimization algorithm used
(see optim_algorithm), this may be NA.

converged Logical, indicating whether the fitting algorithm converged. Note that fit_Mk
may return successfully even if convergence was not achieved; if this happens,
the fitted transition matrix may not be reasonable. In that case it is recommended
to change the optimization options, for example increasing optim_max_iterations.

guess_rate Numeric, the initial guess used for the average transition rate, prior to fitting.

AIC Numeric, the Akaike Information Criterion for the fitted model, defined as 2k —
2log(L), where k is the number of independent fitted parameters and L is the
maximized likelihood.

standard_errors
Numeric matrix of size Nstates x Nstates, estimated standard error of the fitted
transition rates, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI50lower Numeric matrix of size Nstates x Nstates, lower bounds of the 50% confidence
intervals (25-75% percentile) for the fitted transition rates, based on parametric
bootstrapping. Only returned if Nbootstraps>0.

CI50Qupper Numeric matrix of size Nstates x Nstates, upper bounds of the 50% confidence
intervals for the fitted transition rates, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

fit_ mk

CI95lower

CI95upper

Author(s)

Stilianos Louca

References

141

Numeric matrix of size Nstates x Nstates, lower bounds of the 95% confidence
intervals (2.5-97.5% percentile) for the fitted transition rates, based on paramet-
ric bootstrapping. Only returned if Nbootstraps>0.

Numeric matrix of size Nstates x Nstates, upper bounds of the 95% confidence
intervals for the fitted transition rates, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

Z. Yang, S. Kumar and M. Nei (1995). A new method for inference of ancestral nucleotide and
amino acid sequences. Genetics. 141:1641-1650.

M. Pagel (1994). Detecting correlated evolution on phylogenies: a general method for the com-
parative analysis of discrete characters. Proceedings of the Royal Society of London B: Biological
Sciences. 255:37-45.

See Also

asr_mk_model, simulate_mk_model, fit_musse

Examples
Not run:
generate random tree
Ntips = 1000
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=Ntips)$tree

create random transition matrix

Nstates =

Q = get_random_mk_transition_matrix(Nstates, rate_model="ER", max_rate=0.01)
cat(sprintf(”Simulated ER transition rate=%g\n",Q[1,21))

simulate
simulation
tip_states

the trait's evolution

simulate_mk_model(tree, Q)
simulation$tip_states

fit Mk transition matrix

results =

fit_mk(tree, Nstates, tip_states, rate_model="ER", Ntrials=2)

print Mk model fitting summary
cat(sprintf(”"Mk model: log-likelihood=%g\n", results$loglikelihood))
cat(sprintf("Fitted ER transition rate=%g\n",6 results$transition_matrix[1,2]))

End(Not run)

142 fit_musse

fit_musse Fit a discrete-state-dependent diversification model via maximum-
likelihood.

Description

The Binary State Speciation and Extinction (BiSSE) model (Maddison et al. 2007) and its extension
to Multiple State Speciation Extinction (MuSSE) models (FitzJohn et al. 2009, 2012), Hidden State
Speciation Extinction (HiSSE) models (Beaulieu and O’meara, 2016) or Several Examined and
Concealed States-dependent Speciation and Extinction (SecSSE) models (van Els et al. 2018),
describe a Poissonian cladogenic process whose birth/death (speciation/extinction) rates depend on
the states of an evolving discrete trait. Specifically, extant tips either go extinct or split continuously
in time at Poissonian rates, and birth/death rates at each extant tip depend on the current state of the
tip; lineages tansition stochastically between states acccording to a continuous-time Markov process
with fixed transition rates. At the end of the simulation (i.e., at "present-day"), extant lineages are
sampled according to some state-dependent probability ("sampling_fraction"), which may depend
on proxy state. Optionally, tips may also be sampled continuously over time according to some
Poissonian rate (which may depend on proxy state), in which case the resulting tree may not be
ultrametric.

This function takes as main input a phylogenetic tree (ultrametric unless Poissonian sampling is
included) and a list of tip proxy states, and fits the parameters of a BiISSE/MuSSE/HiSSE/SecSSE
model to the data via maximum-likelihood. Tips can have missing (unknown) proxy states, and the
function can account for biases in species sampling and biases in the identification of proxy states.
The likelihood is calculated using a mathematically equivalent, but computationally more efficient
variant, of the classical postorder-traversal BiSSE/MuSSE/HiSSE/SecSSE algorithm, as described
by Louca (2019). This function has been optimized for large phylogenetic trees, with a relatively
small number of states (i.e. Nstates«Ntips); its time complexity scales roughly linearly with Ntips.

Usage
fit_musse(tree,

Nstates,

NPstates = NULL,
proxy_map = NULL,
state_names = NULL,
tip_pstates = NULL,
tip_priors = NULL,
sampling_fractions =1,
reveal_fractions =1,
sampling_rates =0,
transition_rate_model = "ARD",
birth_rate_model = "ARD",
death_rate_model = "ARD",
transition_matrix = NULL,
birth_rates = NULL,
death_rates = NULL,

first_guess = NULL,

fit_musse

lower
upper
root_prior

root_conditioning

oldest_age
Ntrials

NULL,
NULL,
"auto”,
"auto”,
NULL,
1,

143

max_start_attempts =10,
optim_algorithm = "nlminb",
optim_max_iterations = 10000,
optim_max_evaluations = NULL,
optim_rel_tol = le-6,
check_input = TRUE,
include_ancestral_likelihoods = FALSE,
Nthreads =1,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
max_condition_number = 1le4,
relative_ODE_step =0.1,
E_value_step = le-4,
D_temporal_resolution = 100,
max_model_runtime = NULL,
verbose = TRUE,
diagnostics = FALSE,
verbose_prefix ="M

Arguments

tree Phylogenetic tree of class "phylo", representing the evolutionary relationships
between sampled species/lineages. Unless Poissonian sampling is included in
the model (option sampling_rates), this tree should be ultrametric.

Nstates Integer, specifying the number of possible discrete states a tip can have, influ-
encing speciation/extinction rates. For example, if Nstates==2 then this corre-
sponds to the common Binary State Speciation and Extinction (BiSSE) model
(Maddison et al., 2007). In the case of a HISSE/SecSSE model, Nstates refers
to the total number of diversification rate categories. For example, in the case of
the HiSSE model described by Beaulieu and O’meara (2016), Nstates=4.

NPstates Integer, optionally specifying a number of "proxy-states” that are observed in-
stead of the underlying speciation/extinction-modulating states. To fit a HiSSE/SecSSE
model, NPstates should be smaller than Nstates. Each state corresponds
to a different proxy-state, as defined using the variable proxy_map (see be-
low). For BiSSE/MuSSE with no hidden states, NPstates can be set to either
NULL or equal to Nstates; in either case, NPstates will be considered equal to
Nstates. For example, in the case of the HiSSE model described by Beaulieu
and O’meara (2016), NPstates=2.

proxy_map Integer vector of size Nstates and with values in 1,.NPstates, specifying the
correspondence between states (i.e. diversification-rate categories) and proxy-
states, in a HiISSE/SecSSE model. Specifically, proxy_map[s] indicates which
proxy-state the state s is represented by. Each proxy-state can represent multiple

144

state_names

tip_pstates

tip_priors

fit_musse

states (i.e. proxies are ambiguous), but each state must be represented by exactly
one proxy-state. For example, to setup the HiSSE model described by Beaulieu
and O’meara (2016), use proxy_map=c(1,2,1,2). For non-HiSSE models, set
this to NULL or to c(1:Nstates). See below for more details.

Optional character vector of size Nstates, specifying a name/description for
each state. This does not influence any of the calculations. It is merely used
to add human-readable row/column names (rather than integers) to the returned
vectors/matrices. If NULL, no row/column names are added.

Integer vector of size Ntips, listing the proxy state at each tip, in the same order
as tips are indexed in the tree. The vector may (but need not) include names; if it
does, these are checked for consistency with the tree (if check_input==TRUE).
Values must range from 1 to NPstates (which is assumed equal to Nstates in
the case of BiSSE/MuSSE). States may also be NA, corresponding to unknown
tip proxy states (no information available).

Numeric matrix of size Ntips x Nstates (or of size Ntips x NPstates), listing
prior likelihoods of each state (or each proxy-state) at each tip. Can be provided
as an alternative to tip_pstates. Thus, tip_priors[i,s] is the likelihood of
observing the data (i.e., sampling tip i and observing the observed state) if the tip
i was at state s (or proxy-state s). Hence, tip_priors should account for sam-
pling fractions as well as reveal fractions. Either tip_pstates or tip_priors
must be non-NULL, but not both.

sampling_fractions

Numeric vector of size NPstates, with values between 0 and 1, listing the sam-

pling fractions of extant species depending on proxy-state. Thatis, sampling_fractions[p]
is the probability that an extant species, having proxy state p, is included in the

phylogeny at present-day. If all extant species are included in the tree with the

same probability (i.e., independent of state), this can also be a single number. If

NULL (default), all extant species are assumed to be included in the tree. Irrele-

vant if tip_priors is provided and valid for all tips.

reveal_fractions

sampling_rates

Numeric vector of size NPstates, with values between O and 1, listing the
probabilities of proxy-state identification depending on proxy-state. That is,
reveal_fractions[p] is the probability that a species with proxy-state p will
have a known ("revealed") state, conditional upon being included in the tree.
This can be used to incorporate reveal biases for tips, depending on their proxy
state. Can also be NULL or a single number (in which case reveal fractions are
assumed to be independent of proxy-state). Note that only the relative values
in reveal_fractions matter, for example c(1,2,1) has the same effect as
c(0.5,1,0.5), because reveal_fractions is normalized internally anyway.
Irrelevant if tip_priors is provided and valid for all tips.

Numeric vector of size NPstates, listing Poissonian per-lineage sampling rates
over time. Hence, sampling_rates[p] is the rate at which lineages are sampled
over time when they are in proxy state p. Can also be a single numeric, in which
case sampling rates are the same for all proxy states. If NULL, Poissonian sam-
pling is assumed to not occur. Note that earlier MuSSE/HiSSE models (e.g., by
Beaulieu and O’Meara, 2016) do not include Poissonian sampling (i.e., all tips
are assumed to have been sampled at present-day). Poissonian sampling through

fit_musse 145

time is common in epidemiological models but uncommon in macroevolution
models.

transition_rate_model
Either a character or a 2D integer matrix of size Nstates x Nstates, specifying
the model for the transition rates between states. This option controls the para-
metric complexity of the state transition model, i.e. the number of independent
rates and the correspondence between independent and dependent rates. If a
character, then it must be one of "ER", "SYM", "ARD", "SUEDE" or "SRD", as
used for Mk models (see the function asr_mk_model for details). For example,
"ARD" (all rates different) specifies that all transition rates should be considered
as independent parameters with potentially different values.
If an integer matrix, then it defines a custom parametric structure for the tran-
sition rates, by mapping entries of the transition matrix to a set of indepen-
dent transition-rate parameters (numbered 1,2, and so on), similarly to the op-
tion rate_model in the function asr_mk_model, and as returned for example
by the function get_transition_index_matrix. Entries must be between 1
and Nstates, however 0 may also be used to denote a fixed value of zero. For
example, if transition_rate_model[1,2]=transition_rate_model[2,1],
then the transition rates 1->2 and 2->1 are assumed to be equal. Entries on the
diagonal are ignored, since the diagonal elements are always adjusted to en-
sure a valid Markov transition matrix. To construct a custom matrix with the
proper structure, it may be convenient to first generate an "ARD" matrix using
get_transition_index_matrix, and then modify individual entries to reduce
the number of independent rates.

birth_rate_model
Either a character or an integer vector of length Nstates, specifying the model
for the various birth (speciation) rates. This option controls the parametric com-
plexity of the possible birth rates, i.e. the number of independent birth rates and
the correspondence between independent and dependent birth rates. If a char-
acter, then it must be either "ER" (equal rates) or "ARD" (all rates different). If
an integer vector, it must map each state to an indepedent birth-rate parameter
(indexed 1,2,..). For example, the vector c(1,2,1) specifies that the birth-rates
A1 and A3 must be the same, but)\, is independent.

death_rate_model
Either a character or an integer vector of length Nstates, specifying the model
for the various death (extinction) rates. Similar to birth_rate_model.

transition_matrix
Either NULL or a 2D matrix of size Nstates x Nstates, specifying known (and
thus fixed) transition rates between states. For example, setting some elements
to O specifies that these transitions cannot occur directly. May also contain NA,
indicating rates that are to be fitted. If NULL or empty, all rates are considered un-
known and are therefore fitted. Note that, unless transition_rate_model=="ARD",
values in transition_matrix are assumed to be consistent with the rate model,
that is, rates specified to be equal under the transition rate model are expected to
also have equal values in transition_matrix.

birth_rates Either NULL, or a single number, or a numeric vector of length Nstates, specify-
ing known (and thus fixed) birth rates for each state. May contain NA, indicating
rates that are to be fitted. For example, the vector c(5,0,NA) specifies that

146

death_rates

first_guess

lower

upper

root_prior

fit_musse

A1 = 5, Ao = 0 and that A3 is to be fitted. If NULL or empty, all birth rates are
considered unknown and are therefore fitted. If a single number, all birth rates
are considered fixed at that given value.

Either NULL, or a single number, or a numeric vector of length Nstates, specify-
ing known (and thus fixed) death rates for each state. Similar to birth_rates.

Either NULL, or a named list containing optional initial suggestions for various
model parameters, i.e. start values for fitting. The list can contain any or all of
the following elements:

* transition_matrix: A single number or a 2D numeric matrix of size
Nistates x Nstates, specifying suggested start values for the transition rates.
May contain NA, indicating rates that should be guessed automatically by
the function. If a single number, then that value is used as a start value for
all transition rates.

* birth_rates: A single number or a numeric vector of size Nstates, speci-
fying suggested start values for the birth rates. May contain NA, indicating
rates that should be guessed automatically by the function (by fitting a sim-
ple birth-death model, see fit_tree_model).

