Abstract
In this vignette, we learn how to evaluate predictions on the ID level with evaluate()
.
Contact the author at r-pkgs@ludvigolsen.dk
When we have groups of observations (e.g. a participant ID), we are sometimes more interested in the overall prediction for the group than those at the observation-level.
Say we have a dataset with 10 observations per participant and a model that predicts whether a participant has an autism diagnosis or not. While the model will predict each of the 10 observations, it’s really the overall prediction for the participant that we are interested in.
evaluate()
has two approaches to performing the evaluation on the ID level: averaging and voting.
In averaging, we simply average the predicted probabilities for the participant. This is the default approach as it maintains information about how certain our model is about its class prediction. That is, if all observations have a 60% predicted probability of an autism diagnosis, that should be considered differently than 90%.
In voting, we simply count the predictions of each outcome class and assign the class with the most predictions to the participant.
If 7 out of 10 of the observations are predicted as having no autism diagnosis, that becomes the prediction for the participant.
We will use the simple participant.scores
dataset as it has 3 rows per participant and a diagnosis column that we can evaluate predictions against. Let’s add predicted probabilities and diagnoses and have a look:
library(cvms)
library(knitr) # kable()
library(dplyr)
set.seed(74)
# Prepare dataset
<- participant.scores %>% as_tibble()
data # Add probabilities and predicted classes
"probability"]] <- runif(nrow(data))
data[["predicted diagnosis"]] <- ifelse(data[["probability"]] > 0.5, 1, 0)
data[[
%>% head(10) %>% kable() data
participant | age | diagnosis | score | session | probability | predicted diagnosis |
---|---|---|---|---|---|---|
1 | 20 | 1 | 10 | 1 | 0.7046162 | 1 |
1 | 20 | 1 | 24 | 2 | 0.4800045 | 0 |
1 | 20 | 1 | 45 | 3 | 0.1960176 | 0 |
2 | 23 | 0 | 24 | 1 | 0.9369707 | 1 |
2 | 23 | 0 | 40 | 2 | 0.8698302 | 1 |
2 | 23 | 0 | 67 | 3 | 0.2140318 | 0 |
3 | 27 | 1 | 15 | 1 | 0.0240853 | 0 |
3 | 27 | 1 | 30 | 2 | 0.8547959 | 1 |
3 | 27 | 1 | 40 | 3 | 0.7027153 | 1 |
4 | 21 | 0 | 35 | 1 | 0.9579817 | 1 |
We tell evaluate()
to aggregate the predictions by the participant
column with the mean
(averaging) method.
Note: It is assumed that the target class is constant within the IDs. I.e., that the participant has the same diagnosis in all observations.
<- evaluate(
ev data = data,
target_col = "diagnosis",
prediction_cols = "probability",
id_col = "participant",
id_method = "mean",
type = "binomial"
)
ev#> # A tibble: 1 × 19
#> Balanced…¹ Accur…² F1 Sensi…³ Speci…⁴ Pos P…⁵ Neg P…⁶ AUC Lower…⁷ Upper…⁸
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.292 0.3 0.364 0.333 0.25 0.4 0.2 0.208 0 0.625
#> # … with 9 more variables: Kappa <dbl>, MCC <dbl>, `Detection Rate` <dbl>,
#> # `Detection Prevalence` <dbl>, Prevalence <dbl>, Predictions <list>,
#> # ROC <named list>, `Confusion Matrix` <list>, Process <list>, and
