require(copula)
FALSE doExtras <-
This vignette visualizes (log) likelihood functions of Archimedean copulas, some of which are numerically challenging to compute. Because of this computational challenge, we also check for equivalence of some of the several computational methods, testing for numerical near-equality using all.equal(L1, L2)
.
We start by defining the following auxiliary functions.
##' @title [m]inus Log-Likelihood for Archimedean Copulas ("fast version")
##' @param theta parameter (length 1 for our current families)
##' @param acop Archimedean copula (of class "acopula")
##' @param u data matrix n x d
##' @param n.MC if > 0 MC is applied with sample size equal to n.MC; otherwise,
##' the exact formula is used
##' @param ... potential further arguments, passed to <acop> @dacopula()
##' @return negative log-likelihood
##' @author Martin Maechler (Marius originally)
function(theta, acop, u, n.MC=0, ...) { # -(log-likelihood)
mLogL <--sum(acop@dacopula(u, theta, n.MC=n.MC, log=TRUE, ...))
}
##' @title Plotting the Negative Log-Likelihood for Archimedean Copulas
##' @param cop an outer_nacopula (currently with no children)
##' @param u n x d data matrix
##' @param xlim x-range for curve() plotting
##' @param main title for curve()
##' @param XtrArgs a list of further arguments for mLogL()
##' @param ... further arguments for curve()
##' @return invisible()
##' @author Martin Maechler
function(cop, u, xlim, main, XtrArgs=list(), ...) {
curveLogL <- deparse(substitute(u))
unam <-stopifnot(is(cop, "outer_nacopula"), is.list(XtrArgs),
ncol(u)) >= 2, d == dim(cop),
(d <-length(cop@childCops) == 0# not yet *nested* A.copulas
) cop@copula
acop <- acop@theta # the true theta
th. <- setTheta(acop, NA) # so it's clear, the true theta is not used below
acop <-if(missing(main)) {
cop@copula@tau(th.)
tau. <- substitute("Neg. Log Lik."~ -italic(l)(theta, UU) ~ TXT ~~
main <- FUN(theta['*'] == Th) %=>% tau['*'] == Tau,
list(UU = unam,
TXT= sprintf("; n=%d, d=%d; A.cop",
nrow(u), d),
FUN = acop@name,
Th = format(th.,digits=3),
Tau = format(tau., digits=3)))
} curve(do.call(Vectorize(mLogL, "theta"), c(list(x, acop, u), XtrArgs)),
r <-xlim=xlim, main=main,
xlab = expression(theta),
ylab = substitute(- log(L(theta, u, ~~ COP)), list(COP=acop@name)),
...)if(is.finite(th.))
axis(1, at = th., labels=expression(theta["*"]),
lwd=2, col="dark gray", tck = -1/30)
else warning("non-finite cop@copula@theta = ", th.)
axis(1, at = initOpt(acop@name),
labels = FALSE, lwd = 2, col = 2, tck = 1/20)
invisible(r)
}
Ensure that we are told about it, if the numerical algorithms choose methods using Rmpfr
(R package interfacing to multi precision arithmetic MPFR):
options("copula:verboseUsingRmpfr"=TRUE) # see when "Rmpfr" methods are chosen automatically op <-
200
n <- 100
d <- 0.2
tau <- copJoe@iTau(tau)
theta <- onacopulaL("Joe", list(theta,1:d))
cop <- theta
## [1] 1.443824
Here, the three different methods work “the same”:
set.seed(1)
rnacopula(n,cop)
U1 <-enacopula(U1, cop, "mle") # 1.432885 -- fine
## [1] 1.432898
1 + (1:4)/4
th4 <- c(-3558.5, -3734.4, -3299.5, -2505.)
