The goal of didimputation is to estimate TWFE models without running into the problem of staggered treatment adoption.
You can install didimputation from github with:
::install_github("kylebutts/didimputation") devtools
I will load example data from the package and plot the average outcome among the groups. Here is one unit’s data:
library(tidyverse)
#> ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
#> ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
#> ✓ tibble 3.1.3 ✓ dplyr 1.0.7
#> ✓ tidyr 1.1.3 ✓ stringr 1.4.0
#> ✓ readr 2.0.0 ✓ forcats 0.5.1
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
library(didimputation)
#> Loading required package: fixest
#> From fixest 0.9.0 onward, BREAKING changes! (Permanently remove this message with fixest_startup_msg(FALSE).)
#> - In i():
#> + the first two arguments have been swapped! Now it's i(factor_var, continuous_var) for interactions.
#> + argument 'drop' has been removed (put everything in 'ref' now).
#> - In feglm():
#> + the default family becomes 'gaussian' to be in line with glm(). Hence, for Poisson estimations, please use fepois() instead.
library(fixest)
# Load theme
source("https://raw.githubusercontent.com/kylebutts/templates/master/ggplot_theme/theme_kyle.R")
#> Loading required package: showtext
#> Loading required package: sysfonts
#> Loading required package: showtextdb
# Load Data from did2s package
data("df_het", package="did2s")
Here is a plot of the average outcome variable for each of the groups:
# Plot Data
<- df_het %>%
df_avg group_by(group, year) %>%
summarize(dep_var = mean(dep_var), .groups = 'drop')
# Get treatment years for plotting
<- df_het %>%
gs filter(treat == TRUE) %>%
pull(g) %>% unique()
ggplot() +
geom_line(data = df_avg, mapping = aes(y = dep_var, x = year, color = group), size = 1.5) +
geom_vline(xintercept = gs - 0.5, linetype = "dashed") +
theme_kyle(base_size = 16) +
theme(legend.position = "bottom") +
labs(y = "Outcome", x = "Year", color = "Treatment Cohort") +
scale_y_continuous(expand = expansion(add = .5)) +
scale_color_manual(values = c("Group 1" = "#d2382c", "Group 2" = "#497eb3", "Group 3" = "#8e549f"))
First, lets estimate a static did:
# Static
<- did_imputation(data = df_het, yname = "dep_var", gname = "g", tname = "year", idname = "unit")
static
static#> # A tibble: 1 × 5
#> term estimate std.error conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 treat 2.26 0.0314 2.20 2.32
This is very close to the true treatment effect of 2.2384912.
Then, let’s estimate an event study did:
# Event Study
<- did_imputation(data = df_het, yname = "dep_var", gname = "g",
es tname = "year", idname = "unit",
# event-study
horizon=TRUE, pretrends = -5:-1)
es#> # A tibble: 26 × 5
#> term estimate std.error conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 -5 -0.0641 0.0767 -0.214 0.0861
#> 2 -4 -0.0120 0.0753 -0.160 0.136
#> 3 -3 -0.0139 0.0765 -0.164 0.136
#> 4 -2 0.0510 0.0770 -0.0999 0.202
#> 5 -1 0.0202 0.0758 -0.128 0.169
#> 6 0 1.51 0.0755 1.37 1.66
#> 7 1 1.66 0.0841 1.50 1.83
#> 8 2 1.86 0.0829 1.70 2.03
#> 9 3 1.92 0.0843 1.75 2.08
#> 10 4 1.87 0.0842 1.71 2.04
#> # … with 16 more rows
And plot the results:
<- es %>%
pts select(rel_year = term, estimate, std.error) %>%
mutate(
ci_lower = estimate - 1.96 * std.error,
ci_upper = estimate + 1.96 * std.error,
group = "DID Imputation Estimate",
rel_year = as.numeric(rel_year)
%>%
) filter(rel_year >= -8 & rel_year <= 8) %>%
mutate(rel_year = rel_year + 0.1)
<- df_het %>%
te_true # Keep only treated units
filter(g > 0) %>%
group_by(rel_year) %>%
summarize(estimate = mean(te + te_dynamic)) %>%
mutate(group = "True Effect") %>%
filter(rel_year >= -8 & rel_year <= 8) %>%
mutate(rel_year = rel_year)
<- bind_rows(pts, te_true)
pts
<- max(pts$estimate)
max_y
ggplot() +
# 0 effect
geom_hline(yintercept = 0, linetype = "dashed") +
geom_vline(xintercept = -0.5, linetype = "dashed") +
# Confidence Intervals
geom_linerange(data = pts, mapping = aes(x = rel_year, ymin = ci_lower, ymax = ci_upper), color = "grey30") +
# Estimates
geom_point(data = pts, mapping = aes(x = rel_year, y = estimate, color = group), size = 2) +
# Label
geom_label(data = data.frame(x = -0.5 - 0.1, y = max_y + 0.25, label = "Treatment Starts ▶"), label.size=NA,
mapping = aes(x = x, y = y, label = label), size = 5.5, hjust = 1, fontface = 2, inherit.aes = FALSE) +
scale_x_continuous(breaks = -8:8, minor_breaks = NULL) +
scale_y_continuous(minor_breaks = NULL) +
scale_color_manual(values = c("DID Imputation Estimate" = "steelblue", "True Effect" = "#b44682")) +
labs(x = "Relative Time", y = "Estimate", color = NULL, title = NULL) +
theme_kyle(base_size = 16) +
theme(legend.position = "bottom")
#> Warning: Removed 17 rows containing missing values (geom_segment).
# TWFE
<- fixest::feols(dep_var ~ i(rel_year, ref=c(-1, Inf)) | unit + year, data = df_het) %>%
twfe ::tidy() %>%
broomfilter(str_detect(term, "rel_year::")) %>%
select(rel_year = term, estimate, std.error) %>%
mutate(
rel_year = as.numeric(str_remove(rel_year, "rel_year::")),
ci_lower = estimate - 1.96 * std.error,
ci_upper = estimate + 1.96 * std.error,
group = "TWFE Estimate"
%>%
) filter(rel_year <= 8 & rel_year >= -8) %>%
mutate(rel_year = rel_year - 0.1)
# Add TWFE Points
<- pts %>% mutate(
both_pts group = if_else(group == "Estimated Effect", "DID Imputation Estimate", group)
%>%
) bind_rows(., twfe)
ggplot() +
# 0 effect
geom_hline(yintercept = 0, linetype = "dashed") +
geom_vline(xintercept = -0.5, linetype = "dashed") +
# Confidence Intervals
geom_linerange(data = both_pts, mapping = aes(x = rel_year, ymin = ci_lower, ymax = ci_upper), color = "grey30") +
# Estimates
geom_point(data = both_pts, mapping = aes(x = rel_year, y = estimate, color = group), size = 2) +
# Label
geom_label(data = data.frame(x = -0.5 - 0.1, y = max_y + 0.25, label = "Treatment Starts ▶"), label.size=NA,
mapping = aes(x = x, y = y, label = label), size = 5.5, hjust = 1, fontface = 2, inherit.aes = FALSE) +
scale_x_continuous(breaks = -8:8, minor_breaks = NULL) +
scale_y_continuous(minor_breaks = NULL) +
scale_color_manual(values = c("DID Imputation Estimate" = "steelblue", "True Effect" = "#b44682", "TWFE Estimate" = "#82b446")) +
labs(x = "Relative Time", y = "Estimate", color = NULL, title = NULL) +
theme_kyle(base_size = 16) +
theme(legend.position = "bottom")
#> Warning: Removed 17 rows containing missing values (geom_segment).