Exploratory Data Analysis

Choonghyun Ryu

2022-06-06

Preface

After you have acquired the data, you should do the following:

The dlookr package makes these steps fast and easy:

This document introduces EDA(Exploratory Data Analysis) methods provided by the dlookr package. You will learn how to EDA of tbl_df data that inherits from data.frame and data.frame with functions provided by dlookr.

dlookr increases synergy with dplyr. Particularly in data exploration and data wrangle, it increases the efficiency of the tidyverse package group.

Supported data structures

Data diagnosis supports the following data structures.

datasets

To illustrate the basic use of EDA in the dlookr package, I use a Carseats dataset. Carseats in the ISLR package is a simulated data set containing sales of child car seats at 400 different stores. This data is a data.frame created for the purpose of predicting sales volume.

library(ISLR)
str(Carseats)
'data.frame':   400 obs. of  11 variables:
 $ Sales      : num  9.5 11.22 10.06 7.4 4.15 ...
 $ CompPrice  : num  138 111 113 117 141 124 115 136 132 132 ...
 $ Income     : num  73 48 35 100 64 113 105 81 110 113 ...
 $ Advertising: num  11 16 10 4 3 13 0 15 0 0 ...
 $ Population : num  276 260 269 466 340 501 45 425 108 131 ...
 $ Price      : num  120 83 80 97 128 72 108 120 124 124 ...
 $ ShelveLoc  : Factor w/ 3 levels "Bad","Good","Medium": 1 2 3 3 1 1 3 2 3 3 ...
 $ Age        : num  42 65 59 55 38 78 71 67 76 76 ...
 $ Education  : num  17 10 12 14 13 16 15 10 10 17 ...
 $ Urban      : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 1 1 ...
 $ US         : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 1 2 1 2 ...

The contents of individual variables are as follows. (Refer to ISLR::Carseats Man page)

When data analysis is performed, data containing missing values is frequently encountered. However, ‘Carseats’ is complete data without missing values. So the following script created the missing values and saved them as carseats.

carseats <- ISLR::Carseats

suppressWarnings(RNGversion("3.5.0"))
set.seed(123)
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA

suppressWarnings(RNGversion("3.5.0"))
set.seed(456)
carseats[sample(seq(NROW(carseats)), 10), "Urban"] <- NA

Exploratory Data Analysis

dlookr can help to understand the distribution of data by calculating descriptive statistics of numerical data. In addition, correlation between variables is identified and normality test is performed. It also identifies the relationship between target variables and independent variables.:

The following is a list of the EDA functions included in the dlookr package.:

Univariate data EDA

Calculating descriptive statistics using describe()

describe() computes descriptive statistics for numerical data. The descriptive statistics help determine the distribution of numerical variables. Like function of dplyr, the first argument is the tibble (or data frame). The second and subsequent arguments refer to variables within that data frame.

The variables of the tbl_df object returned by describe() are as follows.

For example, describe() can computes the statistics of all numerical variables in carseats:

describe(carseats)
# A tibble: 8 × 26
  described_variables     n    na   mean    sd se_mean   IQR skewness kurtosis
  <chr>               <int> <int>  <dbl> <dbl>   <dbl> <dbl>    <dbl>    <dbl>
1 Sales                 400     0   7.50  2.82   0.141  3.93   0.186   -0.0809
2 CompPrice             400     0 125.   15.3    0.767 20     -0.0428   0.0417
3 Income                380    20  68.9  28.1    1.44  48.2    0.0449  -1.09  
4 Advertising           400     0   6.64  6.65   0.333 12      0.640   -0.545 
# … with 4 more rows, and 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>,
#   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
#   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
#   p99 <dbl>, p100 <dbl>

The following explains the descriptive statistics only for a few selected variables.:

# Select columns by name
describe(carseats, Sales, CompPrice, Income)
# A tibble: 3 × 26
  described_variables     n    na   mean    sd se_mean   IQR skewness kurtosis
  <chr>               <int> <int>  <dbl> <dbl>   <dbl> <dbl>    <dbl>    <dbl>
1 Sales                 400     0   7.50  2.82   0.141  3.93   0.186   -0.0809
2 CompPrice             400     0 125.   15.3    0.767 20     -0.0428   0.0417
3 Income                380    20  68.9  28.1    1.44  48.2    0.0449  -1.09  
# … with 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>,
#   p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>,
#   p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>,
#   p100 <dbl>
# Select all columns between year and day (include)
describe(carseats, Sales:Income)
# A tibble: 3 × 26
  described_variables     n    na   mean    sd se_mean   IQR skewness kurtosis
  <chr>               <int> <int>  <dbl> <dbl>   <dbl> <dbl>    <dbl>    <dbl>
1 Sales                 400     0   7.50  2.82   0.141  3.93   0.186   -0.0809
2 CompPrice             400     0 125.   15.3    0.767 20     -0.0428   0.0417
3 Income                380    20  68.9  28.1    1.44  48.2    0.0449  -1.09  
# … with 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>,
#   p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>,
#   p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>,
#   p100 <dbl>
# Select all columns except those from year to day (exclude)
describe(carseats, -(Sales:Income))
# A tibble: 5 × 26
  described_variables     n    na   mean     sd se_mean   IQR skewness kurtosis
  <chr>               <int> <int>  <dbl>  <dbl>   <dbl> <dbl>    <dbl>    <dbl>
1 Advertising           400     0   6.64   6.65   0.333  12     0.640    -0.545
2 Population            400     0 265.   147.     7.37  260.   -0.0512   -1.20 
3 Price                 400     0 116.    23.7    1.18   31    -0.125     0.452
4 Age                   400     0  53.3   16.2    0.810  26.2  -0.0772   -1.13 
# … with 1 more row, and 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>,
#   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
#   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
#   p99 <dbl>, p100 <dbl>

The describe() function can be sorted by left or right skewed size(skewness) using dplyr.:

carseats %>%
  describe() %>%
  select(described_variables, skewness, mean, p25, p50, p75) %>% 
  filter(!is.na(skewness)) %>% 
  arrange(desc(abs(skewness)))
# A tibble: 8 × 6
  described_variables skewness   mean    p25    p50    p75
  <chr>                  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
1 Advertising           0.640    6.64   0      5     12   
2 Sales                 0.186    7.50   5.39   7.49   9.32
3 Price                -0.125  116.   100    117    131   
4 Age                  -0.0772  53.3   39.8   54.5   66   
# … with 4 more rows

The describe() function supports the group_by() function syntax of the dplyr package.

carseats %>%
  group_by(US) %>% 
  describe(Sales, Income) 
# A tibble: 4 × 27
  described_varia… US        n    na  mean    sd se_mean   IQR skewness kurtosis
  <chr>            <fct> <int> <int> <dbl> <dbl>   <dbl> <dbl>    <dbl>    <dbl>
1 Income           No      130    12 65.8  28.2    2.48  50      0.100    -1.14 
2 Income           Yes     250     8 70.4  27.9    1.77  48      0.0199   -1.06 
3 Sales            No      142     0  6.82  2.60   0.218  3.44   0.323     0.808
4 Sales            Yes     258     0  7.87  2.88   0.179  4.23   0.0760   -0.326
# … with 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>,
#   p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>,
#   p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>,
#   p100 <dbl>
carseats %>%
  group_by(US, Urban) %>% 
  describe(Sales, Income) 
# A tibble: 12 × 28
  described_variables US    Urban     n    na  mean    sd se_mean   IQR skewness
  <chr>               <fct> <fct> <int> <int> <dbl> <dbl>   <dbl> <dbl>    <dbl>
1 Income              No    No       42     4  60.2  29.1    4.49  45.2   0.408 
2 Income              No    Yes      84     8  69.5  27.4    2.99  47    -0.0497
3 Income              No    <NA>      4     0  48.2  24.7   12.3   40.8  -0.0496
4 Income              Yes   No       65     4  70.5  29.9    3.70  48     0.0736
# … with 8 more rows, and 18 more variables: kurtosis <dbl>, p00 <dbl>,
#   p01 <dbl>, p05 <dbl>, p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>,
#   p40 <dbl>, p50 <dbl>, p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>,
#   p90 <dbl>, p95 <dbl>, p99 <dbl>, p100 <dbl>

Test of normality on numeric variables using normality()

normality() performs a normality test on numerical data. Shapiro-Wilk normality test is performed. When the number of observations is greater than 5000, it is tested after extracting 5000 samples by random simple sampling.

The variables of tbl_df object returned by normality() are as follows.

normality() performs the normality test for all numerical variables of carseats as follows.:

normality(carseats)
# A tibble: 8 × 4
  vars        statistic  p_value sample
  <chr>           <dbl>    <dbl>  <dbl>
1 Sales           0.995 2.54e- 1    400
2 CompPrice       0.998 9.77e- 1    400
3 Income          0.961 1.52e- 8    400
4 Advertising     0.874 1.49e-17    400
# … with 4 more rows

The following example performs a normality test on only a few selected variables.