mL.tr <- sapply(th4, function(th) mLogL(th, cop@copula, U1, method="log.poly")) # default
mLt1 <- sapply(th4, function(th) mLogL(th, cop@copula, U1, method="log1p"))
mLt2 <- sapply(th4, function(th) mLogL(th, cop@copula, U1, method="poly"))
mLt3 <-stopifnot(all.equal(mLt1, mL.tr, tolerance=5e-5),
all.equal(mLt2, mL.tr, tolerance=5e-5),
all.equal(mLt3, mL.tr, tolerance=5e-5))
system.time(r1l <- curveLogL(cop, U1, c(1, 2.5), X=list(method="log.poly")))
## user system elapsed
## 0.415 0.002 0.374
mtext("all three polyJ() methods on top of each other")
system.time({
curveLogL(cop, U1, c(1, 2.5), X=list(method="poly"),
r1J <-add=TRUE, col=adjustcolor("red", .4))
curveLogL(cop, U1, c(1, 2.5), X=list(method="log1p"),
r1m <-add=TRUE, col=adjustcolor("blue",.5))
})
## user system elapsed
## 0.667 0.000 0.671
rnacopula(n,cop)
U2 <-summary(dCopula(U2, cop)) # => density for the *correct* parameter looks okay
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000e+00 4.900e+01 6.430e+02 2.777e+175 1.932e+04 5.553e+177
## hmm: max = 5.5e177
if(doExtras)
system.time(r2 <- curveLogL(cop, U2, c(1, 2.5)))
stopifnot(all.equal(enacopula(U2, cop, "mle"), 1.43992755, tolerance=1e-5),
all.equal(mLogL(1.8, cop@copula, U2), -4070.1953,tolerance=1e-5)) # (was -Inf)
rnacopula(n,cop)
U3 <- enacopula(U3, cop, "mle")) # 1.4495 (th. <-
## [1] 1.449569
system.time(r3 <- curveLogL(cop, U3, c(1, 2.5)))
## user system elapsed
## 0.326 0.000 0.331
axis(1, at = th., label = quote(hat(theta)))
rnacopula(n,cop)
U4 <-enacopula(U4, cop, "mle") # 1.4519 (prev. was 2.351 : "completely wrong")
## [1] 1.451916
summary(dCopula(U4, cop)) # ok (had one Inf)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000e+00 7.500e+01 9.080e+02 1.981e+259 1.434e+04 3.961e+261
if(doExtras)
system.time(r4 <- curveLogL(cop, U4, c(1, 2.5)))
mLogL(2.2351, cop@copula, U4)
## [1] -1789.59
mLogL(1.5, cop@copula, U4)
## [1] -3882.819
mLogL(1.2, cop@copula, U4)
## [1] -3517.366
if(doExtras) # each curve takes almost 2 sec
system.time({
curveLogL(cop, U4, c(1, 1.01))
curveLogL(cop, U4, c(1, 1.0001))
curveLogL(cop, U4, c(1, 1.000001))
})## --> limit goes *VERY* steeply up to 0
## --> theta 1.164 is about the boundary:
stopifnot(identical(setTheta(cop, 1.164), onacopula(cop@copula, C(1.164, 1:100))),
all.equal(600.59577,
@copula@dacopula(U4[118,,drop=FALSE],
coptheta=1.164, log = TRUE), tolerance=1e-5)) # was "Inf"
200
n <- 150
d <- 0.3
tau <- copJoe@iTau(tau)) (theta <-
## [1] 1.772108
onacopulaL("Joe",list(theta,1:d)) cop <-
set.seed(47)
rnacopula(n,cop)
U. <-enacopula(U., cop, "mle") # 1.784578
## [1] 1.78459
system.time(r. <- curveLogL(cop, U., c(1.1, 3)))
## user system elapsed
## 0.455 0.000 0.461
## => still looks very good
180
d <- 0.4
tau <- copJoe@iTau(tau)) (theta <-
## [1] 2.219066
onacopulaL("Joe",list(theta,1:d)) cop <-
rnacopula(n,cop)
U. <-enacopula(U., cop, "mle") # 2.217582
## [1] 2.217593
if(doExtras)
system.time(r. <- curveLogL(cop, U., c(1.1, 4)))
## => still looks very good
200
n <- 50 # smaller 'd' -- so as to not need 'Rmpfr' here
d <- 0.2
tau <- copGumbel@iTau(tau)) (theta <-
## [1] 1.25
onacopulaL("Gumbel",list(theta,1:d)) cop <-
set.seed(1)
rnacopula(n,cop)
U1 <-if(doExtras) {
rnacopula(n,cop)
U2 <- rnacopula(n,cop)
U3 <-
