This is a modification of the original crypto
package by
jesse vent. It is
entirely set up to use means from the tidyverse
and
provides tibble
s with all data available via the web-api of
coinmarketcap.com. It
does not require an API key but in turn only provides information that
is also available through the website of coinmarketcap.com.
It allows the user to retrieve
crypto_list()
a list of all coins that are listed as
either being active, delisted or untracked
according to the CMC
API documentationcrypto_info()
a list of all information available for
all available coins according to the CMC
API documentationcrypto_history()
the most powerful
function of this package that allows to download the entire available
history for all coins covered by CMC according to the CMC
API documentationfiat_list()
a mapping of all fiat currencies (plus
precious metals) available via the CMC
WEB APIexchange_list()
a list of all exchanges available as
either being active, delisted or untracked
according to the CMC
API documentationexchange_info()
a list of all information available for
all given exchanges according to the CMC
API documentationSince version 1.4.4 a new function crypto_listings()
was
introduced that retrieves new/latest/historical listings and listing
information at CMC. Additionally some aspects of the other functions
have been reworked. We noticed that finalWait = TRUE
does
not seem to be necessary at the moment, as well as sleep
can be set to ‘0’ seconds. If you experience strange behavior this might
be due to the the api sending back strange (old) results. In this case
let sleep = 60
(the default) and
finalWait = TRUE
(the default).
Since version 1.4.0 the package has been reworked to retrieve as many
assets as possible with one api call, as there is a new “feature”
introduced by CMC to send back the initially requested data for each api
call within 60 seconds. So one needs to wait 60s before calling the api
again. Additionally, since version v1.4.3 the package allows for a data
interval
larger than daily (e.g. ‘2d’ or ‘7d’/‘weekly’)
You can install crypto2
from CRAN with
install.packages("crypto2")
or directly from github with:
# install.packages("devtools")
::install_github("sstoeckl/crypto2") devtools
The package provides API free and efficient access to all information
from https://coinmarketcap.com that is also available through
their website. It uses a variety of modification and web-scraping tools
from the tidyverse
(especially purrr
).
As this provides access not only to active coins but also to those that have now been delisted and also those that are categorized as untracked, including historical pricing information, this package provides a valid basis for any Asset Pricing Studies based on crypto currencies that require survivorship-bias-free information. In addition to that, the package maintainer is currently working on also providing delisting returns (similarly to CRSP for stocks) to also eliminate the delisting bias.
First we load the crypto2
-package and download the set
of active coins from https://coinmarketcap.com (additionally one could load
delisted coins with only_Active=FALSE
as well as untracked
coins with add_untracked=TRUE
).
library(crypto2)
library(dplyr)
#>
#> Attache Paket: 'dplyr'
#> Die folgenden Objekte sind maskiert von 'package:stats':
#>
#> filter, lag
#> Die folgenden Objekte sind maskiert von 'package:base':
#>
#> intersect, setdiff, setequal, union
# List all active coins
<- crypto_list(only_active=TRUE) coins
Next we download information on the first three coins from that list.
# retrieve information for all (the first 3) of those coins
<- crypto_info(coins,limit=3, finalWait=FALSE)
coin_info #> > Scraping crypto info
#>
#> Scraping https://web-api.coinmarketcap.com/v1/cryptocurrency/info?id=1,2,3 with 65 characters!
#> > Processing crypto info
#>
#> > Sleep for 60s before finishing to not have next function call end up with this data!
#>
# and give the first two lines of information per coin
coin_info#> # A tibble: 3 x 19
#> id name symbol category description slug logo subreddit notice
#> * <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 1 Bitcoin BTC coin "## What Is Bitco~ bitc~ http~ bitcoin ""
#> 2 2 Litecoin LTC coin "## What Is Litec~ lite~ http~ litecoin ""
#> 3 3 Namecoin NMC coin "Namecoin (NMC) i~ name~ http~ namecoin ""
#> # ... with 10 more variables: date_added <chr>, twitter_username <chr>,
#> # is_hidden <int>, date_launched <lgl>,
#> # self_reported_circulating_supply <lgl>, self_reported_market_cap <lgl>,
#> # tags <list>, self_reported_tags <lgl>, urls <list>, platform <list>
In a next step we show the logos of the three coins as provided by https://coinmarketcap.com.
In addition we show tags provided by https://coinmarketcap.com.
