dataquieR example report

Adrian Richter, Stephan Struckmann, Carsten Schmidt

Preface

This is a brief example report using dataquieR’s functions. For a longer and better elaborated example, please also consider our online example with data from SHIP.

INTEGRITY

Study data

The imported study data consist of:

Metadata

The imported meta data provide information for:

Applicability

The call of this R-function requires two inputs only:

Heatmap-like plot:

COMPLETENESS

Unit missingness

Segment missingness

Item missingness

The following implementation considers also labeled missing codes. The use of such a table is optional but recommended. Missing code labels used in the simulated study data are loaded as follows:

The function call above sets the analyses of causes for missing values to TRUE, includes system missings with an own code, and sets the threshold to 80%.

Summary plot of item missingness

CONSISTENCY

Limit deviations

Summary table

Inadmissible levels

Contradictions

ACCURACY

ruol <- dataquieR:::acc_robust_univariate_outlier(study_data = sd1, meta_data = md1, label_col = LABEL)

ruol$SummaryPlotList
## $AGE_0

## 
## $AGE_1

## 
## $SBP_0

## 
## $DBP_0

## 
## $GLOBAL_HEALTH_VAS_0

## 
## $ARM_CIRC_0

## 
## $CRP_0

## 
## $BSG_0

## 
## $DEV_NO_0

## 
## $N_CHILD_0

## 
## $N_INJURIES_0

## 
## $N_BIRTH_0

## 
## $N_ATC_CODES_0

## 
## $ITEM_1_0

## 
## $ITEM_2_0

## 
## $ITEM_3_0

## 
## $ITEM_4_0

## 
## $ITEM_5_0

## 
## $ITEM_6_0

## 
## $ITEM_7_0

## 
## $ITEM_8_0

myloess <- dataquieR::acc_loess(resp_vars = "SBP_0",
                                group_vars = "USR_BP_0",
                                time_vars = "EXAM_DT_0",
                                label_col = "LABEL",
                                study_data = sd1,
                                meta_data = md1)

myloess$SummaryPlotList
## $SBP_0