}enacopula(U1, cop, "mle") # 1.227659 (was 1.241927)
## [1] 1.227659
##--> Plots with "many" likelihood evaluations
system.time(r1 <- curveLogL(cop, U1, c(1, 2.1)))
## user system elapsed
## 0.447 0.000 0.449
if(doExtras) system.time({
mtext("and two other generated samples")
curveLogL(cop, U2, c(1, 2.1), add=TRUE)
r2 <- curveLogL(cop, U3, c(1, 2.1), add=TRUE)
r3 <- })
150
d <- 0.6
tau <- copGumbel@iTau(tau)) (theta <-
## [1] 2.5
.5 <- onacopulaL("Gumbel",list(theta,1:d)) cG
set.seed(17)
rnacopula(n,cG.5)
U4 <- rnacopula(n,cG.5)
U5 <- rnacopula(n,cG.5)
U6 <-if(doExtras) { ## "Rmpfr" is used {2012-06-21}: -- therefore about 18 seconds!
if(interactive()) 1e-12 else 1e-8
tol <-print(system.time(
c(enacopula(U4, cG.5, "mle", tol=tol),
ee. <-enacopula(U5, cG.5, "mle", tol=tol),
enacopula(U6, cG.5, "mle", tol=tol))))
dput(ee.)# in case the following fails
## tol=1e-12 Linux nb-mm3 3.2.0-25-generic x86_64 (2012-06-23):
## c(2.47567251789004, 2.48424484287686, 2.50410767129408)
## c(2.475672518, 2.484244763, 2.504107671),
stopifnot(all.equal(ee., c(2.475672518, 2.484244763, 2.504107671),
tolerance= max(1e-7, 16*tol)))
}## --> Plots with "many" likelihood evaluations
seq(1, 3, by= 1/4)
th. <-if(doExtras) # "default2012" (polyG default) partly uses Rmpfr here:
system.time(r4 <- sapply(th., mLogL, acop=cG.5@copula, u=U4))## 25.6 sec
## whereas this (polyG method) is very fast {and still ok}:
system.time(r4.p <- sapply(th., mLogL, acop=cG.5@copula, u=U4, method="pois"))
## user system elapsed
## 0.107 0.000 0.108
c(0, -18375.33, -21948.033, -24294.995, -25775.502,
r4. <--26562.609, -26772.767, -26490.809, -25781.224)
stopifnot(!doExtras ||
all.equal(r4, r4., tolerance = 8e-8),
all.equal(r4.p, r4., tolerance = 8e-8))
## --> use fast method here as well:
system.time(r5.p <- sapply(th., mLogL, acop=cG.5@copula, u=U5, method="pois"))
## user system elapsed
## 0.106 0.000 0.107
system.time(r6.p <- sapply(th., mLogL, acop=cG.5@copula, u=U6, method="pois"))
## user system elapsed
## 0.107 0.000 0.107
if(doExtras) {
if(FALSE) # for speed analysis, etc
debug(copula:::polyG)
mLogL(1.65, cG.5@copula, U4) # -23472.96
} dCopula(U4, setTheta(cG.5, 1.64), log = TRUE,
dd <-method = if(doExtras)"default" else "pois")
summary(dd)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 41.59 53.30 81.09 116.91 137.54 707.13
stopifnot(!is.na(dd), # no NaN's anymore
40 < range(dd), range(dd) < 710)
64
n <- 5
d <- 0.8
tau <- copFrank@iTau(tau)) (theta <-
## [1] 18.19154
onacopulaL("Frank", list(theta,1:d)) cop <-
set.seed(11) # these seeds give no problems: 101, 41, 21
rnacopula(n,cop)
U. <-@copula <- setTheta(cop@copula, NA) # forget the true theta
copsystem.time(f.ML <- emle(U., cop)); f.ML # --> fine: theta = 18.033, Log-lik = 314.01
## user system elapsed
## 0.014 0.000 0.015
##
## Call:
## bbmle::mle2(minuslogl = nLL, start = start, optimizer = "optimize",
## lower = interval[1], upper = interval[2])
##
## Coefficients:
## theta
## 18.0333
##
## Log-likelihood: 314.01
if(doExtras)
system.time(f.mlMC <- emle(U., cop, n.MC = 1e4)) # with MC
stopifnot(all.equal(unname(coef(f.ML)), 18.03331, tolerance= 1e-6),
all.equal(f.ML@min, -314.0143, tolerance=1e-6),
!doExtras || ## Simulate MLE (= SMLE) is "extra" random, hmm...