%>% select(slug,tags) %>% tidyr::unnest(tags) %>% group_by(slug) %>% slice(1,n())
coin_info #> # A tibble: 6 x 2
#> # Groups: slug [3]
#> slug tags
#> <chr> <chr>
#> 1 bitcoin mineable
#> 2 bitcoin paradigm-portfolio
#> 3 litecoin mineable
#> 4 litecoin bnb-chain
#> 5 namecoin mineable
#> 6 namecoin platform
Additionally: Here are some urls pertaining to these coins as provided by https://coinmarketcap.com.
%>% select(slug,urls) %>% tidyr::unnest(urls) %>% filter(name %in% c("reddit","twitter"))
coin_info #> # A tibble: 5 x 3
#> slug name url
#> <chr> <chr> <chr>
#> 1 bitcoin reddit https://reddit.com/r/bitcoin
#> 2 litecoin twitter https://twitter.com/LitecoinProject
#> 3 litecoin reddit https://reddit.com/r/litecoin
#> 4 namecoin twitter https://twitter.com/Namecoin
#> 5 namecoin reddit https://reddit.com/r/namecoin
In a next step we download time series data for these coins.
# retrieve historical data for all (the first 3) of them
<- crypto_history(coins, limit=3, start_date="20210101", end_date="20210105", finalWait=FALSE)
coin_hist #> > Scraping historical crypto data
#>
#> > Processing historical crypto data
#>
# and give the first two times of information per coin
%>% group_by(slug) %>% slice(1:2)
coin_hist #> # A tibble: 6 x 16
#> # Groups: slug [3]
#> timestamp id slug name symbol ref_cur open high low
#> <dttm> <int> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 2021-01-01 23:59:59 1 bitcoin Bitc~ BTC USD 2.90e+4 2.96e+4 2.88e+4
#> 2 2021-01-02 23:59:59 1 bitcoin Bitc~ BTC USD 2.94e+4 3.32e+4 2.91e+4
#> 3 2021-01-01 23:59:59 2 liteco~ Lite~ LTC USD 1.25e+2 1.33e+2 1.23e+2
#> 4 2021-01-02 23:59:59 2 liteco~ Lite~ LTC USD 1.26e+2 1.40e+2 1.24e+2
#> 5 2021-01-01 23:59:59 3 nameco~ Name~ NMC USD 4.39e-1 4.63e-1 4.32e-1
#> 6 2021-01-02 23:59:59 3 nameco~ Name~ NMC USD 4.51e-1 5.10e-1 4.15e-1
#> # ... with 7 more variables: close <dbl>, volume <dbl>, market_cap <dbl>,
#> # time_open <dttm>, time_close <dttm>, time_high <dttm>, time_low <dttm>
Similarly, we could download the same data on a monthly basis.
# retrieve historical data for all (the first 3) of them
<- crypto_history(coins, limit=3, start_date="20210101", end_date="20210501", interval ="monthly", finalWait=FALSE)
coin_hist_m #> > Scraping historical crypto data
#>
#> > Processing historical crypto data
#>
# and give the first two times of information per coin
%>% group_by(slug) %>% slice(1:2)
coin_hist_m #> # A tibble: 6 x 16
#> # Groups: slug [3]
#> timestamp id slug name symbol ref_cur open high low
#> <dttm> <int> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 2021-01-01 23:59:59 1 bitcoin Bitc~ BTC USD 2.90e+4 2.96e+4 2.88e+4
#> 2 2021-02-01 23:59:59 1 bitcoin Bitc~ BTC USD 3.31e+4 3.46e+4 3.24e+4
#> 3 2021-01-01 23:59:59 2 liteco~ Lite~ LTC USD 1.25e+2 1.33e+2 1.23e+2
#> 4 2021-02-01 23:59:59 2 liteco~ Lite~ LTC USD 1.30e+2 1.36e+2 1.26e+2
#> 5 2021-01-01 23:59:59 3 nameco~ Name~ NMC USD 4.39e-1 4.63e-1 4.32e-1
#> 6 2021-02-01 23:59:59 3 nameco~ Name~ NMC USD 7.82e-1 8.05e-1 7.48e-1
#> # ... with 7 more variables: close <dbl>, volume <dbl>, market_cap <dbl>,
#> # time_open <dttm>, time_close <dttm>, time_high <dttm>, time_low <dttm>
Alternatively, we could determine the price of these coins in other
currencies. A list of such currencies is available as
fiat_list()
<- fiat_list()
fiats
fiats#> # A tibble: 93 x 4
#> id name sign symbol
#> <int> <chr> <chr> <chr>
#> 1 2781 United States Dollar $ USD
#> 2 2782 Australian Dollar $ AUD
#> 3 2783 Brazilian Real R$ BRL
#> 4 2784 Canadian Dollar $ CAD
#> 5 2785 Swiss Franc Fr CHF
#> 6 2786 Chilean Peso $ CLP
#> 7 2787 Chinese Yuan ¥ CNY
#> 8 2788 Czech Koruna Kc CZK
#> 9 2789 Danish Krone kr DKK
#> 10 2790 Euro € EUR
#> # ... with 83 more rows
So we download the time series again depicting prices in terms of
Bitcoin and Euro (note that multiple currencies can be given to
convert
, separated by “,”).