# Select columns by name
normality(carseats, Sales, CompPrice, Income)
# A tibble: 3 × 4
  vars      statistic      p_value sample
  <chr>         <dbl>        <dbl>  <dbl>
1 Sales         0.995 0.254           400
2 CompPrice     0.998 0.977           400
3 Income        0.961 0.0000000152    400

# Select all columns between year and day (inclusive)
normality(carseats, Sales:Income)
# A tibble: 3 × 4
  vars      statistic      p_value sample
  <chr>         <dbl>        <dbl>  <dbl>
1 Sales         0.995 0.254           400
2 CompPrice     0.998 0.977           400
3 Income        0.961 0.0000000152    400

# Select all columns except those from year to day (inclusive)
normality(carseats, -(Sales:Income))
# A tibble: 5 × 4
  vars        statistic  p_value sample
  <chr>           <dbl>    <dbl>  <dbl>
1 Advertising     0.874 1.49e-17    400
2 Population      0.952 4.08e-10    400
3 Price           0.996 3.90e- 1    400
4 Age             0.957 1.86e- 9    400
# … with 1 more row

You can use dplyr to sort variables that do not follow a normal distribution in order of p_value:

library(dplyr)

carseats %>%
  normality() %>%
  filter(p_value <= 0.01) %>% 
  arrange(abs(p_value))
# A tibble: 5 × 4
  vars        statistic  p_value sample
  <chr>           <dbl>    <dbl>  <dbl>
1 Advertising     0.874 1.49e-17    400
2 Education       0.924 2.43e-13    400
3 Population      0.952 4.08e-10    400
4 Age             0.957 1.86e- 9    400
# … with 1 more row

In particular, the Advertising variable is considered to be the most out of the normal distribution.

The normality() function supports the group_by() function syntax in the dplyr package.

carseats %>%
  group_by(ShelveLoc, US) %>%
  normality(Income) %>% 
  arrange(desc(p_value))
# A tibble: 6 × 6
  variable ShelveLoc US    statistic p_value sample
  <chr>    <fct>     <fct>     <dbl>   <dbl>  <dbl>
1 Income   Bad       No        0.969  0.470      34
2 Income   Bad       Yes       0.958  0.0343     62
3 Income   Good      No        0.902  0.0328     24
4 Income   Good      Yes       0.955  0.0296     61
# … with 2 more rows

The Income variable does not follow the normal distribution. However, the case where US is No and ShelveLoc is Good and Bad at the significance level of 0.01, it follows the normal distribution.

The following example performs normality test of log(Income) for each combination of ShelveLoc and US categorical variables to search for variables that follow the normal distribution.

carseats %>%
  mutate(log_income = log(Income)) %>%
  group_by(ShelveLoc, US) %>%
  normality(log_income) %>%
  filter(p_value > 0.01)
# A tibble: 1 × 6
  variable   ShelveLoc US    statistic p_value sample
  <chr>      <fct>     <fct>     <dbl>   <dbl>  <dbl>
1 log_income Bad       No        0.940  0.0737     34

Visualization of normality of numerical variables using plot_normality()

plot_normality() visualizes the normality of numeric data.

The information visualized by plot_normality() is as follows.:

In the data analysis process, it often encounters numerical data that follows the power-law distribution. Since the numerical data that follows the power-law distribution is converted into a normal distribution by performing the log or sqrt transformation, so draw a histogram of the log and sqrt transformed data.

plot_normality() can also specify several variables like normality() function.

# Select columns by name
plot_normality(carseats, Sales, CompPrice)

The plot_normality() function also supports the group_by() function syntax in the dplyr package.

carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(US) %>%
  plot_normality(Income)

EDA of bivariate data

Calculation of correlation coefficient using correlate()

correlate() calculates the correlation coefficient of all combinations of carseats numerical variables as follows:

correlate(carseats)
# A tibble: 56 × 3
  var1        var2  coef_corr
  <fct>       <fct>     <dbl>
1 CompPrice   Sales    0.0641
2 Income      Sales    0.151 
3 Advertising Sales    0.270 
4 Population  Sales    0.0505
# … with 52 more rows

The following example performs a normality test only on combinations that include several selected variables.