all.equal(unname(coef(f.mlMC)), 17.8, tolerance= 0.01)
## 64-bit ubuntu: 17.817523
## ? 64-bit Mac: 17.741
)
@copula <- setTheta(cop@copula, theta)
cop curveLogL(cop, U., c(1, 200)) # => now looks fine r. <-
tail(as.data.frame(r.), 15)
## x y
## 87 172.14 2105.690
## 88 174.13 2143.642
## 89 176.12 2181.637
## 90 178.11 2219.675
## 91 180.10 2257.754
## 92 182.09 2295.874
## 93 184.08 2334.034
## 94 186.07 2372.232
## 95 188.06 2410.468
## 96 190.05 2448.742
## 97 192.04 2487.051
## 98 194.03 2525.396
## 99 196.02 2563.776
## 100 198.01 2602.189
## 101 200.00 2640.636
stopifnot( is.finite( r.$y ),
## and is convex (everywhere):
diff(r.$y, d=2) > 0)
options(op) # revert to previous state
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Fedora 34 (Thirty Four)
##
## Matrix products: default
## BLAS: /usr/local64.sfs/app/R/R-4.2.0-inst/lib/libRblas.so
## LAPACK: /usr/local64.sfs/app/R/R-4.2.0-inst/lib/libRlapack.so
##
## attached base packages:
## [1] parallel grid stats4 tools stats graphics grDevices
## [8] utils datasets methods base
##
## other attached packages:
## [1] rugarch_1.4-8 gsl_2.1-7.1 mev_1.14 lattice_0.20-45
## [5] bbmle_1.0.25 copula_1.1-0
##
## loaded via a namespace (and not attached):
## [1] zoo_1.8-10 xfun_0.31
## [3] bslib_0.3.1 partitions_1.10-4
## [5] ks_1.13.5 pcaPP_2.0-1
## [7] SkewHyperbolic_0.4-0 htmltools_0.5.2
## [9] gmp_0.6-5 yaml_2.3.5
## [11] pracma_2.3.8 rlang_1.0.2
## [13] jquerylib_0.1.4 stringr_1.4.0
## [15] pspline_1.0-19 bdsmatrix_1.3-6
## [17] mvtnorm_1.1-3 evaluate_0.15
## [19] knitr_1.39 fastmap_1.1.0
## [21] ADGofTest_0.3 evd_2.3-6
## [23] highr_0.9 xts_0.12.1
## [25] Rcpp_1.0.8.3 polynom_1.4-1
## [27] KernSmooth_2.23-20 DistributionUtils_0.6-0
## [29] jsonlite_1.8.0 truncnorm_1.0-8
## [31] alabama_2022.4-1 spd_2.0-1
## [33] digest_0.6.29 stringi_1.7.6
## [35] mathjaxr_1.6-0 numDeriv_2016.8-1.1
## [37] Runuran_0.36 stabledist_0.7-1
## [39] cli_3.3.0 magrittr_2.0.3
## [41] sass_0.4.1 nleqslv_3.3.2
## [43] Rsolnp_1.16 GeneralizedHyperbolic_0.8-4
## [45] MASS_7.3-57 Matrix_1.4-1
## [47] rmarkdown_2.14 R6_2.5.1
## [49] mclust_5.4.10 compiler_4.2.0