* death_rates: A single number or a numeric vector of size Nstates, speci-
fying suggested start values for the death rates. May contain NA, indicating
rates that should be guessed automatically by the function (by fitting a sim-
ple birth-death model, see fit_tree_model).

Start values are only relevant for fitted (i.e., non-fixed) parameters.

Either NULL or a named list containing optional lower bounds for various model
parameters. The list can contain any or all of the elements transition_matrix,
birth_rates and death_rates, structured similarly to first_guess. For ex-
ample, list(transition_matrix=0.1, birth_rates=c(5,NA,NA)) specifies
that all transition rates between states must be 0.1 or greater, that the birth rate
A1 must be 5 or greater, and that all other model parameters have unspecified
lower bound. For parameters with unspecified lower bounds, zero is used as a
lower bound. Lower bounds only apply to fitted (i.e., non-fixed) parameters.

Either NULL or a named list containing optional upper bounds for various model
parameters. The list can contain any or all of the elements transition_matrix,
birth_rates and death_rates, structured similarly to upper. For example,
list(transition_matrix=2, birth_rates=c(10,NA,NA)) specifies that all
transition rates between states must be 2 or less, that the birth rate \; must be 10
or less, and that all other model parameters have unspecified upper bound. For
parameters with unspecified upper bounds, infinity is used as an upper bound.
Upper bounds only apply to fitted (i.e., non-fixed) parameters.

Either a character or a numeric vector of size Nstates, specifying the prior prob-
abilities of states for the root, i.e. the weights for obtaining a single model
likelihood by averaging the root’s state likelihoods. If a character, then it must
be one of "flat", "empirical", "likelihoods", "max_likelihood" or "auto". "empir-
ical" means the root’s prior is set to the proportions of (estimated) extant species
in each state (correcting for sampling fractions and reveal fractions, if appli-
cable). "likelihoods" means that the computed state-likelihoods of the root are

used, after normalizing to obtain a probability distribution; this is the approach

fit_musse 147

used in the package hisse: :hisse v1.8.9 under the option root.p=NULL, and
the approach in the package diversitree::find.mle v0.9-10 under the op-
tion root=ROOT.OBS. If "max_likelihood", then the root’s prior is set to a Dirac
distribution, with full weight given to the maximum-likelihood state at the root
(after applying the conditioning). If a numeric vector, root_prior specifies
custom probabilities (weights) for each state. Note that if root_conditioning
is "madfitz" or "herr_als" (see below), then the prior is set before the condi-
tioning and not updated afterwards for consistency with other R packages.
root_conditioning

Character, specifying an optional modification to be applied to the root’s state
likelihoods prior to averaging. Can be "none" (no modification), "madfitz",
"herr_als", "crown" or "stem". "madfitz" and "herr_als" (after van Els, Etiene
and Herrera-Alsina 2018) are the options implemented in the package hisse
v1.8.9, conditioning the root’s state-likelihoods based on the birth-rates and the
computed extinction probability (after or before averaging, respectively). See
van Els (2018) for a comparison between "madfitz" and "herr_als". The option
"stem" conditions the state likelihoods on the probability that the stem lineage
would survive until the present. The option "crown" conditions the state like-
lihoods on the probability that a split occurred at oldest_age and that the two
child lineages survived until the present; this option is only recommended if
oldest_age is equal to the root age.

oldest_age Strictly positive numeric, specifying the oldest age (time before present) to con-
sider for fitting. If this is smaller than the tree’s root age, then the tree is split into
multiple subtrees at oldest_age, and each subtree is considered as an indepen-
dent realization of the same diversification/evolution process whose parameters
are to be estimated. The root_conditioning and root_prior are applied sep-
arately to each subtree, prior to calculating the joint (product) likelihood of all
subtrees. This option can be used to restrict the fitting to a small (recent) time
interval, during which the MuSSE/BiSSE assumptions (e.g., time-independent
speciation/extinction/transition rates) are more likely to hold. If oldest_age is
NULL, it is automatically set to the root age. In principle oldest_age may also
be older than the root age.

Ntrials Non-negative integer, specifying the number of trials for fitting the model, using
alternative (randomized) starting parameters at each trial. A larger Ntrials
reduces the risk of landing on a local non-global optimum of the likelihood
function, and thus increases the chances of finding the truly best fit. If 0, then
no fitting is performed, and only the first-guess (i.e., provided or guessed start
params) is evaluated and returned. Hence, setting Ntrials=0 can be used to
obtain a reasonable set of start parameters for subsequent fitting or for Markov
Chain Monte Carlo.

max_start_attempts
Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly chosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points. For complex models (e.g.,
with >5 states), setting this to 10, 100 or even 1000 may be beneficial.

optim_algorithm
Character, specifying the optimization algorithm for fitting. Must be one of

148 fit_musse

non

either "optim", "nlminb" or "subplex" (requires the nloptr package).
optim_max_iterations
Integer, maximum number of iterations allowed for fitting. Only relevant for
"optim" and "nlminb".
optim_max_evaluations
Integer, maximum number of function evaluations allowed for fitting. Only rel-
evant for "nlminb" and "subplex" (requires the nloptr package).

optim_rel_tol Numeric, relative tolerance for the fitted log-likelihood.

check_input Logical, specifying whether to check the validity of input variables. If you are
certain that all input variables are valid, you can set this to FALSE to reduce
computation.

include_ancestral_likelihoods
Logical, specifying whether to include the state likelihoods for each node, in
the returned variables. These are the “D” variables calculated as part of the
likelihood based on the subtree descending from each node, and may be used
for "local" ancestral state reconstructions.

Nthreads Integer, specifying the number of threads for running multiple fitting trials in
parallel. Only relevant if Ntrials>1. Should generally not exceed the number
of CPU cores on a machine. Must be a least 1.

Nbootstraps Integer, specifying an optional number of bootstrap samplings to perform, for
estimating standard errors and confidence intervals of maximum-likelihood fit-
ted parameters. If 0, no bootstrapping is performed. Typical values are 10-100.
At each bootstrap sampling, a simulation of the fitted MuSSE/HiSSE model
is performed, the parameters are estimated anew based on the simulation, and
subsequently compared to the original fitted parameters. Each bootstrap sam-
pling will thus use roughly as many computational resources as the original
maximume-likelihood fit (e.g., same number of trials, same optimization param-
eters etc).

Ntrials_per_bootstrap
Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal tomax (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

max_condition_number
Positive unitless number, specifying the maximum permissible condition num-
ber for the "G" matrix computed for the log-likelihood. A higher condition
number leads to faster computation (roughly on a log-scale) especially for large
trees, at the potential expense of lower accuracy. Typical values are le2-1e5.
See Louca (2019) for further details on the condition number of the G matrix.

relative_ODE_step
Positive unitless number, specifying the default relative time step for the ordi-
nary differential equation solvers.

E_value_step Positive unitless number, specifying the relative difference between subsequent

recorded and interpolated E-values, in the ODE solver for the extinction proba-
bilities E (Louca 2019). Typical values are le-2 to le-5. A smaller E_value_step

fit_musse 149

increases interpolation accuracy, but also increases memory requirements and
adds runtime (scaling with the tree’s age span, not Ntips).
D_temporal_resolution
Positive unitless number, specifying the relative resolution for interpolating G-
map over time (Louca 2019). This is relative to the typical time scales at which
G-map varies. For example, a resolution of 10 means that within a typical time
scale there will be 10 interpolation points. Typical values are 1-1000. A greater
resolution increases interpolation accuracy, but also increases memory require-
ments and adds runtime (scaling with the tree’s age span, not Ntips).
max_model_runtime
Numeric, optional maximum number of seconds for evaluating the likelihood of
a model, prior to cancelling the calculation and returning Inf. This may be use-
ful if extreme model parameters (e.g., reached transiently during fitting) require
excessive calculation time. Parameters for which the calculation of the likeli-
hood exceed this threshold, will be considered invalid and thus avoided during
fitting. For example, for trees with 1000 tips a time limit of 10 seconds may be
reasonable. If 0, no time limit is imposed.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
In any case, fatal errors are always reported.

diagnostics Logical, specifying whether to print detailed information (such as model likeli-
hoods) at every iteration of the fitting routine. For debugging purposes mainly.

verbose_prefix Character, specifying the line prefix for printing progress reports, warnings and
errors to the screen.

Details

HiSSE/SecSSE models include two discrete traits, one trait that defines the rate categories of diver-
sification rates (as in BISSE/MuSSE), and one trait that does not itself influence diversification but
whose states (here called "proxy states") each represent one or more of the diversity-modulating
states. HiSSE models (Beaulieu and O’meara, 2016) and SecSSE models (van Els et al., 2018)
are closely related to BiSSE/MuSSE models, the main difference being the fact that the actual
diversification-modulating states are not directly observed. In essence, a HiSSE/SecSSE model is
a BiSSE/MuSSE model, where the final tip states are replaced by their proxy states, thus "mask-
ing" the underlying diversity-modulating trait. This function is able to fit HISSE/SecSSE models
with appropriate choice of the input variables Nstates, NPstates and proxy_map. Note that the
terminology and setup of HiSSE/SecSSE models followed here differs from their description in
the original papers by Beaulieu and O’meara (2016) and van Els et al. (2018), in order to achieve
what we think is a more intuitive unification of BiSSE/MuSSE/HiSSE/SecSSE. For ease of ter-
minology, when considering a BiSSE/MuSSE model, here we use the terms "states" and "proxy-
states" interchangeably, since under BiISSE/MuSSE the proxy trait can be considered identical to the
diversification-modulating trait. A distinction between "states" and "proxy-states" is only relevant
for HiSSE/SecSSE models.

As an example of a HiSSE model, Nstates=4, NPstates=2 and proxy_map=c(1,2,1,2) specifies
that states 1 and 3 are represented by proxy-state 1, and states 2 and 4 are represented by proxy-
state 2. This is the original case described by Beaulieu and O’Meara (2016); in their terminology,
there would be 2 "hidden"" states ("0" and "1") and 2 "observed" states ("A" and "B"), and the
4 diversification rate categories (Nstates=4) would be called "0A", "1A", "OB" and "1B". The

150 fit_musse

somewhat different terminology used here allows for easier generalization to an arbitrary number
of diversification-modulating states and an arbitrary number of proxy states. For example, if there
are 6 diversification modulating states, represented by 3 proxy-states as 1->A, 2->A, 3->B, 4->C,
5->C, 6->C, then one would set Nstates=6, NPstates=3 and proxy_map=c(1,1,2,3,3,3).

The run time of this function scales asymptotically linearly with tree size (Ntips), although run
times can vary substantially depending on model parameters. As a rule of thumb, the higher the
birth/death/transition rates are compared to the tree’s overall time span, the slower the calculation
becomes.

The following arguments control the tradeoff between accuracy and computational efficiency:

* max_condition_number: A smaller value means greater accuracy, at longer runtime and more
memory.

* relative_ODE_step: A smaller value means greater accuracy, at longer runtime.

* E_value_step: A smaller value means greater accuracy, at longer runtime and more memory.

* D_temporal_resolution: A greater value means greater accuracy, at longer runtime and
more memory.

Typically, the default values for these arguments should be fine. For smaller trees, where cladogenic
and sampling stochasticity is the main source of uncertainty, these parameters can probably be made
less stringent (i.e., leading to lower accuracy and faster computation), but then again for small trees
computational efficiency may not be an issue anyway.

Value

A named list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, an additional
element error (of type character) is included containing an explanation of the
error; in that case the value of any of the other elements is undetermined.

Nstates Integer, the number of states assumed for the model.

NPstates Integer, the number of proxy states assumed for the model. Note that in the case
of a BiISSE/MuSSE model, this will be the same as Nstates.

root_prior Character, or numeric vector of length Nstates, specifying the root prior used.

parameters Named list containing the final maximum-likelihood fitted model parameters. If

Ntrials>1, then this contains the fitted parameters yielding the highest likeli-
hood. Will contain the following elements:

e transition_matrix: 2D numeric matrix of size Nstates x Nstates, listing
the fitted transition rates between states.
* birth_rates: Numeric vector of length Nstates, listing the fitted state-
dependent birth rates.
* death_rates: Numeric vector of length Nstates, listing the fitted state-
dependent death rates.
start_parameters
Named list containing the default start parameter values for the fitting. Struc-
tured similarly to parameters. Note that if Ntrials>1, only the first trial will
have used these start values, all other trials will have used randomized start
values. Will be defined even if Ntrials==0, and can thus be used to obtain a
reasonable guess for the start parameters without actually fitting the model.

fit_musse 151

loglikelihood Numeric, the maximized log-likelihood of the model, if fitting succeeded.

AIC Numeric, the Akaike Information Criterion for the fitted model, defined as 2k —
2log(L), where k is the number of fitted parameters and L is the maximized
likelihood.

Niterations The number of iterations needed for the best fit. Only relevant if the optimization

method was "optim" or "nlminb".

Nevaluations Integer, the number of function evaluations needed for the best fit. Only relevant
if the optimization method was "nlminb" or "subplex".

converged Logical, indicating whether convergence was successful during fitting. If con-
vergence was not achieved, and the fitting was stopped due to one of the stopping
criteria optim_max_iterations or optim_max_evaluations, the final likeli-
hood will still be returned, but the fitted parameters may not be reasonable.

warnings Character vector, listing any warnings encountered during evaluation of the like-
lihood function at the fitted parameter values. For example, this vector may con-
tain warnings regarding the differential equation solvers or regarding the rank of
the G-matrix (Louca, 2019).

subroots Integer vector, listing indices of tips/nodes in the tree that were considered as
starting points of independent MuSSE processes. If oldest_age was equal to
or greater than the root age, then subroots will simply list the tree’s root.

ML_subroot_states
Integer vector, with values between 1 and Nstates, giving the maximum-likelihood
estimate of each subroot’s state.