# retrieve historical data for all (the first 3) of them
<- crypto_history(coins, convert="BTC,EUR", limit=3, start_date="20210101", end_date="20210105", finalWait=FALSE)
coin_hist2 #> > Scraping historical crypto data
#>
#> > Processing historical crypto data
#>
# and give the first two times of information per coin
%>% group_by(slug,ref_cur) %>% slice(1:2)
coin_hist2 #> # A tibble: 12 x 16
#> # Groups: slug, ref_cur [6]
#> timestamp id slug name symbol ref_cur open high low
#> <dttm> <int> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 2021-01-01 23:59:43 1 bitco~ Bitc~ BTC BTC 1 e+0 1.00e+0 9.98e-1
#> 2 2021-01-02 23:59:43 1 bitco~ Bitc~ BTC BTC 1 e+0 1.00e+0 9.99e-1
#> 3 2021-01-01 23:59:06 1 bitco~ Bitc~ BTC EUR 2.37e+4 2.43e+4 2.36e+4
#> 4 2021-01-02 23:59:06 1 bitco~ Bitc~ BTC EUR 2.42e+4 2.73e+4 2.40e+4
#> 5 2021-01-01 23:59:43 2 litec~ Lite~ LTC BTC 4.30e-3 4.56e-3 4.27e-3
#> 6 2021-01-02 23:59:43 2 litec~ Lite~ LTC BTC 4.30e-3 4.24e-3 4.23e-3
#> 7 2021-01-01 23:59:06 2 litec~ Lite~ LTC EUR 1.02e+2 1.09e+2 1.01e+2
#> 8 2021-01-02 23:59:06 2 litec~ Lite~ LTC EUR 1.04e+2 1.16e+2 1.02e+2
#> 9 2021-01-01 23:59:43 3 namec~ Name~ NMC BTC 1.51e-5 1.58e-5 1.50e-5
#> 10 2021-01-02 23:59:43 3 namec~ Name~ NMC BTC 1.54e-5 1.57e-5 1.31e-5
#> 11 2021-01-01 23:59:06 3 namec~ Name~ NMC EUR 3.60e-1 3.80e-1 3.54e-1
#> 12 2021-01-02 23:59:06 3 namec~ Name~ NMC EUR 3.71e-1 4.21e-1 3.41e-1
#> # ... with 7 more variables: close <dbl>, volume <dbl>, market_cap <dbl>,
#> # time_open <dttm>, time_close <dttm>, time_high <dttm>, time_low <dttm>
As a new features in version 1.4.4. we introduced the possibility to
download historical listings and listing information (add
quote = TRUE
).