# Select columns by name
correlate(carseats, Sales, CompPrice, Income)
# A tibble: 21 × 3
  var1      var2      coef_corr
  <fct>     <fct>         <dbl>
1 CompPrice Sales        0.0641
2 Income    Sales        0.151 
3 Sales     CompPrice    0.0641
4 Income    CompPrice   -0.0761
# … with 17 more rows

# Select all columns between year and day (include)
correlate(carseats, Sales:Income)
# A tibble: 21 × 3
  var1      var2      coef_corr
  <fct>     <fct>         <dbl>
1 CompPrice Sales        0.0641
2 Income    Sales        0.151 
3 Sales     CompPrice    0.0641
4 Income    CompPrice   -0.0761
# … with 17 more rows

# Select all columns except those from year to day (exclude)
correlate(carseats, -(Sales:Income))
# A tibble: 35 × 3
  var1        var2  coef_corr
  <fct>       <fct>     <dbl>
1 Advertising Sales    0.270 
2 Population  Sales    0.0505
3 Price       Sales   -0.445 
4 Age         Sales   -0.232 
# … with 31 more rows

correlate() produces two pairs of variables. So the following example uses filter() to get the correlation coefficient for a pair of variable combinations:

carseats %>%
  correlate(Sales:Income) %>%
  filter(as.integer(var1) > as.integer(var2))
# A tibble: 3 × 3
  var1      var2      coef_corr
  <fct>     <fct>         <dbl>
1 CompPrice Sales        0.0641
2 Income    Sales        0.151 
3 Income    CompPrice   -0.0761

The correlate() also supports the group_by() function syntax in the dplyr package.

tab_corr <- carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>%
  filter(abs(coef_corr) > 0.5)

tab_corr
# A tibble: 10 × 5
  Urban US    var1  var2       coef_corr
  <fct> <fct> <fct> <fct>          <dbl>
1 No    No    Sales Population    -0.530
2 No    No    Sales Price         -0.838
3 No    Yes   Sales Price         -0.630
4 Yes   No    Sales Price         -0.833
# … with 6 more rows

Visualization of the correlation matrix using plot.correlate()

plot.correlate() visualizes the correlation matrix with correlate class.

carseats %>% 
  correlate() %>% 
  plot()

plot.correlate() can also specify multiple variables, like the correlate() function. The following is a visualization of the correlation matrix including several selected variables.

# Select columns by name
correlate(carseats, Sales, Price) %>% 
  plot()

The plot.correlate() function also supports the group_by() function syntax in the dplyr package.

carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(Urban) %>%
  correlate() %>%
  plot() 

EDA based on target variable

Definition of target variable

To perform EDA based on target variable, you need to create a target_by class object. target_by() creates a target_by class with an object inheriting data.frame or data.frame. target_by() is similar to group_by() in dplyr which creates grouped_df. The difference is that you specify only one variable.

The following is an example of specifying US as target variable in carseats data.frame.:

categ <- target_by(carseats, US)

EDA when target variable is categorical variable

Let’s perform EDA when the target variable is a categorical variable. When the categorical variable US is the target variable, we examine the relationship between the target variable and the predictor.

Cases where predictors are numeric variable

relate() shows the relationship between the target variable and the predictor. The following example shows the relationship between Sales and the target variable US. The predictor Sales is a numeric variable. In this case, the descriptive statistics are shown for each level of the target variable.