ML_substem_states

Integer vector, with values between 1 and Nstates, giving the maximum-likelihood
estimate of the state at each subroot’s stem (i.e., exactly at oldest_age).
trial_start_loglikelihoods
Numeric vector of length Ntrials, listing the initial loglikelihoods (i.e., at the
starting parameter values) for each fitting trial.
trial_loglikelihoods
Numeric vector of length Ntrials, listing the maximized loglikelihoods for
each fitting trial. These may be used for diagnosing the robustness of maximum-
likelihood estimates and the assessing the needed for increasing Ntrials.
trial_Nstart_attempts
Integer vector of length Ntrials, listing the number of random start attempts
for each trial (see option max_start_attempts).
trial_Niterations
Integer vector of length Ntrials, listing the number of iterations of each trial.
Depending on the fitting algorithm used (option optim_algorithm), these may
be NA (not available).
trial_Nevaluations
Integer vector of length Ntrials, listing the number of likelihood evaluations of
each trial. Depending on the fitting algorithm used (option optim_algorithm),
these may be NA (not available).
standard_errors
Named list containing the elements "transition_matrix" (numeric matrix of size
Nstates x Nstates), "birth_rates" (numeric vector of size Nstates) and "death_rates"

152 fit_musse

(numeric vector of size Nstates), listing standard errors of all model parameters
estimated using parametric bootstrapping. Only included if Nbootstraps>0.
Note that the standard errors of non-fitted (i.e., fixed) parameters will be zero.

CI50@lower Named list containing the elements "transition_matrix" (numeric matrix of size
Nstates x Nstates), "birth_rates" (numeric vector of size Nstates) and "death_rates"
(numeric vector of size Nstates), listing the lower end of the 50% confidence
interval (i.e. the 25% quantile) for each model parameter, estimated using para-
metric bootstrapping. Only included if Nbootstraps>0.

CI5Qupper Similar to CI5@1ower, but listing the upper end of the 50% confidence interval
(i.e. the 75% quantile) for each model parameter. For example, the confidence
interval for he birth-rate A; will be between CI501lower$birth_rates[1] and
CI5Quppers$birth_rates[1]. Only included if Nbootstraps>0.

CI95lower Similar to CI50lower, but listing the lower end of the 95% confidence in-
terval (i.e. the 2.5% quantile) for each model parameter. Only included if
Nbootstraps>0.

CI95upper Similar to CI5Qupper, but listing the upper end of the 95% confidence in-
terval (i.e. the 97.5% quantile) for each model parameter. Only included if
Nbootstraps>0.

CI 2D numeric matrix, listing maximum-likelihood estimates, standard errors and

confidence intervals for all model parameters (one row per parameter, one col-
umn for ML-estimates, one column for standard errors, two columns per con-
fidence interval). Standard errors and confidence intervals are as estimated
using parametric bootstrapping. This matrix contains the same information
as parameters, standard_errors, CI501lower, CI5Qupper, CI951ower and
CI95upper, but in a more compact format. Only included if Nbootstraps>0.
ancestral_likelihoods

2D matrix of size Nnodes x Nstates, listing the computed state-likelihoods for
each node in the tree. These may be used for "local" ancestral state reconstruc-
tions, based on the information contained in the subtree descending from each
node. Note that for each node the ancestral likelihoods have been normalized
for numerical reasons, however they should not be interpreted as actual prob-
abilities. For each node n and state s, ancestral_likelihoods[n,s] is pro-
portional to the likelihood of observing the descending subtree and associated tip
proxy states, if node n was at state s. Only included if include_ancestral_likelihoods==TRUE.

Author(s)

Stilianos Louca

References
W. P. Maddison, P. E. Midford, S. P. Otto (2007). Estimating a binary character’s effect on speciation
and extinction. Systematic Biology. 56:701-710.

R. G. FitzJohn, W. P. Maddison, S. P. Otto (2009). Estimating trait-dependent speciation and ex-
tinction rates from incompletely resolved phylogenies. Systematic Biology. 58:595-611

R. G. FitzJohn (2012). Diversitree: comparative phylogenetic analyses of diversification in R.
Methods in Ecology and Evolution. 3:1084-1092

fit_musse 153

J. M. Beaulieu and B. C. O’Meara (2016). Detecting hidden diversification shifts in models of
trait-dependent speciation and extinction. Systematic Biology. 65:583-601.

D. Kuehnert, T. Stadler, T. G. Vaughan, A. J. Drummond (2016). Phylodynamics with migration: A
computational framework to quantify population structure from genomic data. Molecular Biology
and Evolution. 33:2102-2116.

P. van Els, R. S. Etiene, L. Herrera-Alsina (2018). Detecting the dependence of diversification on
multiple traits from phylogenetic trees and trait data. Systematic Biology. syy057.

S. Louca and M. W. Pennell (2020). A general and efficient algorithm for the likelihood of diversi-
fication and discrete-trait evolutionary models. Systematic Biology. 69:545-556.

See Also

simulate_dsse, asr_mk_model, fit_tree_model

Examples

EXAMPLE 1: BiSSE model

Choose random BiSSE model parameters

Nstates = 2

Q = get_random_mk_transition_matrix(Nstates, rate_model="ARD", max_rate=0.1)
parameters = list(birth_rates = runif(Nstates,5,10),

death_rates runif(Nstates,0,5),
transition_matrix = Q)
rarefaction = 0.5 # randomly omit half of the tips

Simulate a tree under the BiSSE model
simulation = simulate_musse(Nstates,

parameters = parameters,

max_tips = 1000,

sampling_fractions = rarefaction)
tree = simulation$tree

tip_states = simulation$tip_states

Not run:
fit BiSSE model to tree & tip data
fit = fit_musse(tree,
Nstates Nstates,
tip_pstates tip_states,
sampling_fractions = rarefaction)
if(!fit$success){
cat(sprintf("ERROR: Fitting failed"))
Yelse{
compare fitted birth rates to true values
errors = (fit$parameters$birth_rates - parameters$birth_rates)
relative_errors = errors/parameters$birth_rates
cat(sprintf("BiSSE relative birth-rate errors:\n"))
print(relative_errors)

}

End(Not run)

154

EXAMPLE 2: HiSSE model, with bootstrapping

Choose random HiSSE model parameters
Nstates = 4
NPstates = 2
Q = get_random_mk_transition_matrix(Nstates, rate_model="ARD", max_rate=0.1)
rarefaction = 0.5 # randomly omit half of the tips
parameters = list(birth_rates = runif(Nstates,5,10),
death_rates runif(Nstates,0,5),
transition_matrix = Q)

reveal the state of 30% & 60% of tips (in state 1 & 2, respectively)
reveal_fractions = ¢(0.3,0.6)

use proxy map corresponding to Beaulieu and O'Meara (2016)
proxy_map = c(1,2,1,2)

Simulate a tree under the HiSSE model
simulation = simulate_musse(Nstates,

NPstates = NPstates,

proxy_map = proxy_map,

parameters = parameters,

max_tips = 1000,

sampling_fractions = rarefaction,

reveal_fractions = reveal_fractions)
tree = simulation$tree

tip_states = simulation$tip_proxy_states

Not run:

fit HiSSE model to tree & tip data

run multiple trials to ensure global optimum

also estimate confidence intervals via bootstrapping
fit = fit_musse(tree,

Nstates = Nstates,

NPstates = NPstates,
proxy_map = proxy_map,
tip_pstates = tip_states,
sampling_fractions = rarefaction,
reveal_fractions = reveal_fractions,
Ntrials =5,

Nbootstraps =10,
max_model_runtime = 0.1)

if(1fit$success){
cat(sprintf("ERROR: Fitting failed"))

Yelse{
compare fitted birth rates to true values
errors = (fit$parameters$birth_rates - parameters$birth_rates)
relative_errors = errors/parameters$birth_rates
cat(sprintf("HiSSE relative birth-rate errors:\n"))
print(relative_errors)

fit_musse

fit_sbm_const 155

print 95%-confidence interval for first birth rate
cat(sprintf(”"CI95 for lambdal: %g-%g",
fit$CI95lowers$birth_rates[1],
fit$CI95uppers$birth_rates[1]1))
3

End(Not run)

fit_sbm_const Fit a phylogeographic Spherical Brownian Motion model.

Description

Given one or more rooted phylogenetic trees and geographic coordinates (latitudes & longitudes) for
the tips of each tree, this function estimates the diffusivity of a Spherical Brownian Motion (SBM)
model for the evolution of geographic location along lineages (Perrin 1928; Brillinger 2012). Esti-
mation is done via maximum-likelihood and using independent contrasts between sister lineages.

Usage

fit_sbm_const(trees,
tip_latitudes,
tip_longitudes,

radius,
phylodistance_matrixes = NULL,
clade_states = NULL,
planar_approximation = FALSE,
only_basal_tip_pairs = FALSE,
only_distant_tip_pairs = FALSE,
min_MRCA_time =0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
no_state_transitions = FALSE,
only_state = NULL,
min_diffusivity = NULL,
max_diffusivity = NULL,
Nbootstraps =0,
NQQ =0,
SBM_PD_functor = NULL,
focal_diffusivities = NULL)

Arguments

trees Either a single rooted tree or a list of rooted trees, of class "phylo". The root of

each tree is assumed to be the unique node with no incoming edge. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance. When multiple trees are provided, it is either assumed that their roots
coincide in time (if align_trees_at_root=TRUE) or that each tree’s youngest
tip was sampled at present day (if align_trees_at_root=FALSE).

156 fit_sbm_const

tip_latitudes Numeric vector of length Ntips, or a list of vectors, listing latitudes of tips in
decimal degrees (from -90 to 90). If treesis alist of trees, then tip_latitudes
should be a list of vectors of the same length as trees, listing tip latitudes for
each of the input trees.

tip_longitudes Numeric vector of length Ntips, or a list of vectors, listing longitudes of tips in
decimal degrees (from -180 to 180). If trees is alist of trees, then tip_longitudes
should be a list of vectors of the same length as trees, listing tip longitudes for
each of the input trees.

radius Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

phylodistance_matrixes
Numeric matrix, or a list of numeric matrixes, listing phylogenetic distances be-
tween tips for each tree. If trees is a list of trees, then phylodistance_matrixes
should be a list of the same length as trees, whose n-th element should be
a numeric matrix comprising as many rows and columns as there are tips in
the n-th tree; the entry phylodistance_matrixes[[n]]1[i,j] is the phyloge-
netic distance between tips i and j in tree n. If trees is a single tree, then
phylodistance_matrixes can be a single numeric matrix. If NULL (default),
phylogenetic distances between tips are calculated based on the provided trees,
otherwise phylogenetic distances are taken from phylodistance_matrixes;in
the latter case the trees are only used for the topology (determining tip pairs for
independent contrasts), but not for calculating phylogenetic distances.

clade_states Either NULL, or an integer vector of length Ntips+Nnodes, or a list of integer
vectors, listing discrete states of every tip and node in the tree. If trees is a
list of trees, then clade_states should be a list of vectors of the same length
as trees, listing tip and node states for each of the input trees. For example,
clade_states[[2]][1@] specifies the state of the 10-th tip or node in the 2nd
tree. States may be, for example, geographic regions, sub-types, discrete traits
etc, and can be used to restrict independent contrasts to tip pairs within the same
state (see option no_state_transitions).

planar_approximation
Logical, specifying whether to estimate the diffusivity based on a planar approx-
imation of the SBM model, i.e. by assuming that geographic distances between
tips are as if tips are distributed on a 2D cartesian plane. This approximation is
only accurate if geographical distances between tips are small compared to the
sphere’s radius.

only_basal_tip_pairs
Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

only_distant_tip_pairs
Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

min_MRCA_time Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips” MRCA
has at least this distance from the root. Set min_MRCA_time<=0 to disable this
filter.

fit_sbm_const 157

max_MRCA_age Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips” MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.
max_phylodistance
Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.
no_state_transitions
Logical, specifying whether to omit independent contrasts between tips whose
shortest connecting paths include state transitions. If TRUE, only tips within the
same state and with no transitions between them (as specified in clade_states)
are compared. If TRUE, then clade_states must be provided.

only_state Optional integer, specifying the state in which tip pairs (and their connecting an-
cestral nodes) must be in order to be considered. If specified, then clade_states
must be provided.

min_diffusivity
Non-negative numeric, specifying the minimum possible diffusivity. If NULL,
this is automatically chosen.

max_diffusivity
Non-negative numeric, specifying the maximum possible diffusivity. If NULL,
this is automatically chosen.

Nbootstraps Non-negative integer, specifying an optional number of parametric bootstraps to
performs for estimating standard errors and confidence intervals.

NQQ Integer, optional number of simulations to perform for creating QQ plots of the
theoretically expected distribution of geodistances vs. the empirical distribution
of geodistances (across independent contrasts). The resolution of the returned
QQ plot will be equal to the number of independent contrasts used for fitting. If
<=0, no QQ plots will be calculated.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes, and should be kept at its default value NULL.
focal_diffusivities
Optional numeric vector, listing diffusivities of particular interest and for which
the log-likelihoods should be returned. This may be used e.g. for diagnostic pur-
poses, e.g. to see how "sharp" the likelihood peak is at the maximum-likelihood
estimate.

Details

For short expected transition distances this function uses the approximation formula by Ghosh et
al. (2012). For longer expected transition distances the function uses a truncated approximation of
the series representation of SBM transition densities (Perrin 1928). It is assumed that tips are sam-
pled randomly without any biases for certain geographic regions. If you suspect strong geographic
sampling biases, consider using the function fit_sbm_geobiased_const.

This function can use multiple trees to fit the diffusivity under the assumption that each tree is an
independent realization of the same SBM process, i.e. all lineages in all trees dispersed with the
same diffusivity.

158 fit_sbm_const

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. The tree may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value

A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

diffusivity Numeric, the estimated diffusivity, in units distance”2/time. Distance units are
the same as used for the radius, and time units are the same as the tree’s edge
lengths. For example, if the radius was specified in km and edge lengths are in
Myr, then the estimated diffusivity will be in km"2/Myr.

loglikelihood Numeric, the log-likelihood of the data at the estimated diffusivity.