#> # abbreviated variable names ¹`Balanced Accuracy`, ²Accuracy, ³Sensitivity,
#> # ⁴Specificity, ⁵`Pos Pred Value`, ⁶`Neg Pred Value`, ⁷`Lower CI`,
#> # ⁸`Upper CI`
#> # ℹ Use `colnames()` to see all variable names
The Predictions
column contains the averaged predictions:
$Predictions[[1]] %>% kable() ev
Target | Prediction | SD | Predicted Class | participant | id_method |
---|---|---|---|---|---|
1 | 0.4602128 | 0.2548762 | 0 | 1 | mean |
0 | 0.6736109 | 0.3994204 | 1 | 2 | mean |
1 | 0.5271988 | 0.4422946 | 1 | 3 | mean |
0 | 0.7974576 | 0.1703448 | 1 | 4 | mean |
1 | 0.5887699 | 0.4738221 | 1 | 5 | mean |
1 | 0.3526630 | 0.2302525 | 0 | 6 | mean |
1 | 0.2333758 | 0.1913763 | 0 | 7 | mean |
1 | 0.3956015 | 0.3207379 | 0 | 8 | mean |
0 | 0.3374361 | 0.0304785 | 0 | 9 | mean |
0 | 0.5988969 | 0.0675830 | 1 | 10 | mean |
Let’s plot the confusion matrix as well:
# Note: If ev had multiple rows, we would have to
# pass ev$`Confusion Matrix`[[1]] to
# plot the first row's confusion matrix
plot_confusion_matrix(ev)
We can have a better look at the metrics:
<- select_metrics(ev)
ev_metrics %>% select(1:9) %>% kable(digits = 5) ev_metrics
Balanced Accuracy | Accuracy | F1 | Sensitivity | Specificity | Pos Pred Value | Neg Pred Value | AUC | Lower CI |
---|---|---|---|---|---|---|---|---|
0.29167 | 0.3 | 0.36364 | 0.33333 | 0.25 | 0.4 | 0.2 | 0.20833 | 0 |
%>% select(10:14) %>% kable(digits = 5) ev_metrics
Upper CI | Kappa | MCC | Detection Rate | Detection Prevalence |
---|---|---|---|---|
0.62475 | -0.4 | -0.40825 | 0.2 | 0.5 |
We can use the majority
(voting) method for the ID aggregation instead:
<- evaluate(
ev_2 data = data,
target_col = "diagnosis",
prediction_cols = "probability",
id_col = "participant",
id_method = "majority",
type = "binomial"
)
ev_2#> # A tibble: 1 × 19
#> Balanced…¹ Accur…² F1 Sensi…³ Speci…⁴ Pos P…⁵ Neg P…⁶ AUC Lower…⁷ Upper…⁸
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.292 0.3 0.364 0.333 0.25 0.4 0.2 0.292 0 0.612
#> # … with 9 more variables: Kappa <dbl>, MCC <dbl>, `Detection Rate` <dbl>,
#> # `Detection Prevalence` <dbl>, Prevalence <dbl>, Predictions <list>,
#> # ROC <named list>, `Confusion Matrix` <list>, Process <list>, and
#> # abbreviated variable names ¹`Balanced Accuracy`, ²Accuracy, ³Sensitivity,
#> # ⁴Specificity, ⁵`Pos Pred Value`, ⁶`Neg Pred Value`, ⁷`Lower CI`,
#> # ⁸`Upper CI`
#> # ℹ Use `colnames()` to see all variable names
Now the Predictions
column looks as follows:
$Predictions[[1]] %>% kable() ev_2
Target | Prediction | Predicted Class | participant | id_method |
---|---|---|---|---|
1 | 0 | 0 | 1 | majority |
0 | 1 | 1 | 2 | majority |
1 | 1 | 1 | 3 | majority |
0 | 1 | 1 | 4 | majority |
1 | 1 | 1 | 5 | majority |
1 | 0 | 0 | 6 | majority |
1 | 0 | 0 | 7 | majority |
1 | 0 | 0 | 8 | majority |
0 | 0 | 0 | 9 | majority |
0 | 1 | 1 | 10 | majority |
In this case, the Predicted Class
column is identical to that in the averaging approach. We just don’t have the probabilities to tell us, how sure the model is about that prediction.
If we have predictions from multiple models, we can group the data frame and get the results per model.