<- crypto_listings(which="latest", limit=10, quote=TRUE, finalWait=FALSE)
latest_listings
latest_listings#> # A tibble: 10 x 23
#> id name symbol slug self_reported_c~ self_reported_m~ tvl_ratio
#> <int> <chr> <chr> <chr> <lgl> <lgl> <lgl>
#> 1 1 Bitcoin BTC bitcoin NA NA NA
#> 2 52 XRP XRP xrp NA NA NA
#> 3 74 Dogecoin DOGE dogecoin NA NA NA
#> 4 825 Tether USDT tether NA NA NA
#> 5 1027 Ethereum ETH ethereum NA NA NA
#> 6 1839 BNB BNB bnb NA NA NA
#> 7 2010 Cardano ADA cardano NA NA NA
#> 8 3408 USD Coin USDC usd-coin NA NA NA
#> 9 4687 Binance USD BUSD binance~ NA NA NA
#> 10 5426 Solana SOL solana NA NA NA
#> # ... with 16 more variables: last_updated <date>, USD_price <dbl>,
#> # USD_volume_24h <dbl>, USD_volume_change_24h <dbl>,
#> # USD_percent_change_1h <dbl>, USD_percent_change_24h <dbl>,
#> # USD_percent_change_7d <dbl>, USD_percent_change_30d <dbl>,
#> # USD_percent_change_60d <dbl>, USD_percent_change_90d <dbl>,
#> # USD_market_cap <dbl>, USD_market_cap_dominance <dbl>,
#> # USD_fully_diluted_market_cap <dbl>, USD_tvl <lgl>, ...
Last and least, one can get information on exchanges. For this
download a list of active/inactive/untracked exchanges using
exchange_list()
:
<- exchange_list(only_active=TRUE)
exchanges
exchanges#> # A tibble: 498 x 6
#> id name slug is_active first_historical_~ last_historical~
#> <int> <chr> <chr> <int> <date> <date>
#> 1 16 Poloniex poloniex 1 2018-04-26 2022-07-18
#> 2 22 Bittrex bittrex 1 2018-04-26 2022-07-18
#> 3 24 Kraken kraken 1 2018-04-26 2022-07-18
#> 4 34 Bittylicious bittylicious 1 2018-04-26 2022-07-18
#> 5 36 CEX.IO cex-io 1 2018-04-26 2022-07-18
#> 6 37 Bitfinex bitfinex 1 2018-04-26 2022-07-18
#> 7 42 HitBTC hitbtc 1 2018-04-26 2022-07-18
#> 8 50 EXMO exmo 1 2018-04-26 2022-07-18
#> 9 61 Okcoin okcoin 1 2018-04-26 2022-07-18
#> 10 68 Indodax indodax 1 2018-04-26 2022-07-18
#> # ... with 488 more rows
and then download information on “binance” and “kraken”:
<- exchange_info(exchanges %>% filter(slug %in% c('binance','kraken')), finalWait=FALSE)
ex_info #> > Scraping exchange info
#>
#> Scraping exchanges from https://web-api.coinmarketcap.com/v1/exchange/info?id=24,270 with 60 characters!
#> > Processing exchange info
#>
ex_info#> # A tibble: 2 x 19
#> id name slug description notice logo type date_launched is_hidden
#> * <int> <chr> <chr> <lgl> <chr> <chr> <chr> <chr> <int>
#> 1 24 Kraken kraken NA "" http~ "" 2011-07-28T0~ 0
#> 2 270 Binance binance NA "Binanc~ http~ "" 2017-07-14T0~ 0
#> # ... with 10 more variables: is_redistributable <lgl>, maker_fee <dbl>,
#> # taker_fee <dbl>, spot_volume_usd <dbl>, spot_volume_last_updated <dttm>,
#> # weekly_visits <int>, tags <lgl>, urls <list>, countries <lgl>, fiats <list>
Then we can access information on the fee structure,
%>% select(contains("fee"))
ex_info #> # A tibble: 2 x 2
#> maker_fee taker_fee
#> <dbl> <dbl>
#> 1 0.02 0.05
#> 2 0.02 0.04
the amount of cryptocurrencies being traded (in USD)
%>% select(contains("spot"))
ex_info #> # A tibble: 2 x 2
#> spot_volume_usd spot_volume_last_updated
#> <dbl> <dttm>
#> 1 585709996. 2022-07-18 11:55:16
#> 2 16500386957. 2022-07-18 11:55:16
or the fiat currencies allowed:
%>% select(slug,fiats) %>% tidyr::unnest(fiats)
ex_info #> # A tibble: 53 x 2
#> slug value
#> <chr> <chr>
#> 1 kraken USD
#> 2 kraken EUR
#> 3 kraken GBP
#> 4 kraken CAD
#> 5 kraken JPY
#> 6 kraken CHF
#> 7 kraken AUD
#> 8 binance AED
#> 9 binance ARS
#> 10 binance AUD
#> # ... with 43 more rows
This project is licensed under the MIT License - see the <license.md> file for details</license.md>
crypto
-package
that inspired this package.