Ncontrasts Integer, number of independent contrasts (i.e., tip pairs) used to estimate the
diffusivity. This is the number of independent data points used.

phylodistances Numeric vector of length Ncontrasts, listing the phylogenetic distances of the
independent contrasts used in the fitting.

geodistances Numeric vector of length Ncontrasts, listing the geographical distances of the
independent contrasts used in the fitting.

focal_loglikelihoods
Numeric vector of the same length as focal_diffusivities, listing the log-
likelihoods for the diffusivities provided in focal_diffusivities.

standard_error Numeric, estimated standard error of the estimated diffusivity, based on para-
metric bootstrapping. Only returned if Nbootstraps>0.

CI50lower Numeric, lower bound of the 50% confidence interval for the estimated diffu-
sivity (25-75% percentile), based on parametric bootstrapping. Only returned if
Nbootstraps>0.

CI5Qupper Numeric, upper bound of the 50% confidence interval for the estimated diffu-
sivity, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI95lower Numeric, lower bound of the 95% confidence interval for the estimated diffusiv-
ity (2.5-97.5% percentile), based on parametric bootstrapping. Only returned if
Nbootstraps>0.

CI95upper Numeric, upper bound of the 95% confidence interval for the estimated diffu-
sivity, based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. If L denotes the loglikelihood of new data generated by the fitted model
(under the same model) and M denotes the expectation of L, then consistency
is the probability that |L — M| will be greater or equal to | X — M|, where X
is the loglikelihood of the original data under the fitted model. Only returned if
Nbootstraps>0. A low consistency (e.g., <0.05) indicates that the fitted model
is a poor description of the data. See Lindholm et al. (2019) for background.

fit_sbm_const 159

QQplot Numeric matrix of size Ncontrasts x 2, listing the computed QQ-plot. The first
column lists quantiles of geodistances in the original dataset, the 2nd column
lists quantiles of hypothetical geodistances simulated based on the fitted model.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes.

Author(s)

Stilianos Louca

References

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.
98:30003.

A. Lindholm, D. Zachariah, P. Stoica, T. B. Schoen (2019). Data consistency approach to model
validation. IEEE Access. 7:59788-59796.

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

See Also

fit_sbm_geobiased_const, simulate_sbm, fit_sbm_parametric, fit_sbm_linear, fit_sbm_on_grid

Examples

Not run:
generate a random tree
tree = generate_random_tree(list(birth_rate_intercept=1),max_tips=500)%tree

simulate SBM on the tree
D = 1e4
simulation = simulate_sbm(tree, radius=6371, diffusivity=D)

fit SBM on the tree
fit = fit_sbm_const(tree,simulation$tip_latitudes,simulation$tip_longitudes,radius=6371)

cat(sprintf('True D=%g, fitted D=%g\n',D,fit$diffusivity))

End(Not run)

160

fit_sbm_geobiased_const

fit_sbm_geobiased_const
Fit a phylogeographic Spherical Brownian Motion model with geo-

graphic sampling bias.

Description

Given one or more rooted phylogenetic trees and geographic coordinates (latitudes & longitudes) for
the tips of each tree, this function estimates the diffusivity of a Spherical Brownian Motion (SBM)
model for the evolution of geographic location along lineages (Perrin 1928; Brillinger 2012), while
correcting for geographic sampling biases. Estimation is done via maximum-likelihood and using
independent contrasts between sister lineages, while correction for geographic sampling bias is
done through an iterative simulation-+fitting process until convergence.

Usage

fit_sbm_geobiased_const(trees,

Arguments

trees

tip_latitudes,
tip_longitudes,
radius,
reference_latitudes
reference_longitudes
only_basal_tip_pairs
only_distant_tip_pairs
min_MRCA_time
max_MRCA_age
max_phylodistance
min_diffusivity
max_diffusivity
rarefaction

Nsims

max_iterations
Nbootstraps

NQQ

Nthreads
include_simulations
SBM_PD_functor
verbose
verbose_prefix

Either a single rooted tree or a list of rooted trees, of class "phylo". The root of
each tree is assumed to be the unique node with no incoming edge. Edge lengths
are assumed to represent time intervals or a similarly interpretable phylogenetic
distance. When multiple trees are provided, it is either assumed that their roots

fit_sbm_geobiased_const 161

tip_latitudes

tip_longitudes

radius

coincide in time (if align_trees_at_root=TRUE) or that each tree’s youngest
tip was sampled at present day (if align_trees_at_root=FALSE).

Numeric vector of length Ntips, or a list of vectors, listing latitudes of tips in
decimal degrees (from -90 to 90). If treesis alist of trees, then tip_latitudes
should be a list of vectors of the same length as trees, listing tip latitudes for
each of the input trees.

Numeric vector of length Ntips, or a list of vectors, listing longitudes of tips in
decimal degrees (from -180 to 180). If trees is alist of trees, then tip_longitudes
should be a list of vectors of the same length as trees, listing tip longitudes for
each of the input trees.

Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

reference_latitudes

Optional numeric vector, listing latitudes of reference coordinates based on
which to calculate the geographic sampling density. If NULL, the geographic
sampling density is estimated based on tip_latitudes and tip_longitudes.

reference_longitudes

Optional numeric vector of the same length as reference_latitudes, listing
latitudes of reference coordinates based on which to calculate the geographic
sampling density. If NULL, the geographic sampling density is estimated based
on tip_latitudes and tip_longitudes.

only_basal_tip_pairs

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

only_distant_tip_pairs

min_MRCA_time

max_MRCA_age

Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips” MRCA
has at least this distance from the root. Set min_MRCA_time<=0 to disable this
filter.

Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips” MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.

max_phylodistance

min_diffusivity

max_diffusivity

Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.

Non-negative numeric, specifying the minimum possible diffusivity. If NULL,
this is automatically chosen.

Non-negative numeric, specifying the maximum possible diffusivity. If NULL,
this is automatically chosen.

162 fit_sbm_geobiased_const

rarefaction Numeric, between 00 and 1, specifying the fraction of extant lineages to sample
from the simulated trees. Should be strictly smaller than 1, in order for geo-
graphic bias correction to have an effect. Note that regardless of rarefaction,
the simulated trees will have the same size as the original trees.

Nsims Integer, number of SBM simulatons to perform per iteration for assessing the
effects of geographic bias. Smaller trees require larger Nsims (due to higher
stochasticity). This must be at least 2, although values of 100-1000 are recom-
mended.

max_iterations Integer, maximum number of iterations (correction steps) to perform before giv-
ing up.

Nbootstraps Non-negative integer, specifying an optional number of parametric bootstraps to
performs for estimating standard errors and confidence intervals.

NQQ Integer, optional number of simulations to perform for creating QQ plots of the
theoretically expected distribution of geodistances vs. the empirical distribution
of geodistances (across independent contrasts). The resolution of the returned
QQ plot will be equal to the number of independent contrasts used for fitting. If
<=0, no QQ plots will be calculated.

Nthreads Integer, number of parallel threads to use. Ignored on Windows machines.
include_simulations
Logical, whether to include the trees and tip coordinates simulated under the
final fitted SBM model, in the returned results. May be useful e.g. for checking
model adequacy.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes, and should be kept at its default value NULL.

verbose Logical, specifying whether to print progress reports and warnings to the screen.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function tries to estimate the true spherical diffusivity of an SBM model of geographic dif-
fusive dispersal, while correcting for geographic sampling biases. This is done using an iterative
refinement approach, by which trees and tip locations are repeatedly simulated under the current
true diffusivity estimate and the diffusivity estimated from those simulated data are compared to the
originally uncorrected diffusivity estimate. Trees are simulated according to a birth-death model
with constant rates, fitted to the original input trees (a congruent birth-death model is chosen to
match the requested rarefaction). Simulated trees are subsampled (rarefied) to match the original
input tree sizes, with sampled lineages chosen randomly but in a geographically biased way that re-
sembles the original geographic sampling density (e.g., as inferred from the reference_latitudes
and reference_longitudes). Internally, this function repeatedly applies fit_sbm_const and
simulate_sbm. If the true sampling fraction of the input trees is unknown, then it is advised to
perform the analysis with a few alternative rarefaction values (e.g., 0.01 and 0.1) to verify the
robustness of the estimates.

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. The tree may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

fit_sbm_geobiased_const 163

Value
A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

Nlat Integer, number of latitude-tiles used for building a map of the geographic sam-
pling biases.

Nlon Integer, number of longitude-tiles used for building a map of the geographic
sampling biases.

diffusivity Numeric, the estimated true diffusivity, i.e. accounting for geographic sampling
biases, in units distance”2/time. Distance units are the same as used for the
radius, and time units are the same as the tree’s edge lengths. For example, if
the radius was specified in km and edge lengths are in Myr, then the estimated
diffusivity will be in km”2/Myr.

correction_factor
Numeric, estimated ratio between the true diffusivity and the original (uncor-
rected) diffusivity estimate.

Niterations Integer, the number of iterations performed until convergence.

stopping_criterion
Character, a short description of the criterion by which the iteration was eventu-
ally halted.

uncorrected_fit_diffusivity
Numeric, the originally estimated (uncorrected) diffusivity.

last_sim_fit_diffusivity
Numeric, the mean uncorrected diffuvity estimated from the simulated data in
the last iteration. Convergence means that last_sim_fit_diffusivity came
close to uncorrected_fit_diffusivity.

all_correction_factors
Numeric vector of length Niterations, listing the estimated correction factors
in each iteration.

all_diffusivity_estimates
Numeric vector of length Niterations, listing the mean uncorrected diffusivity
estimated from the simulated data in each iteration.

Ntrees Integer, number of trees considered for the simulations. This might have smaller
than length(trees), if for some trees fitting a birth-death model was not pos-
sible.

lambda Numeric vector of length Ntrees, listing the birth rates used to simulate the
trees.

mu Numeric vector of length Ntrees, listing the death rates used to simulate the
trees.

rarefaction Numeric vector of length Ntrees, listing the rarefactions (sampling fractions)

used to simulate the trees. These will typically be equal to the rarefaction
provided by the function caller, but may differ for example if the congruence
class did not include a birth-death model with the requested rarefaction.

164

Ncontrasts

standard_error

CI50lower

CI5Qupper

CI95lower

CI95upper

QQplot

simulations

SBM_PD_functor

Author(s)

Stilianos Louca

References

fit_sbm_geobiased_const

Integer, number of independent contrasts (i.e., tip pairs) used to estimate the
diffusivity. This is the number of independent data points used.

Numeric, estimated standard error of the estimated true diffusivity, based on
parametric bootstrapping. Only returned if Nbootstraps>0.

Numeric, lower bound of the 50% confidence interval for the estimated true dif-
fusivity (25-75% percentile), based on parametric bootstrapping. Only returned
if Nbootstraps>0.

Numeric, upper bound of the 50% confidence interval for the estimated true dif-
fusivity, based on parametric bootstrapping. Only returned if Nbootstraps>0.

Numeric, lower bound of the 95% confidence interval for the estimated true
diffusivity (2.5-97.5% percentile), based on parametric bootstrapping. Only re-
turned if Nbootstraps>0.

Numeric, upper bound of the 95% confidence interval for the estimated true dif-
fusivity, based on parametric bootstrapping. Only returned if Nbootstraps>@.

Numeric matrix of size Ncontrasts x 2, listing the computed QQ-plot. The first
column lists quantiles of geodistances in the original dataset, the 2nd column
lists quantiles of hypothetical geodistances simulated based on the estimated
true diffusivity.

List, containing the trees and tip coordinates simulated under the final fitted
SBM model, accounting for geographic biases. Each entry is itself a named list,
containing the simulations corresponding to a specific input tree. In particu-
lar, simulations[[t]]1$sims[[r]] is the r-th simulation performed that corre-
sponds to the t-th input tree. Each simulation is again a named list, containing
the elements success (logical), tree (of class phylo), latitudes (numeric
vector) and longitudes (numeric vector). This data structure may be useful for
testing the adequacy of the fitted SBM model; only use this if you know what
you are doing. Only returned if include_simulations was TRUE.

SBM probability density functor object. Used internally for efficiency and for
debugging purposes. Most users can ignore this.

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.

98:30003.

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

S. Louca (in review as of 2021). The rates of global microbial dispersal.

fit_sbm_geobiased_const

See Also

simulate_sbm,

Examples

Not run:
NFullTips
diffusivity
radius

generate tre
cat(sprintf ("G
tree = castor:

SBMsim = simul
select subse
min_abs_lat
max_abs_lat
min_lon
max_lon
keep_tips

rarefaction
tree
tip_latitudes
tip_longitudes
Ntips
rarefaction

fit SBM whil
fit = castor::

if(!fit$succes

165

fit_sbm_parametric, fit_sbm_linear, fit_sbm_on_grid

10000
1
6371

e and run SBM on it

enerating tree and simulating SBM (true D=%g)..\n",diffusivity))

:generate_tree_hbd_reverse(Ntips = NFullTips,
lambda = 5e-7,
mu = 2e-7,
rho = 1)$trees[[1]]

ate_sbm(tree = tree, radius = radius, diffusivity = diffusivity)
t of tips only found in certain geographic regions
30

80

Q

90

which((abs(SBMsim$tip_latitudes)<=max_abs_lat)

& (abs(SBMsim$tip_latitudes)>=min_abs_lat)

& (SBMsim$tip_longitudes<=max_lon)

& (SBMsim$tip_longitudes>=min_lon))
castor::get_subtree_with_tips(tree, only_tips
rarefaction$subtree
SBMsim$tip_latitudes[rarefaction$new2old_tip]
SBMsim$tip_longitudes[rarefaction$new2old_tip]
length(tree$tip.label)

Ntips/NFullTips

keep_tips)

e correcting for geographic sampling biase

:fit_sbm_geobiased_const(trees
tip_latitudes
tip_longitudes

s
= tree,

tip_latitudes,
tip_longitudes,

radius = radius,
rarefaction = Ntips/NFullTips,
Nsims =10,

Nthreads = 4,

verbose = TRUE,
verbose_prefix =" ")

s){

cat(sprintf("ERROR: %s\n",fit$error))

Yelse{

cat(sprintf("Estimated true D = %g\n", fit$diffusivity))

}

End(Not run)

166 fit_sbm_linear

fit_sbm_linear Fit a phylogeographic Spherical Brownian Motion model with linearly
varying diffusivity.