Let’s duplicate the dataset and change the predictions. We then combine the datasets and add a model
column for indicating which of the data frames the observation came from:
# Duplicate data frame
<- data
data_2 # Change the probabilities and predicted classes
"probability"]] <- runif(nrow(data))
data_2[["predicted diagnosis"]] <- ifelse(data_2[["probability"]] > 0.5, 1, 0)
data_2[[
# Combine the two data frames
<- dplyr::bind_rows(data, data_2, .id = "model")
data_multi
data_multi#> # A tibble: 60 × 8
#> model participant age diagnosis score session probability predicted diagn…¹
#> <chr> <fct> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
#> 1 1 1 20 1 10 1 0.705 1
#> 2 1 1 20 1 24 2 0.480 0
#> 3 1 1 20 1 45 3 0.196 0
#> 4 1 2 23 0 24 1 0.937 1
#> 5 1 2 23 0 40 2 0.870 1
#> 6 1 2 23 0 67 3 0.214 0
#> 7 1 3 27 1 15 1 0.0241 0
#> 8 1 3 27 1 30 2 0.855 1
#> 9 1 3 27 1 40 3 0.703 1
#> 10 1 4 21 0 35 1 0.958 1
#> # … with 50 more rows, and abbreviated variable name ¹`predicted diagnosis`
#> # ℹ Use `print(n = ...)` to see more rows
We can now group the data frame by the model
column and run the evaluation again:
<- data_multi %>%
ev_3 ::group_by(model) %>%
dplyrevaluate(
target_col = "diagnosis",
prediction_cols = "probability",
id_col = "participant",
id_method = "mean",
type = "binomial"
)
ev_3#> # A tibble: 2 × 20
#> model Balanced A…¹ Accur…² F1 Sensi…³ Speci…⁴ Pos P…⁵ Neg P…⁶ AUC Lower…⁷
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.292 0.3 0.364 0.333 0.25 0.4 0.2 0.208 0
#> 2 2 0.375 0.4 0.5 0.5 0.25 0.5 0.25 0.375 0
#> # … with 10 more variables: `Upper CI` <dbl>, Kappa <dbl>, MCC <dbl>,
#> # `Detection Rate` <dbl>, `Detection Prevalence` <dbl>, Prevalence <dbl>,
#> # Predictions <list>, ROC <named list>, `Confusion Matrix` <list>,
#> # Process <list>, and abbreviated variable names ¹`Balanced Accuracy`,
#> # ²Accuracy, ³Sensitivity, ⁴Specificity, ⁵`Pos Pred Value`,
#> # ⁶`Neg Pred Value`, ⁷`Lower CI`
#> # ℹ Use `colnames()` to see all variable names
The Predictions
for the second model looks as follows:
$Predictions[[2]] %>% kable() ev_3
model | Target | Prediction | SD | Predicted Class | participant | id_method |
---|---|---|---|---|---|---|
2 | 1 | 0.3302017 | 0.3002763 | 0 | 1 | mean |
2 | 0 | 0.6040242 | 0.2854935 | 1 | 2 | mean |
2 | 1 | 0.7342651 | 0.2653166 | 1 | 3 | mean |
2 | 0 | 0.6383918 | 0.3799305 | 1 | 4 | mean |
2 | 1 | 0.4551732 | 0.3417810 | 0 | 5 | mean |
2 | 1 | 0.6808281 | 0.3626166 | 1 | 6 | mean |
2 | 1 | 0.4536740 | 0.3784584 | 0 | 7 | mean |
2 | 1 | 0.6281501 | 0.4506029 | 1 | 8 | mean |
2 | 0 | 0.7000411 | 0.1490745 | 1 | 9 | mean |
2 | 0 | 0.4630344 | 0.4344227 | 0 | 10 | mean |
'gaussian'
evaluationThis kind of ID aggregation is also available for the 'gaussian'
evaluation (e.g. for linear regression models), although only with the averaging approach. Again, it is assumed that the target value is constant for all observations by a participant (like the age
column in our dataset).
