DexterMST

DexterMST is an R package acting as a companion to dexter and adding facilities to manage and analyze data from multistage tests (MST). It includes functions for importing and managing test data, assessing and improving the quality of data through basic test and item analysis, and fitting an IRT model, all adapted to the peculiarities of MST designs. DexterMST typically works with project database files saved on disk.

Installation

install.packages('dexterMST')

If you encounter a bug, please post a minimal reproducible example on github. We post news and examples on a blog, it’s also the place for general questions.

Example

Here is an example for a simple two-stage test.

library(dexterMST)
library(dplyr)
# start a project
db = create_mst_project(":memory:")

items = data.frame(item_id=sprintf("item%02i",1:70), item_score=1, delta=sort(runif(70,-1,1)))

design = data.frame(item_id=sprintf("item%02i",1:70),
                    module_id=rep(c('M4','M2','M5','M1','M6','M3', 'M7'),each=10))

routing_rules = routing_rules = mst_rules(
 `124` = M1[0:5] --+ M2[0:10] --+ M4, 
 `125` = M1[0:5] --+ M2[11:15] --+ M5,
 `136` = M1[6:10] --+ M3[6:15] --+ M6,
 `137` = M1[6:10] --+ M3[16:20] --+ M7)


scoring_rules = data.frame(
  item_id = rep(items$item_id,2), 
  item_score= rep(0:1,each=nrow(items)),
  response= rep(0:1,each=nrow(items))) # dummy respons
  

db = create_mst_project(":memory:")
add_scoring_rules_mst(db, scoring_rules)

create_mst_test(db,
                test_design = design,
                routing_rules = routing_rules,
                test_id = 'sim_test',
                routing = "all")

We can now plot the design

# plot test designs for all tests in the project
design_plot(db)

We now simulate data:

theta = rnorm(3000)

dat = sim_mst(items, theta, design, routing_rules,'all')
dat$test_id='sim_test'
dat$response=dat$item_score

add_response_data_mst(db, dat)
# IRT, extended nominal response model
f = fit_enorm_mst(db)

head(f)
item_id item_score beta SE_beta
item01 1 -1.0863339 0.0626345
item02 1 -0.9418913 0.0623325
item03 1 -0.9251972 0.0623113
item04 1 -0.8020044 0.0622434
item05 1 -0.9318730 0.0623195
item06 1 -0.7521299 0.0622601
# ability estimates per person
rsp_data = get_responses_mst(db)
abl = ability(rsp_data, parms = f)
head(abl)
booklet_id person_id booklet_score theta
136 1 19 0.8404993
125 10 19 0.2563194
124 100 9 -1.3259574
136 1000 19 0.8404993
136 1001 14 0.1491514
125 1002 18 0.1129540
# ability estimates without item Item01
abl2 = ability(rsp_data, parms = f, item_id != "item01")

# plausible values
pv = plausible_values(rsp_data, parms = f, nPV = 5)
head(pv)
booklet_id person_id booklet_score PV1 PV2 PV3 PV4 PV5
136 1 19 0.3839768 0.8766796 1.2262293 0.8659529 1.3278310
136 1000 19 0.4315371 0.4050729 1.0509408 0.5545282 0.9193252
136 1001 14 0.2054455 0.1277102 0.4737698 0.2015225 0.3163110
136 1006 16 0.3514111 -0.0298913 0.6811140 0.0550563 0.2982861
136 1008 14 0.0542015 0.0259179 0.4488831 0.4268412 0.6982703
136 1009 14 0.0898933 0.4605046 0.3446569 0.0130914 -0.1554303

Contributing

Contributions are welcome but please check with us first about what you would like to contribute.