Description

Given a rooted phylogenetic tree and geographic coordinates (latitudes & longitudes) for its tips, this
function estimates the diffusivity of a Spherical Brownian Motion (SBM) model for the evolution
of geographic location along lineages (Perrin 1928; Brillinger 2012), assuming that the diffusivity
varies linearly over time. Estimation is done via maximum-likelihood and using independent con-
trasts between sister lineages. This function is designed to estimate the diffusivity over time, by
fitting two parameters defining the diffusivity as a linear function of time. For fitting more general
functional forms see fit_sbm_parametric.

Usage

fit_sbm_linear(tree,
tip_latitudes,
tip_longitudes,
radius,
clade_states = NULL,
planar_approximation = FALSE,
only_basal_tip_pairs = FALSE,
only_distant_tip_pairs= FALSE,

min_MRCA_time =0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
no_state_transitions = FALSE,
only_state = NULL,
timel =0,
time2 = NULL,
Ntrials =1,
Nthreads =1,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
Nsignificance =0,
NQQ =0,
fit_control = list(),
SBM_PD_functor = NULL,
verbose = FALSE,
verbose_prefix =""

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with

no incoming edge. Edge lengths are assumed to represent time intervals or a
similarly interpretable phylogenetic distance.

fit_sbm_linear

tip_latitudes

tip_longitudes

radius

clade_states

167

Numeric vector of length Ntips, listing latitudes of tips in decimal degrees (from
-90 to 90). The order of entries must correspond to the order of tips in the tree
(i.e., as listed in tree$tip.label).

Numeric vector of length Ntips, listing longitudes of tips in decimal degrees
(from -180 to 180). The order of entries must correspond to the order of tips in
the tree (i.e., as listed in tree$tip. label).

Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

Optional integer vector of length Ntips+Nnodes, listing discrete states of every
tip and node in the tree. The order of entries must match the order of tips and
nodes in the tree. States may be, for example, geographic regions, sub-types,
discrete traits etc, and can be used to restrict independent contrasts to tip pairs
within the same state (see option no_state_transitions).

planar_approximation

Logical, specifying whether to estimate the diffusivity based on a planar approx-
imation of the SBM model, i.e. by assuming that geographic distances between
tips are as if tips are distributed on a 2D cartesian plane. This approximation is
only accurate if geographical distances between tips are small compared to the
sphere’s radius.

only_basal_tip_pairs

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

only_distant_tip_pairs

min_MRCA_time

max_MRCA_age

Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips” MRCA
has at least this distance from the root. Set min_MRCA_time=0 to disable this
filter.

Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips” MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.

max_phylodistance

Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.

no_state_transitions

only_state

Logical, specifying whether to omit independent contrasts between tips whose
shortest connecting paths include state transitions. If TRUE, only tips within the
same state and with no transitions between them (as specified in clade_states)
are compared.

Optional integer, specifying the state in which tip pairs (and their connecting an-
cestral nodes) must be in order to be considered. If specified, then clade_states
must be provided.

168 fit_sbm_linear

timel Optional numeric, specifying the first time point at which to estimate the diffu-
sivity. By default this is set to root (i.e., time 0).

time2 Optional numeric, specifying the first time point at which to estimate the diffu-
sivity. By default this is set to the present day (i.e., the maximum distance of
any tip from the root).

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated model parameters. Set
to O for no bootstrapping.
Ntrials_per_bootstrap
Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

Nsignificance Integer, specifying the number of simulations to perform under a const-diffusivity
model for assessing the statistical significance of the fitted slope. Set to 0 to not
calculate the significance of the slope.

NQQ Integer, optional number of simulations to perform for creating QQ plots of the
theoretically expected distribution of geodistances vs. the empirical distribution
of geodistances (across independent contrasts). The resolution of the returned
QQ plot will be equal to the number of independent contrasts used for fitting. If
<=0, no QQ plots will be calculated.

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes, and should be kept at its default value NULL.

verbose Logical, specifying whether to print progress reports and warnings to the screen.

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is essentially a wrapper for the more general function fit_sbm_parametric, with the
addition that it can estimate the statistical significance of the fitted linear slope.

The statistical significance of the slope is the probability that a constant-diffusivity SBM model
would generate data that would yield a fitted linear slope equal to or greater than the one fitted to
the original data; the significance is estimated by simulating Nsignificance constant-diffusivity

fit_sbm_linear 169

models and then fitting a linear-diffusivity model. The constant diffusivity assumed in these simu-
lations is the maximum-likelihood diffusivity fitted internally using fit_sbm_const.

Note that estimation of diffusivity at older times is only possible if the timetree includes extinct
tips or tips sampled at older times (e.g., as is often the case in viral phylogenies). If tips are only
sampled once at present-day, i.e. the timetree is ultrametric, reliable diffusivity estimates can only
be achieved near present times.

For short expected transition distances this function uses the approximation formula by Ghosh et al.
(2012) to calculate the probability density of geographical transitions along edges. For longer ex-
pected transition distances the function uses a truncated approximation of the series representation
of SBM transition densities (Perrin 1928).

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. The tree may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value

A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

objective_value

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

times Numeric vector of size 2, listing the two time points at which the diffusivity was
estimated (timel and time2).

diffusivities Numeric vector of size 2, listing the fitted diffusivity at time1 and time2. The
fitted model assumes that the diffusivity varied linearly between those two time
points.

loglikelihood The log-likelihood of the fitted linear model for the given data.

NFP Integer, number of fitted (i.e., non-fixed) model parameters. Will always be 2.
Ncontrasts Integer, number of independent contrasts used for fitting.
AIC The Akaike Information Criterion for the fitted model, defined as 2k — 2log(L),

where £k is the number of fitted parameters and L is the maximized likelihood.

BIC The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (number of independent contrasts), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

170

fit_sbm_linear

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.
Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.
trial_start_objectives
Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.
trial_objective_values
Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.
trial_Nstart_attempts
Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.
trial_Niterations
Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.
trial_Nevaluations
Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.
standard_errors
Numeric vector of size 2, estimated standard error of the fitted diffusivity at the

root and present, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI50lower Numeric vector of size 2, lower bound of the 50% confidence interval (25-75%
percentile) for the fitted diffusivity at the root and present, based on parametric
bootstrapping. Only returned if Nbootstraps>0.

CI5Qupper Numeric vector of size 2, upper bound of the 50% confidence interval for the fit-
ted diffusivity at the root and present, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI95lower Numeric vector of size 2, lower bound of the 95% confidence interval (2.5-
97.5% percentile) for the fitted diffusivity at the root and present, based on para-
metric bootstrapping. Only returned if Nbootstraps>@.

CI95upper Numeric vector of size 2, upper bound of the 95% confidence interval for the fit-
ted diffusivity at the root and present, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. See the documentation of fit_sbm_const for an explanation. Only
returned if Nbootstraps>0.

significance Numeric between 0 and 1, estimate statistical significance of the fitted linear
slope. Only returned if Nsignificance>0.

QQplot Numeric matrix of size Ncontrasts x 2, listing the computed QQ-plot. The first
column lists quantiles of geodistances in the original dataset, the 2nd column
lists quantiles of hypothetical geodistances simulated based on the fitted model.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes.

fit_sbm_linear 171

Author(s)

Stilianos Louca

References

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.
98:30003.

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

See Also

simulate_sbm, fit_sbm_const, fit_sbm_parametric, fit_sbm_on_grid

Examples

Not run:

generate a random tree, keeping extinct lineages

tree_params = list(birth_rate_factor=1, death_rate_factor=0.95)

tree = generate_random_tree(tree_params,max_tips=1000,coalescent=FALSE)$tree

calculate max distance of any tip from the root
max_time = get_tree_span(tree)$max_distance

simulate time-dependent SBM on the tree

we assume that diffusivity varies linearly with time

in this example we measure distances in Earth radii

radius = 1

diffusivity_functor = function(times, params){
return(params[1] + (times/max_time)*(params[2]-params[1]))

3

true_params = c(1, 2)

time_grid = seq(@,max_time,length.out=2)
simulation = simulate_sbm(tree,

radius = radius,
diffusivity = diffusivity_functor(time_grid, true_params),
time_grid = time_grid)

fit time-independent SBM to get a rough estimate
fit_const = fit_sbm_const(tree,simulation$tip_latitudes,simulation$tip_longitudes,radius=radius)

fit SBM model with linearly varying diffusivity
fit = fit_sbm_linear(tree,
simulation$tip_latitudes,
simulation$tip_longitudes,
radius = radius,
Ntrials = 10)

172 fit_sbm_on_grid

compare fitted & true params
print(true_params)
print(fit$diffusivities)

End(Not run)

fit_sbm_on_grid Fit a phylogeographic Spherical Brownian Motion model with
piecewise-linear diffusivity.

Description

Given a rooted phylogenetic tree and geographic coordinates (latitudes & longitudes) for its tips,
this function estimates the diffusivity of a Spherical Brownian Motion (SBM) model with time-
dependent diffusivity for the evolution of geographic location along lineages (Perrin 1928; Brillinger
2012). Estimation is done via maximum-likelihood and using independent contrasts between sister
lineages. This function is designed to estimate the diffusivity over time, approximated as a piece-
wise linear profile, by fitting the diffusivity on a discrete set of time points. The user thus provides a
set of time points (time_grid), and fit_sbm_on_grid estimates the diffusivity on each time point,
while assuming that the diffusivity varies linearly between time points.

Usage

fit_sbm_on_grid(tree,
tip_latitudes,
tip_longitudes,
radius,
clade_states = NULL,
planar_approximation = FALSE,
only_basal_tip_pairs = FALSE,
only_distant_tip_pairs= FALSE,

min_MRCA_time =0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
no_state_transitions = FALSE,
only_state = NULL,
time_grid =0,
guess_diffusivity = NULL,
min_diffusivity = NULL,
max_diffusivity = Inf,
Ntrials =1,
Nthreads =1,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
NQQ =0,

fit_control = list(),

fit_sbm_on_grid

Arguments

tree

tip_latitudes

tip_longitudes

radius

clade_states

planar_approxi

173
SBM_PD_functor = NULL,
verbose = FALSE,
verbose_prefix ="M

A rooted tree of class "phylo". The root is assumed to be the unique node with
no incoming edge. Edge lengths are assumed to represent time intervals or a
similarly interpretable phylogenetic distance.

Numeric vector of length Ntips, listing latitudes of tips in decimal degrees (from
-90 to 90). The order of entries must correspond to the order of tips in the tree
(i.e., as listed in tree$tip.label).

Numeric vector of length Ntips, listing longitudes of tips in decimal degrees
(from -180 to 180). The order of entries must correspond to the order of tips in
the tree (i.e., as listed in tree$tip. label).

Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

Optional integer vector of length Ntips+Nnodes, listing discrete states of every
tip and node in the tree. The order of entries must match the order of tips and
nodes in the tree. States may be, for example, geographic regions, sub-types,
discrete traits etc, and can be used to restrict independent contrasts to tip pairs
within the same state (see option no_state_transitions).
mation

Logical, specifying whether to estimate the diffusivity based on a planar approx-
imation of the SBM model, i.e. by assuming that geographic distances between
tips are as if tips are distributed on a 2D cartesian plane. This approximation is
only accurate if geographical distances between tips are small compared to the
sphere’s radius.

only_basal_tip_pairs

only_distant_t

min_MRCA_time

max_MRCA_age

max_phylodista

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

ip_pairs
Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips” MRCA
has at least this distance from the root. Set min_MRCA_time=0 to disable this
filter.

Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips” MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.

nce
Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.

174 fit_sbm_on_grid

no_state_transitions
Logical, specifying whether to omit independent contrasts between tips whose
shortest connecting paths include state transitions. If TRUE, only tips within the
same state and with no transitions between them (as specified in clade_states)
are compared.

only_state Optional integer, specifying the state in which tip pairs (and their connecting an-
cestral nodes) must be in order to be considered. If specified, then clade_states
must be provided.

time_grid Numeric vector, specifying discrete time points (counted since the root) at which
the diffusivity should be fitted; between these time points the diffusivity is
assumed to vary linearly. This time grid should be fine enough to sufficiently
capture the variation in the diffusivity over time, but must not be too big to
avoid overfitting. If NULL or of size 1, then the diffusivity is assumed to be time-
independent. Listed times must be strictly increasing, and should cover at least
the full considered time interval (from O to the maximum distance of any tip
from the root); otherwise, constant extrapolation is used to cover missing times.
Note that time is measured in the same units as the tree’s edge lengths.

guess_diffusivity
Optional numeric vector, specifying a first guess for the diffusivity. Either of size
1 (the same first guess for all time points), or of the same length as time_grid
(different first guess for each time point, NA are replaced with an automatically
chosen first guess). If NULL, the first guess is chosen automatically.

min_diffusivity
Optional numeric vector, specifying lower bounds for the fitted diffusivity. Ei-
ther of size 1 (the same lower bound is assumed for all time points), or of the
same length as time_grid (different lower bound for each time point, NA are
replaced with an automatically chosen lower bound). If NULL, lower bounds are
chosen automatically.

max_diffusivity
Optional numeric vector, specifying upper bounds for the fitted diffusivity. Ei-
ther of size 1 (the same upper bound is assumed for all time points), or of the
same length as time_grid (different upper bound for each time point, NA are
replaced with infinity). If NULL, no upper bound is imposed.

Ntrials Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated model parameters. Set
to O for no bootstrapping.
Ntrials_per_bootstrap
Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max (1,Ntrials). Decreasing Ntrials_per_bootstrap

fit_sbm_on_grid 175

will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

NQQ Integer, optional number of simulations to perform for creating QQ plots of the
theoretically expected distribution of geodistances vs. the empirical distribution
of geodistances (across independent contrasts). The resolution of the returned
QQ plot will be equal to the number of independent contrasts used for fitting. If
<=0, no QQ plots will be calculated.