We add a predicted age
column to our initial dataset:
"predicted age"]] <- sample(20:45, size = 30, replace = TRUE) data[[
We evaluate the predicted age, aggregated by participant:
<- evaluate(
ev_4 data = data,
target_col = "age",
prediction_cols = "predicted age",
id_col = "participant",
id_method = "mean",
type = "gaussian"
)
ev_4#> # A tibble: 1 × 8
#> RMSE MAE `NRMSE(IQR)` RRSE RAE RMSLE Predictions Process
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <list> <list>
#> 1 10.3 8.7 0.984 1.48 1.45 0.340 <tibble [10 × 5]> <prcss_n_>
The Predictions
column looks as follows:
$Predictions[[1]] %>% kable() ev_4
Target | Prediction | SD | participant | id_method |
---|---|---|---|---|
20 | 35.66667 | 8.326664 | 1 | mean |
23 | 33.33333 | 10.214369 | 2 | mean |
27 | 35.33333 | 5.686241 | 3 | mean |
21 | 30.00000 | 4.582576 | 4 | mean |
32 | 28.66667 | 5.507570 | 5 | mean |
31 | 43.33333 | 1.154700 | 6 | mean |
43 | 39.00000 | 5.196152 | 7 | mean |
21 | 40.33333 | 2.516611 | 8 | mean |
34 | 35.33333 | 5.507570 | 9 | mean |
32 | 35.33333 | 7.571878 | 10 | mean |
On average, we predict participant 1
to have the age 35.66
.
If our targets are not constant within the IDs, we might be interested in the ID-level evaluation. E.g. how well it predicted the score for each of the participants.
We add a predicted score
column to our dataset:
"predicted score"]] <- round(runif(30, 10, 81)) data[[
Now, we group the data frame by the participant
column and evaluate the predicted scores:
%>%
data ::group_by(participant) %>%
dplyrevaluate(
target_col = "score",
prediction_cols = "predicted score",
type = "gaussian"
)#> # A tibble: 10 × 9
#> participant RMSE MAE `NRMSE(IQR)` RRSE RAE RMSLE Predictions Process
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <list> <list>
#> 1 1 13.8 13.7 0.787 0.957 1.10 0.683 <tibble> <prcss_n_>
#> 2 2 32.4 26.3 1.50 1.82 1.69 0.946 <tibble> <prcss_n_>
#> 3 3 12.8 10.7 1.03 1.25 1.2 0.549 <tibble> <prcss_n_>
#> 4 4 9.15 7.67 0.425 0.513 0.486 0.154 <tibble> <prcss_n_>
#> 5 5 24.1 17.3 1.27 1.47 1.15 0.566 <tibble> <prcss_n_>
#> 6 6 34.2 33.3 4.27 5.12 5.56 0.895 <tibble> <prcss_n_>
#> 7 7 44.7 40 2.98 3.45 3.33 1.21 <tibble> <prcss_n_>
#> 8 8 9.80 8 0.700 0.854 0.818 0.306 <tibble> <prcss_n_>
#> 9 9 22.6 21.3 1.37 1.66 1.81 0.447 <tibble> <prcss_n_>
#> 10 10 29.3 28 1.13 1.38 1.62 0.556 <tibble> <prcss_n_>
Participant 4
has the lowest prediction error while participant 7
has the highest.
This approach is similar to what the most_challenging()
function does:
# Extract the ~20% observations with highest prediction error
most_challenging(
data = data,
type = "gaussian",
obs_id_col = "participant",
target_col = "score",
prediction_cols = "predicted score",
threshold = 0.20
)#> # A tibble: 2 × 4
#> participant MAE RMSE `>=`
#> <fct> <dbl> <dbl> <dbl>
#> 1 7 40 44.7 32.7
#> 2 6 33.3 34.2 32.7
This concludes the vignette. If any elements are unclear you can leave feedback in a mail or in a GitHub issue :-)