# If the variable of interest is a numerical variable
cat_num <- relate(categ, Sales)
cat_num
# A tibble: 3 × 27
  described_varia… US        n    na  mean    sd se_mean   IQR skewness kurtosis
  <chr>            <fct> <int> <int> <dbl> <dbl>   <dbl> <dbl>    <dbl>    <dbl>
1 Sales            No      142     0  6.82  2.60   0.218  3.44   0.323    0.808 
2 Sales            Yes     258     0  7.87  2.88   0.179  4.23   0.0760  -0.326 
3 Sales            total   400     0  7.50  2.82   0.141  3.93   0.186   -0.0809
# … with 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>,
#   p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>,
#   p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>,
#   p100 <dbl>
summary(cat_num)
 described_variables     US          n               na         mean      
 Length:3            No   :1   Min.   :142.0   Min.   :0   Min.   :6.823  
 Class :character    Yes  :1   1st Qu.:200.0   1st Qu.:0   1st Qu.:7.160  
 Mode  :character    total:1   Median :258.0   Median :0   Median :7.496  
                               Mean   :266.7   Mean   :0   Mean   :7.395  
                               3rd Qu.:329.0   3rd Qu.:0   3rd Qu.:7.682  
                               Max.   :400.0   Max.   :0   Max.   :7.867  
       sd           se_mean            IQR           skewness      
 Min.   :2.603   Min.   :0.1412   Min.   :3.442   Min.   :0.07603  
 1st Qu.:2.713   1st Qu.:0.1602   1st Qu.:3.686   1st Qu.:0.13080  
 Median :2.824   Median :0.1791   Median :3.930   Median :0.18556  
 Mean   :2.768   Mean   :0.1796   Mean   :3.866   Mean   :0.19489  
 3rd Qu.:2.851   3rd Qu.:0.1988   3rd Qu.:4.077   3rd Qu.:0.25432  
 Max.   :2.877   Max.   :0.2184   Max.   :4.225   Max.   :0.32308  
    kurtosis             p00              p01              p05       
 Min.   :-0.32638   Min.   :0.0000   Min.   :0.4675   Min.   :3.147  
 1st Qu.:-0.20363   1st Qu.:0.0000   1st Qu.:0.6868   1st Qu.:3.148  
 Median :-0.08088   Median :0.0000   Median :0.9062   Median :3.149  
 Mean   : 0.13350   Mean   :0.1233   Mean   :1.0072   Mean   :3.183  
 3rd Qu.: 0.36344   3rd Qu.:0.1850   3rd Qu.:1.2771   3rd Qu.:3.200  
 Max.   : 0.80776   Max.   :0.3700   Max.   :1.6480   Max.   :3.252  
      p10             p20             p25             p30       
 Min.   :3.917   Min.   :4.754   Min.   :5.080   Min.   :5.306  
 1st Qu.:4.018   1st Qu.:4.910   1st Qu.:5.235   1st Qu.:5.587  
 Median :4.119   Median :5.066   Median :5.390   Median :5.867  
 Mean   :4.073   Mean   :5.051   Mean   :5.411   Mean   :5.775  
 3rd Qu.:4.152   3rd Qu.:5.199   3rd Qu.:5.576   3rd Qu.:6.010  
 Max.   :4.184   Max.   :5.332   Max.   :5.763   Max.   :6.153  
      p40             p50             p60             p70       
 Min.   :5.994   Min.   :6.660   Min.   :7.496   Min.   :7.957  
 1st Qu.:6.301   1st Qu.:7.075   1st Qu.:7.787   1st Qu.:8.386  
 Median :6.608   Median :7.490   Median :8.078   Median :8.815  
 Mean   :6.506   Mean   :7.313   Mean   :8.076   Mean   :8.740  
 3rd Qu.:6.762   3rd Qu.:7.640   3rd Qu.:8.366   3rd Qu.:9.132  
 Max.   :6.916   Max.   :7.790   Max.   :8.654   Max.   :9.449  
      p75             p80              p90              p95       
 Min.   :8.523   Min.   : 8.772   Min.   : 9.349   Min.   :11.28  
 1st Qu.:8.921   1st Qu.: 9.265   1st Qu.:10.325   1st Qu.:11.86  
 Median :9.320   Median : 9.758   Median :11.300   Median :12.44  
 Mean   :9.277   Mean   : 9.665   Mean   :10.795   Mean   :12.08  
 3rd Qu.:9.654   3rd Qu.:10.111   3rd Qu.:11.518   3rd Qu.:12.49  
 Max.   :9.988   Max.   :10.464   Max.   :11.736   Max.   :12.54  
      p99             p100      
 Min.   :13.64   Min.   :14.90  
 1st Qu.:13.78   1st Qu.:15.59  
 Median :13.91   Median :16.27  
 Mean   :13.86   Mean   :15.81  
 3rd Qu.:13.97   3rd Qu.:16.27  
 Max.   :14.03   Max.   :16.27  

plot() visualizes the relate class object created by relate() as the relationship between the target variable and the predictor variable. The relationship between US and Sales is visualized by density plot.

plot(cat_num)

Cases where predictors are categorical variable

The following example shows the relationship between ShelveLoc and the target variable US. The predictor variable ShelveLoc is a categorical variable. In this case, it shows the contingency table of two variables. The summary() function performs independence test on the contingency table.