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nIminb in the stats package.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes, and should be kept at its default value NULL.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is designed to estimate the diffusivity profile over time, approximated by a piecewise
linear function. Fitting is done by maximizing the likelihood of observing the given tip coordinates
under the SBM model. Internally, this function uses fit_sbm_parametric.

It is generally advised to provide as much information to the function fit_sbm_on_grid as possible,
including reasonable lower and upper bounds (min_diffusivity and max_diffusivity). It is
important that the time_grid is sufficiently fine to capture the variation of the true diffusivity over
time, since the likelihood is calculated under the assumption that the diffusivity varies linearly
between grid points. However, depending on the size of the tree, the grid size must not be too large,
since otherwise overfitting becomes very likely. The time_grid does not need to be uniform, i.e.,
you may want to use a finer grid in regions where there’s more data (tips) available.

Note that estimation of diffusivity at older times is only possible if the timetree includes extinct
tips or tips sampled at older times (e.g., as is often the case in viral phylogenies). If tips are only
sampled once at present-day, i.e. the timetree is ultrametric, reliable diffusivity estimates can only
be achieved near present times. If the tree is ultrametric, you should consider using fit_sbm_const
instead.

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. The tree may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value

A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

176

objective_value

objective_name

time_grid

diffusivity

loglikelihood
NFP
Ncontrasts

phylodistances

geodistances

child_times1

child_times2

MRCA_times

AIC

BIC

converged

Niterations

Nevaluations

fit_sbm_on_grid

The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

Numeric vector, the time-grid on which the diffusivity was fitted.

Numeric vector of size Ngrid (length of time_grid), listing the fitted diffusivi-
ties at the various time-grid points.

The log-likelihood of the fitted model for the given data.

Integer, number of fitted (i.e., non-fixed) model parameters.

Integer, number of independent contrasts used for fitting.

Numeric vector of length Ncontrasts, listing phylogenetic (patristic) distances
of the independent contrasts.

Numeric vector of length Ncontrasts, listing geographic (great circle) distances
of the independent contrasts.

Numeric vector of length Ncontrasts, listing the times (distance from root) of
the first tip in each independent contrast.

Numeric vector of length Ncontrasts, listing the times (distance from root) of
the second tip in each independent contrast.

Numeric vector of length Ncontrasts, listing the times (distance from root) of
the MRCA of the two tips in each independent contrast.

The Akaike Information Criterion for the fitted model, defined as 2k — 21log(L),
where k£ is the number of fitted parameters and L is the maximized likelihood.

The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (number of independent contrasts), and L is the maximized likelihood.

Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.

trial_start_objectives

Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.

trial_objective_values

Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.

trial_Nstart_attempts

Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.

fit_sbm_on_grid 177

trial_Niterations
Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.

trial_Nevaluations
Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.

standard_errors
Numeric vector of size NP, estimated standard error of the parameters, based on
parametric bootstrapping. Only returned if Nbootstraps>0.

medians Numeric vector of size NP, median the estimated parameters across parametric
bootstraps. Only returned if Nbootstraps>e.

CI50lower Numeric vector of size NP, lower bound of the 50% confidence interval (25-
75% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI5Qupper Numeric vector of size NP, upper bound of the 50% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI951lower Numeric vector of size NP, lower bound of the 95% confidence interval (2.5-
97.5% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI95upper Numeric vector of size NP, upper bound of the 95% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. See the documentation of fit_sbm_const for an explanation.

QQplot Numeric matrix of size Ncontrasts x 2, listing the computed QQ-plot. The first
column lists quantiles of geodistances in the original dataset, the 2nd column
lists quantiles of hypothetical geodistances simulated based on the fitted model.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes.
Author(s)

Stilianos Louca

References

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.
98:30003.

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

See Also

simulate_sbm, fit_sbm_const, fit_sbm_parametric, fit_sbm_linear

178 fit_sbm_parametric

Examples

Not run:

generate a random tree, keeping extinct lineages

tree_params = list(birth_rate_factor=1, death_rate_factor=0.95)

tree = generate_random_tree(tree_params,max_tips=2000,coalescent=FALSE)$tree

calculate max distance of any tip from the root
max_time = get_tree_span(tree)$max_distance

simulate time-dependent SBM on the tree

using a diffusivity that varies roughly exponentially with time
In this example we measure distances in Earth radii

radius = 1

fine_time_grid = seq(from=0, to=max_time, length.out=10)

fine_D = 0.01 + 0.03*exp(-2*fine_time_grid/max_time)

simul = simulate_sbm(tree,

radius = radius,
diffusivity= fine_D,
time_grid = fine_time_grid)

fit time-dependent SBM on a time-grid of size 4
fit = fit_sbm_on_grid(tree,
simul$tip_latitudes,
simul$tip_longitudes,
radius = radius,
time_grid = seq(from=0,to=max_time,length.out=4),
Nthreads = 3, # use 3 CPUs
Ntrials = 30) # avoid local optima through multiple trials

visually compare fitted & true params

plot(x = fine_time_grid,

y = fine_D,

type = '1",

col = 'black',

xlab = "time',

ylab = 'D',

ylim = c(@,max(fine_D)))
lines(x = fit$time_grid,

y = fit$diffusivity,

type ='1",

col = 'blue')

End(Not run)

fit_sbm_parametric Fit a time-dependent phylogeographic Spherical Brownian Motion
model.

fit_sbm_parametric 179

Description

Given a rooted phylogenetic tree and geographic coordinates (latitudes & longitudes) for its tips,
this function estimates the diffusivity of a Spherical Brownian Motion (SBM) model with time-
dependent diffusivity for the evolution of geographic location along lineages (Perrin 1928; Brillinger
2012). Estimation is done via maximum-likelihood and using independent contrasts between sister
lineages. This function is designed to estimate the diffusivity over time, by fitting a finite number of
parameters defining the diffusivity as a function of time. The user thus provides the general func-
tional form of the diffusivity that depends on time and NP parameters, and fit_sbm_parametric
estimates each of the free parameters.

Usage

fit_sbm_parametric(tree,
tip_latitudes,
tip_longitudes,
radius,
param_values,
param_guess,

diffusivity,
time_grid = NULL,
clade_states = NULL,

planar_approximation = FALSE,
only_basal_tip_pairs = FALSE,
only_distant_tip_pairs= FALSE,

min_MRCA_time =0,
max_MRCA_age = Inf,
max_phylodistance = Inf,
no_state_transitions = FALSE,
only_state = NULL,
param_min = -Inf,
param_max = +Inf,
param_scale = NULL,
Ntrials =1,
max_start_attempts =1,
Nthreads =1,
Nbootstraps =0,
Ntrials_per_bootstrap = NULL,
NQQ =0,
fit_control = list(),
SBM_PD_functor = NULL,
focal_param_values = NULL,
verbose = FALSE,
verbose_prefix ="M

Arguments

tree A rooted tree of class "phylo". The root is assumed to be the unique node with

no incoming edge. Edge lengths are assumed to represent time intervals or a

180 fit_sbm_parametric

similarly interpretable phylogenetic distance.

tip_latitudes Numeric vector of length Ntips, listing latitudes of tips in decimal degrees (from
-90 to 90). The order of entries must correspond to the order of tips in the tree
(i.e., as listed in tree$tip.label).

tip_longitudes Numeric vector of length Ntips, listing longitudes of tips in decimal degrees
(from -180 to 180). The order of entries must correspond to the order of tips in
the tree (i.e., as listed in tree$tip.label).

radius Strictly positive numeric, specifying the radius of the sphere. For Earth, the
mean radius is 6371 km.

param_values Numeric vector of length NP, specifying fixed values for a some or all model pa-
rameters. For fitted (i.e., non-fixed) parameters, use NaN or NA. For example, the
vector c(1.5,NA,40) specifies that the 1st and 3rd model parameters are fixed
at the values 1.5 and 40, respectively, while the 2nd parameter is to be fitted. The
length of this vector defines the total number of model parameters. If entries in
this vector are named, the names are taken as parameter names. Names should
be included if you’d like returned parameter vectors to have named entries, or
if the diffusivity function queries parameter values by name (as opposed to
numeric index).

param_guess Numeric vector of size NP, specifying a first guess for the value of each model
parameter. For fixed parameters, guess values are ignored. Can be NULL only if
all model parameters are fixed.

diffusivity Function specifying the diffusivity at any given time (time since the root) and
for any given parameter values. This function must take exactly two arguments,
the 1st one being a numeric vector (one or more times) and the 2nd one being
a numeric vector of size NP (parameter values), and return a numeric vector of
the same size as the 1st argument.

time_grid Numeric vector, specifying times (counted since the root) at which the diffusivity

function should be evaluated. This time grid must be fine enough to capture the
possible variation in the diffusivity over time, within the permissible parame-
ter range. If of size 1, then the diffusivity is assumed to be time-independent.
Listed times must be strictly increasing, and should cover at least the full con-
sidered time interval (from O to the maximum distance of any tip from the root);
otherwise, constant extrapolation is used to cover missing times. Can also be
NULL or a vector of size 1, in which case the diffusivity is assumed to be time-
independent. Note that time is measured in the same units as the tree’s edge
lengths.

clade_states Optional integer vector of length Ntips+Nnodes, listing discrete states of every
tip and node in the tree. The order of entries must match the order of tips and
nodes in the tree. States may be, for example, geographic regions, sub-types,
discrete traits etc, and can be used to restrict independent contrasts to tip pairs
within the same state (see option no_state_transitions).

planar_approximation
Logical, specifying whether to estimate the diffusivity based on a planar approx-
imation of the SBM model, i.e. by assuming that geographic distances between
tips are as if tips are distributed on a 2D cartesian plane. This approximation is
only accurate if geographical distances between tips are small compared to the
sphere’s radius.

fit_sbm_parametric

181

only_basal_tip_pairs

Logical, specifying whether to only compare immediate sister tips, i.e., tips con-
nected through a single parental node.

only_distant_tip_pairs

min_MRCA_time

max_MRCA_age

Logical, specifying whether to only compare tips at distinct geographic loca-
tions.

Numeric, specifying the minimum allowed time (distance from root) of the most
recent common ancestor (MRCA) of sister tips considered in the fitting. In other
words, an independent contrast is only considered if the two sister tips” MRCA
has at least this distance from the root. Set min_MRCA_time=0 to disable this
filter.

Numeric, specifying the maximum allowed age (distance from youngest tip) of
the MRCA of sister tips considered in the fitting. In other words, an independent
contrast is only considered if the two sister tips” MRCA has at most this age
(time to present). Set max_MRCA_age=Inf to disable this filter.

max_phylodistance

Numeric, maximum allowed geodistance for an independent contrast to be in-
cluded in the SBM fitting. Set max_phylodistance=Inf to disable this filter.

no_state_transitions

only_state

param_min

param_max

param_scale

Ntrials

Logical, specifying whether to omit independent contrasts between tips whose
shortest connecting paths include state transitions. If TRUE, only tips within the
same state and with no transitions between them (as specified in clade_states)
are compared.

Optional integer, specifying the state in which tip pairs (and their connecting an-
cestral nodes) must be in order to be considered. If specified, then clade_states
must be provided.

Optional numeric vector of size NP, specifying lower bounds for model parame-
ters. If of size 1, the same lower bound is applied to all parameters. Use -Inf to
omit a lower bound for a parameter. If NULL, no lower bounds are applied. For
fixed parameters, lower bounds are ignored.

Optional numeric vector of size NP, specifying upper bounds for model param-
eters. If of size 1, the same upper bound is applied to all parameters. Use +Inf
to omit an upper bound for a parameter. If NULL, no upper bounds are applied.
For fixed parameters, upper bounds are ignored.

Optional numeric vector of size NP, specifying typical scales for model parame-
ters. If of size 1, the same scale is assumed for all parameters. If NULL, scales are
determined automatically. For fixed parameters, scales are ignored. It is strongly
advised to provide reasonable scales, as this facilitates the numeric optimization
algorithm.

Integer, specifying the number of independent fitting trials to perform, each
starting from a random choice of model parameters. Increasing Ntrials re-
duces the risk of reaching a non-global local maximum in the fitting objective.

max_start_attempts

Integer, specifying the number of times to attempt finding a valid start point (per
trial) before giving up on that trial. Randomly choosen extreme start parameters
may occasionally result in Inf/undefined likelihoods, so this option allows the
algorithm to keep looking for valid starting points.

182 fit_sbm_parametric

Nthreads Integer, specifying the number of parallel threads to use for performing multiple
fitting trials simultaneously. This should generally not exceed the number of
available CPUs on your machine. Parallel computing is not available on the
Windows platform.

Nbootstraps Integer, specifying the number of parametric bootstraps to perform for estimat-
ing standard errors and confidence intervals of estimated model parameters. Set
to 0 for no bootstrapping.
Ntrials_per_bootstrap
Integer, specifying the number of fitting trials to perform for each bootstrap sam-
pling. If NULL, this is set equal to max (1,Ntrials). Decreasing Ntrials_per_bootstrap
will reduce computation time, at the expense of potentially inflating the esti-
mated confidence intervals; in some cases (e.g., for very large trees) this may
be useful if fitting takes a long time and confidence intervals are very narrow
anyway. Only relevant if Nbootstraps>0.

NQQ Integer, optional number of simulations to perform for creating QQ plots of the
theoretically expected distribution of geodistances vs. the empirical distribution
of geodistances (across independent contrasts). The resolution of the returned
QQ plot will be equal to the number of independent contrasts used for fitting. If
<=0, no QQ plots will be calculated.

fit_control Named list containing options for the nlminb optimization routine, such as
iter.max, eval.max or rel.tol. For a complete list of options and default
values see the documentation of nlminb in the stats package.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes, and should be kept at its default value NULL.
focal_param_values
Optional numeric matrix having NP columns and an arbitrary number of rows,
listing combinations of parameter values of particular interest and for which
the log-likelihoods should be returned. This may be used e.g. for diagnostic
purposes, e.g. to examine the shape of the likelihood function.

verbose Logical, specifying whether to print progress reports and warnings to the screen.
Note that errors always cause a return of the function (see return values success
and error).

verbose_prefix Character, specifying the line prefix for printing progress reports to the screen.

Details

This function is designed to estimate a finite set of scalar parameters (p1, .., p, € R) that determine
the diffusivity over time, by maximizing the likelihood of observing the given tip coordinates under
the SBM model. For example, the investigator may assume that the diffusivity exponentially over
time, i.e. can be described by D(t) = A - e~B* (where A and B are unknown coefficients and ¢
is time since the root). In this case the model has 2 free parameters, p; = A and po = B, each of
which may be fitted to the tree.

It is generally advised to provide as much information to the function fit_sbm_parametric as
possible, including reasonable lower and upper bounds (param_min and param_max), a reasonable
parameter guess (param_guess) and reasonable parameter scales param_scale. If some model
parameters can vary over multiple orders of magnitude, it is advised to transform them so that

fit_sbm_parametric 183

they vary across fewer orders of magnitude (e.g., via log-transformation). It is also important that
the time_grid is sufficiently fine to capture the variation of the diffusivity over time, since the
likelihood is calculated under the assumption that the diffusivity varies linearly between grid points.

Estimation of diffusivity at older times is only possible if the timetree includes extinct tips or tips
sampled at older times (e.g., as is often the case in viral phylogenies). If tips are only sampled once
at present-day, i.e. the timetree is ultrametric, reliable diffusivity estimates can only be achieved
near present times. If the tree is ultrametric, you should consider using fit_sbm_const instead.
For short expected transition distances this function uses the approximation formula by Ghosh et al.
(2012) to calculate the probability density of geographical transitions along edges. For longer ex-
pected transition distances the function uses a truncated approximation of the series representation
of SBM transition densities (Perrin 1928).

If edge.length is missing from one of the input trees, each edge in the tree is assumed to have
length 1. The tree may include multifurcations as well as monofurcations, however multifurcations
are internally expanded into bifurcations by adding dummy nodes.

Value
A list with the following elements:

success Logical, indicating whether the fitting was successful. If FALSE, then an addi-
tional return variable, error, will contain a description of the error; in that case
all other return variables may be undefined.

objective_value
The maximized fitting objective. Currently, only maximum-likelihood estima-
tion is implemented, and hence this will always be the maximized log-likelihood.

objective_name The name of the objective that was maximized during fitting. Currently, only
maximum-likelihood estimation is implemented, and hence this will always be
“loglikelihood”.

param_fitted Numeric vector of size NP (number of model parameters), listing all fitted or
fixed model parameters in their standard order (see details above).

loglikelihood The log-likelihood of the fitted model for the given data.
NFP Integer, number of fitted (i.e., non-fixed) model parameters.
Ncontrasts Integer, number of independent contrasts used for fitting.

phylodistances Numeric vector of length Ncontrasts, listing phylogenetic (patristic) distances
of the independent contrasts.

geodistances Numeric vector of length Ncontrasts, listing geographic (great circle) distances
of the independent contrasts.

child_times1 Numeric vector of length Ncontrasts, listing the times (distance from root) of
the first tip in each independent contrast.

child_times2 Numeric vector of length Ncontrasts, listing the times (distance from root) of
the second tip in each independent contrast.

MRCA_times Numeric vector of length Ncontrasts, listing the times (distance from root) of
the MRCA of the two tips in each independent contrast.
AIC The Akaike Information Criterion for the fitted model, defined as 2k — 21log(L),

where k is the number of fitted parameters and L is the maximized likelihood.

184

fit_sbm_parametric

BIC The Bayesian information criterion for the fitted model, defined as log(n)k —
2log(L), where k is the number of fitted parameters, n is the number of data
points (number of independent contrasts), and L is the maximized likelihood.

converged Logical, specifying whether the maximum likelihood was reached after conver-
gence of the optimization algorithm. Note that in some cases the maximum
likelihood may have been achieved by an optimization path that did not yet con-
verge (in which case it’s advisable to increase iter.max and/or eval.max).

Niterations Integer, specifying the number of iterations performed during the optimization
path that yielded the maximum likelihood.

Nevaluations Integer, specifying the number of likelihood evaluations performed during the
optimization path that yielded the maximum likelihood.
guess_loglikelihood
The loglikelihood of the data for the initial parameter guess (param_guess).
focal_loglikelihoods
A numeric vector of the same size as nrow(focal_param_values), listing log-
likelihoods for each of the focal parameter conbinations listed in focal_loglikelihoods.
trial_start_objectives
Numeric vector of size Ntrials, listing the initial objective values (e.g., log-
likelihoods) for each fitting trial, i.e. at the start parameter values.
trial_objective_values
Numeric vector of size Ntrials, listing the final maximized objective values
(e.g., loglikelihoods) for each fitting trial.
trial_Nstart_attempts
Integer vector of size Ntrials, listing the number of start attempts for each
fitting trial, until a starting point with valid likelihood was found.
trial_Niterations
Integer vector of size Ntrials, listing the number of iterations needed for each
fitting trial.
trial_Nevaluations
Integer vector of size Ntrials, listing the number of likelihood evaluations
needed for each fitting trial.
standard_errors

Numeric vector of size NP, estimated standard error of the parameters, based on
parametric bootstrapping. Only returned if Nbootstraps>0.

medians Numeric vector of size NP, median the estimated parameters across parametric
bootstraps. Only returned if Nbootstraps>0.

CI50lower Numeric vector of size NP, lower bound of the 50% confidence interval (25-
75% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

CI5Qupper Numeric vector of size NP, upper bound of the 50% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

CI951lower Numeric vector of size NP, lower bound of the 95% confidence interval (2.5-
97.5% percentile) for the parameters, based on parametric bootstrapping. Only
returned if Nbootstraps>0.

fit_sbm_parametric 185

CI95upper Numeric vector of size NP, upper bound of the 95% confidence interval for the
parameters, based on parametric bootstrapping. Only returned if Nbootstraps>0.

consistency Numeric between 0 and 1, estimated consistency of the data with the fitted
model. See the documentation of fit_sbm_const for an explanation.

QQplot Numeric matrix of size Ncontrasts x 2, listing the computed QQ-plot. The first
column lists quantiles of geodistances in the original dataset, the 2nd column
lists quantiles of hypothetical geodistances simulated based on the fitted model.

SBM_PD_functor SBM probability density functor object. Used internally for efficiency and for
debugging purposes.

Author(s)

Stilianos Louca

References

F. Perrin (1928). Etude mathematique du mouvement Brownien de rotation. 45:1-51.

D. R. Brillinger (2012). A particle migrating randomly on a sphere. in Selected Works of David
Brillinger. Springer.

A. Ghosh, J. Samuel, S. Sinha (2012). A Gaussian for diffusion on the sphere. Europhysics Letters.
98:30003.

S. Louca (2021). Phylogeographic estimation and simulation of global diffusive dispersal. System-
atic Biology. 70:340-359.

See Also

simulate_sbm, fit_sbm_const, fit_sbm_linear

Examples

Not run:

generate a random tree, keeping extinct lineages

tree_params = list(birth_rate_factor=1, death_rate_factor=0.95)

tree = generate_random_tree(tree_params,max_tips=1000,coalescent=FALSE)$tree

calculate max distance of any tip from the root
max_time = get_tree_span(tree)$max_distance

simulate time-dependent SBM on the tree

we assume that diffusivity varies linearly with time

in this example we measure distances in Earth radii
radius = 1

diffusivity_functor = function(times, params){
return(params[1] + (times/max_time)*(params[2]-params[1]))

3

true_params = c(1, 2)

time_grid = seq(@,max_time,length.out=2)
simulation = simulate_sbm(tree,

radius = radius,

186 fit_tree_model

diffusivity = diffusivity_functor(time_grid,true_params),
time_grid time_grid)

fit time-independent SBM to get a rough estimate
fit_const = fit_sbm_const(tree,simulation$tip_latitudes,simulation$tip_longitudes,radius=radius)

fit time-dependent SBM, i.e. fit the 2 parameters of the linear form
fit = fit_sbm_parametric(tree,

simulation$tip_latitudes,

simulation$tip_longitudes,

radius = radius,

param_values = c(NA,NA),

param_guess = c(fit_const$diffusivity,fit_const$diffusivity),

diffusivity = diffusivity_functor,

time_grid = time_grid,

Ntrials = 10)

compare fitted & true params
print(true_params)

print(fit$param_fitted)

End(Not run)

fit_tree_model Fit a cladogenic model to an existing tree.

Description

Fit the parameters of a tree generation model to an existing phylogenetic tree; branch lengths
are assumed to be in time units. The fitted model is a stochastic cladogenic process in which
speciations (births) and extinctions (deaths) are Poisson processes, as simulated by the function
generate_random_tree. The birth and death rates of tips can each be constant or power-law func-
tions of the number of extant tips. For example,

B=I+F- NP,

where B is the birth rate, I is the intercept, F' is the power-law factor, N is the current number of
extant tips and E is the power-law exponent. Each of the parameters I, F, E can be fixed or fitted.

Fitting can be performed via maximum-likelihood estimation, based on the waiting times between
subsequent speciation and/or extinction events represented in the tree. Alternatively, fitting can
be performed using least-squares estimation, based on the number of lineages represented in the
tree over time ("diversity-vs-time" curve, a.k.a. "lineages-through-time"" curve). Note that the
birth and death rates are NOT per-capita rates, they are absolute rates of species appearance and
disappearance per time.

Usage

fit_tree_model(tree,
parameters = list(),

fit_tree_model

Arguments

tree

parameters

187
first_guess = list(),
min_age =0,
max_age =0,
age_centile = NULL,
Ntrials =1,
Nthreads =1,
coalescent = FALSE,
discovery_fraction = NULL,
fit_control = list(),
min_R2 = -Inf,
min_wR2 = -Inf,
grid_size = 100,
max_model_runtime = NULL,
objective = 'LL")

A phylogenetic tree, in which branch lengths are assumed to be in time units.
The tree may be a coalescent tree (i.e. only include extant clades) or a tree
including extinct clades; the tree type influences what type of models can be
fitted with each method.

A named list specifying fixed and/or unknown birth-death model parameters,
with one or more of the following elements:

birth_rate_intercept: Non-negative number. The intercept of the Pois-
sonian rate at which new species (tips) are added. In units 1/time.
birth_rate_factor: Non-negative number. The power-law factor of the
Poissonian rate at which new species (tips) are added. In units 1/time.
birth_rate_exponent: Numeric. The power-law exponent of the Poisso-
nian rate at which new species (tips) are added. Unitless.

death_rate_intercept: Non-negative number. The intercept of the Pois-
sonian rate at which extant species (tips) go extinct. In units 1/time.
death_rate_factor: Non-negative number. The power-law factor of the
Poissonian rate at which extant species (tips) go extinct. In units 1/time.
death_rate_exponent: Numeric. The power-law exponent of the Poisso-
nian rate at which extant species (tips) go extinct. Unitless.

resolution: Numeric. Resolution at which the tree was collapsed (i.e.
every node of age smaller than this resolution replaced by a single tip). In
units time. A resolution of 0 means the tree was not collapsed.

rarefaction: Numeric. Species sampling fraction, i.e. fraction of extant
species represented (as tips) in the tree. A rarefaction of 1, for example,
implies that the tree is complete, i.e. includes all extant species. Rarefaction
is assumed to have occurred after collapsing.

extant_diversity: The current total extant diversity, regardless of the rar-
efaction and resolution of the tree at hand. For example, if resolution==0
and rarefaction==0.5 and the tree has 1000 tips, then extant_diversity
should be 2000. If resolution is fixed at 0 and rarefaction is also fixed,
this can be left NULL and will be inferred automatically by the function.

188 fit_tree_model

Each of the above elements can also be NULL, in which case the parameter is
fitted. Elements can also be vectors of size 2 (specifying constraint intervals), in
which case the parameters are fitted and constrained within the intervals speci-
fied. For example, to fit death_rate_factor while constraining it to the inter-
val [1,2], set its value to c (1, 2).

first_guess A named list (with entries named as in parameters) specifying starting values
for any of the fitted model parameters. Note that if Ntrials>1, then start values
may be randomly modified in all but the first trial. For any parameters missing
from first_guess, initial values are always randomly chosen. first_guess
can also be NULL.

min_age Numeric. Minimum distance from the tree crown, for a node/tip to be considered
in the fitting. If <=0 or NULL, this constraint is ignored. Use this option to omit
most recent nodes.

max_age Numeric. Maximum distance from the tree crown, for a node/tip to be consid-
ered in the fitting. If <=0 or NULL, this constraint is ignored. Use this option to
omit old nodes, e.g. with highly uncertain placements.

age_centile Numeric within O and 1. Fraction of youngest nodes/tips to consider for the
fitting. This can be used as an alternative to max_age. E.g. if set to 0.6, then the
60% youngest nodes/tips are considered. Either age_centile or max_age must
be non-NULL, but not both.

Ntrials Integer. Number of fitting attempts to perform, each time using randomly varied
start values for fitted parameters. The returned fitted parameter values will be
taken from the trial with greatest achieved fit objective. A larger number of trials
will decrease the chance of hitting a local non-global optimum during fitting.

Nthreads Number of threads to use for parallel execution of multiple fitting trials. On
Windows, this option has no effect because Windows does not support forks.
coalescent Logical, specifying whether the input tree is a coalescent tree (and thus the coa-

lescent version of the model should be fitted). Only available if objective=="R2".

discovery_fraction

Function handle, mapping age to the fraction of discovered lineages in a tree.

That is, discovery_fraction(tau) is the probability that a lineage at age tau,

that has an extant descendant today, will be represented (discovered) in the co-
alescent tree. In particular, discovery_fraction(@) equals the fraction of ex-

tant lineages represented in the tree. If this is provided, then parameters$rarefaction
is fixed to 1, and discovery_fraction is applied after simulation. Only rele-

vant if coalescent==TRUE. Experimental, so leave this NULL if you don’t know

what it means.

fit_control Named list containing options for the stats::nlminb optimization routine,
such as eval .max (max number of evaluations), iter.max (max number of it-
erations) and rel. tol (relative tolerance for convergence).

min_R2 Minimum coefficient of determination of the diversity curve (clade counts vs
time) of the model when compared to the input tree, for a fitted model to be
accepted. For example, if set to 0.5 then only fit trials achieving an R2 of at
least 0.5 will be considered. Set this to -Inf to not filter fitted models based on
the R2.

fit_tree_model

min_wR2

grid_size

189

Similar to min_R2, but applying to the weighted R2, where squared-error weights
are proportional to the inverse squared diversities.

Integer. Number of equidistant time points to consider when calculating the R2
of a model’s diversity-vs-time curve.

max_model_runtime

objective

Value

Numeric. Maximum runtime (in seconds) allowed for each model evaluation
during fitting. Use this to escape from badly parameterized models during fitting
(this will likely cause the affected fitting trial to fail). If NULL or <=0, this option
is ignored.

Character. Objective function to optimize during fitting. Can be either "LL"
(log-likelihood of waiting times between speciation events and between ex-
tinction events), "R2" (coefficient of determination of diversity-vs-time curve),
"wR2" (weighted R2, where weights of squared errors are proportional to the
inverse diversities observed in the tree) or "IR2" (logarithmic R2, i.e. R2 cal-
culated for the logarithm of the diversity-vs-time curve). Note that "wR2" will
weight errors at lower diversities more strongly than "R2".

A named list with the following elements:

success

objective_value

parameters

Logical, indicating whether the fitting was successful.

Numeric. The achieved maximum value of the objective function (log-likelihood,
R2 or weighted R2).

A named list listing all model parameters (fixed and fitted).

start_parameters

R2

wR2

1R2

Nspeciations

Nextinctions

grid_times

A named list listing the start values of all model parameters. In the case of
multiple fitting trials, this will list the initial (non-randomized) guess.

Numeric. The achieved coefficient of determination of the fitted model, based
on the diversity-vs-time curve.

Numeric. The achieved weighted coefficient of determination of the fitted model,
based on the diversity-vs-time curve. Weights of squared errors are proportional
to the inverse squared diversities observed in the tree.

Numeric. The achieved coefficient of determination of the fitted model on a log
axis, i.e. based on the logarithm of the diversity-vs-time curve.

Integer. Number of speciation events (=nodes) considered during fitting. This
only includes speciations visible in the tree.

Integer. Number of extinction events (=non-crown tips) considered during fit-
ting. This only includes extinctions visible in the tree, i.e. tips whose distance
from the root is lower than the maximum.

Numeric vector. Time points considered for the diversity-vs-time curve. Times
will be constrained between min_age and max_age if these were specified.

tree_diversities

Number of lineages represented in the tree through time, calculated for each of
grid_times.

190 fit_tree_model

model_diversities
Number of lineages through time as predicted by the model (in the deterministic
limit), calculated for each of grid_times. If coalescent==TRUE then these are
the number of lineages expected to be represented in the coalescent tree (this
may be lower than the actual number of extant clades at any given time point, if
the model includes extinctions).

fitted_parameter_names
Character vector, listing the names of fitted (i.e. non-fixed) parameters.

locally_fitted_parameters
Named list of numeric vectors, listing the fitted values for each parameter and
for each fitting trial. For example, if birth_rate_factor was fitted, then
locally_fitted_parameters$birth_rate_factor will be a numeric vector
of size Ntrials (or less, if some trials failed or omitted), listing the locally-
optimized values of the parameter for each considered fitting trial. Mainly useful
for diagnostic purposes.

objective Character. The name of the objective function used for fitting ("LL", "R2" or
"wR2").

Ntips The number of tips in the input tree.

Nnodes The number of nodes in the input tree.

min_age The minimum age of nodes/tips considered during fitting.

max_age The maximum age of nodes/tips considered during fitting.

age_centile Numeric or NULL, equal to the age_centile specified as input to the function.
Author(s)

Stilianos Louca

See Also

generate_random_tree, simulate_diversification_model reconstruct_past_diversification

Examples

Generate a tree using a simple speciation model

parameters = list(birth_rate_intercept =1,
birth_rate_factor
birth_rate_exponent =
death_rate_intercept
death_rate_factor
death_rate_exponent s
resolution =0,
rarefaction =1)

tree = generate_random_tree(parameters, max_tips=100)

’

’

’

’

1
(SIS IS BN NG

Fit model to the tree

fitting_parameters = parameters

fitting_parameters$birth_rate_intercept = NULL # fit only this parameter
fitting = fit_tree_model(tree,fitting_parameters)

gamma_statistic 191

compare fitted to true value

T = parameters$birth_rate_intercept

F = fitting$parameters$birth_rate_intercept
cat(sprintf("birth_rate_intercept: true=%g, fitted=%g\n",T,F))

gamma_statistic Calculate the gamma-statistic of a tree.

Description

Given a rooted ultrametric phylogenetic tree, calculate the gamma-statistic (Pybus and Harevy,
2000).

Usage

gamma_statistic(tree)

Arguments
tree A rooted tree of class "phylo". The tree is assumed to be ultrametric; any devia-
tions from ultrametricity are ignored.
Details

The tree may include multifurcations and monofurcations. If edge lengths are missing (i.e. edge. length=NULL),
then each edge is assumed to have length 1.

This function is similar to the function gammaStat in the R package ape v5.3.

Value

Numeric, the gamma-statistic of the tree.

Author(s)

Stilianos Louca

References

O. G. Pybus and P. H. Harvey (2000). Testing macro-evolutionary models using incomplete molec-
ular phylogenies. Proceedings of the Royal Society of London. Series B: Biological Sciences.
267:2267-2272.

192 generate_gene_tree_msc

Examples

generate a random tree
Ntips = 100
tree = generate_random_tree(list(birth_rate_intercept=1),Ntips)$tree

calculate & print gamma statistic
gammastat = gamma_statistic(tree)
cat(sprintf("Tree has gamma-statistic %g\n",gammastat))

generate_gene_tree_msc
Generate a gene tree based on the multi-species coalescent model.

Description

Generate a random gene tree within a given species timetree, based on the multi-species coalescent
(MSC) model. In this implementation of the MSC, every branch of the species tree has a specific ef-
fective population size (Ne) and a specific generation time (T), and gene alleles coalesce backward
in time according to the Wright-Fisher model. This model does not account for gene duplica-
tion/loss, nor for hybridization or horizontal gene transfer. It is only meant to model "incomplete
lineage sorting", otherwise known as "deep coalescence", which is one of the many mechanisms
that can cause discordance between gene trees and species trees.

Usage

generate_gene_tree_msc(species_tree,
allele_counts =1
population_sizes =1,
generation_times =1
mutation_rates =1

gene_edge_unit = "time",
Nsites =1,
bottleneck_at_speciation = FALSE,
force_coalescence_at_root = FALSE,
ploidy =1,

gene_tip_labels

1
=
[
=
-

~

Arguments

species_tree Rooted timetree of class "phylo". The tree can include multifurcations and
monofurcations. The tree need not necessarily be ultrametric, i.e. it may in-
clude extinct species. Edge lengths are assumed to be in time units.

allele_counts Integer vector, listing the number of alleles sampled per species. Either NULL (1
allele per species), or a single integer (same number of alleles per species), or
a vector of length Ntips listing the numbers of alleles sampled per species. In
the latter case, the total number of tips in the returned gene tree will be equal to
the sum of entries in allele_counts. Some entries in allele_counts may be
zero (no alleles sampled from those species).

generate_gene_tree_msc 193

population_sizes
Integer vector, listing the effective population size on the edge leading into
each tip/node in the species tree. Either NULL (all population sizes are 1), or
a single integer (same population sizes for all edges), or a vector of length
Ntips+Nnodes, listing population sizes for each clade’s incoming edge (includ-
ing the root). The population size for the root’s incoming edge corresponds to
the population size at the tree’s stem (only relevant if force_coalescence_at_root=FALSE).

generation_times
Numeric vector, listing the generation time along the edge leading into each
clade. Either NULL (all generation times are 1), or a single integer (same gener-
ation time for all edges) or a vector of length Ntips+Nnodes, listing generation
times for each clade’s incoming edge (including the root). The generation time
for the root’s incoming edge corresponds to the generation time at the tree’s stem
(only relevant if force_coalescence_at_root=FALSE).

mutation_rates Numeric vector, listing the mutation rate (per site and per generation) along the
edge leading into each clade. Either NULL (all mutation rates are 1), or a single
integer (same mutation rate for all edges) or a vector of length Ntips+Nnodes,
listing mutation rates for each clade’s incoming edge (including the root). The
mutation rate for the root’s incoming edge corresponds to the mutation rate at the
tree’s stem (only relevant if force_coalescence_at_root=FALSE). The value
of mutation_ratesis only relevantif gene_edge_unit is "mutations_expected"
or "mutations_random". Mutation rates represent probabilities, and so they must
be between 0 and 1.

non non

gene_edge_unit Character, either "time", "generations", "mutations_expected" (expected mean
number of mutations per site), or "mutations_random" (randomly generated
mean number of mutations per site), specifying how edge lengths in the gene
tree should be measured. By default, gene-tree edges are measured in time, as
is the case for the input species tree.

Nsites Integer, specifying the number of sites (nucleotides) in the gene. Only rele-
vant when generating edge lengths in terms of random mutation counts, i.e. if
gene_edge_unit=="mutations_random".

bottleneck_at_speciation
Logical. If TRUE, then all but one children at each node are assumed to have
emerged from a single mutant individual, and thus all gene lineages within these
bottlenecked species lineages must coalesce at a younger or equal age as the spe-
ciation event. Only the first child at each node is excluded from this assumption,
corresponding to the "resident population" during the speciation event. This
option deviates from the classical MSC model, and is experimental.

force_coalescence_at_root
Logical. If TRUE, all remaining orphan gene lineages that haven’t coalesced
before reaching the species-tree’s root, will be combined at the root (via multiple
adjacent bifurcations). If FALSE, coalescence events may extend beyond the
species-tree’s root into the stem lineage, as long as it takes until all gene lineages
have coalesced.

ploidy Integer, specifying the assumed genetic ploidy, i.e. number of gene copies per
individual. Typically 1 for haploids, or 2 for diploids.

194 generate_gene_tree_msc

gene_tip_labels
Character vector specifying tip labels for the gene tree (i.e., for each of the
sampled alleles) in the order of the corresponding species tips. Can also be
NULL, in which case gene tips will be set to <species_tip_label>.<allele index>.

Details

This function assumes that Kingman’s coalescent assumption is met, i.e. that the effective popula-
tion size is much larger than the number of allele lineages coalescing within any given branch.

The function assumes that the species tree is a time tree, i.e. with edge lengths given in actual

time units. To simulate gene trees in coalescence time units, choose population_sizes and
generation_times accordingly (this only makes sense if the product of population_sizes x
generation_times isthe same everywhere). If species_tree is ultrametric and gene_edge_unit=="time",
then the gene tree will be ultrametric as well.

If gene_edge_unit is "mutations_random", then the number of generations elapsed along each time
segment is translated into a randomly distributed number of accumulated mutations, according to a
binomial distribution where the probability of success is equal to the mutation rate and the number
of trials is equal to the number of generations multiplied by Nsites; this number of mutations is
averaged across all sites, i.e. the edge lengths in the returned gene tree always refer to the mean
number of mutations per site. In cases where the mutation rate varies across the species tree and
a single gene edge spans multiple species edges, the gene edge length will be a sum of multiple
binomially distributed mutation counts (again, divided by the number of sites), corresponding to
the times spent in each species edge.

Value

A named list with the following elements:

success Logical, indicating whether the gene tree was successfully generated. If FALSE,
the only other value returned is error.

tree The generated gene tree, of class "phylo". This tree will be rooted and bifurcat-
ing. It is only guaranteed to be ultrametric if species_tree was ultrametric.

gene_tip2species_tip
Integer vector of length NGtips (where NGtips is the number of tips in the gene
tree), mapping gene-tree tips to species-tree tips.

gene_node2species_edge
Integer vector of length NGnodes (where NGnodes is the number of internal
nodes in the gene tree), mapping gene-tree nodes (=coalescence events) to the
species-tree edges where the coalescences took place.

gene_clade_times
Numeric vector of size NGtips+NGnodes, listing the time (total temporal dis-
tance from species root) of each tip and node in the gene tree. The units will
be the same as the time units assumed for the species tree. Note that this may
include negative values, if some gene lineages coalesce at a greater age than the
root.

error Character, containing an explanation of the error that occurred. Only included
if success==FALSE.

generate_gene_tree_msc_hgt_dl 195

Author(s)

Stilianos Louca

References

J. H. Degnan, N. A. Rosenberg (2009). Gene tree discordance, phylogenetic inference and the
multispecies coalescent. Trends in Ecology & Evolution. 24:332-340.

B. Rannala, Z. Yang (2003). Bayes estimation of species divergence times and ancestral population
sizes using DNA sequences from multiple loci. Genetics. 164:1645-1656.

See Also

generate_random_tree, generate_gene_tree_msc_hgt_dl

Examples

Simulate a simple species tree

parameters = list(birth_rate_factor=1)

Nspecies =10

species_tree = generate_random_tree(parameters,max_tips=Nspecies)$tree

Simulate a haploid gene tree within the species tree

Assume the same population size and generation time everywhere

Assume the number of alleles samples per species is poisson-distributed
results = generate_gene_tree_msc(species_tree,

allele_counts = rpois(Nspecies,3),
population_sizes = 1000,
generation_times =1,

ploidy =1);

if(!results$success){
simulation failed
cat(sprintf(” ERROR: %s\n",re