# If the variable of interest is a categorical variable
cat_cat <- relate(categ, ShelveLoc)
cat_cat
     ShelveLoc
US    Bad Good Medium
  No   34   24     84
  Yes  62   61    135
summary(cat_cat)
Call: xtabs(formula = formula_str, data = data, addNA = TRUE)
Number of cases in table: 400 
Number of factors: 2 
Test for independence of all factors:
    Chisq = 2.7397, df = 2, p-value = 0.2541

plot() visualizes the relationship between the target variable and the predictor. The relationship between US and ShelveLoc is represented by a mosaics plot.

plot(cat_cat)

EDA when target variable is numerical variable

Let’s perform EDA when the target variable is numeric. When the numeric variable Sales is the target variable, we examine the relationship between the target variable and the predictor.

# If the variable of interest is a numerical variable
num <- target_by(carseats, Sales)

Cases where predictors are numeric variable

The following example shows the relationship between Price and the target variable Sales. The predictor variable Price is a numeric variable. In this case, it shows the result of a simple linear model of the target ~ predictor formula. The summary() function expresses the details of the model.

# If the variable of interest is a numerical variable
num_num <- relate(num, Price)
num_num

Call:
lm(formula = formula_str, data = data)

Coefficients:
(Intercept)        Price  
   13.64192     -0.05307  
summary(num_num)

Call:
lm(formula = formula_str, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.5224 -1.8442 -0.1459  1.6503  7.5108 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 13.641915   0.632812  21.558   <2e-16 ***
Price       -0.053073   0.005354  -9.912   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.532 on 398 degrees of freedom
Multiple R-squared:  0.198, Adjusted R-squared:  0.196 
F-statistic: 98.25 on 1 and 398 DF,  p-value: < 2.2e-16

plot() visualizes the relationship between the target and predictor variables. The relationship between Sales and Price is visualized with a scatter plot. The figure on the left shows the scatter plot of Sales and Price and the confidence interval of the regression line and regression line. The figure on the right shows the relationship between the original data and the predicted values of the linear model as a scatter plot. If there is a linear relationship between the two variables, the scatter plot of the observations converges on the red diagonal line.

plot(num_num)

The scatter plot of the data with a large number of observations is output as overlapping points. This makes it difficult to judge the relationship between the two variables. It also takes a long time to perform the visualization. In this case, the above problem can be solved by hexabin plot.

In plot(), the hex_thres argument provides a basis for drawing hexabin plot. If the number of observations is greater than hex_thres, draw a hexabin plot.

The following example visualizes the hexabin plot rather than the scatter plot by specifying 350 for the hex_thres argument. This is because the number of observations is 400.

plot(num_num, hex_thres = 350)

Cases where predictors are categorical variable

The following example shows the relationship between ShelveLoc and the target variable Sales. The predictor ShelveLoc is a categorical variable and shows the result of one-way ANOVA of target ~ predictor relationship. The results are expressed in terms of ANOVA. The summary() function shows the regression coefficients for each level of the predictor. In other words, it shows detailed information about simple regression analysis of target ~ predictor relationship.

# If the variable of interest is a categorical variable
num_cat <- relate(num, ShelveLoc)
num_cat
Analysis of Variance Table

Response: Sales
           Df Sum Sq Mean Sq F value    Pr(>F)    
ShelveLoc   2 1009.5  504.77   92.23 < 2.2e-16 ***
Residuals 397 2172.7    5.47                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(num_cat)

Call:
lm(formula = formula(formula_str), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-7.3066 -1.6282 -0.0416  1.5666  6.1471 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)       5.5229     0.2388  23.131  < 2e-16 ***
ShelveLocGood     4.6911     0.3484  13.464  < 2e-16 ***
ShelveLocMedium   1.7837     0.2864   6.229  1.2e-09 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.339 on 397 degrees of freedom
Multiple R-squared:  0.3172,    Adjusted R-squared:  0.3138 
F-statistic: 92.23 on 2 and 397 DF,  p-value: < 2.2e-16

plot() visualizes the relationship between the target variable and the predictor. The relationship between Sales and ShelveLoc is represented by a box plot.

plot(num_cat)

Automated report

dlookr provides two automated EDA reports:

Create a dynamic report using eda_web_report()

eda_web_report() create dynamic report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of dynamic web report

The contents of the report are as follows.:

  • Overview
    • Data Structures
    • Data Types
    • Job Informations
  • Univariate Analysis
    • Descriptive Statistics
    • Normality Test
  • Bivariate Analysis
    • Compare Numerical Variables
    • Compare Categorical Variables
  • Multivariate Analysis
    • Correlation Analysis
      • Correlation Matrix
      • Correlation Plot
  • Target based Analysis
    • Grouped Numerical Variables
    • Grouped Categorical Variables
    • Grouped Correlation

Some arguments for dynamic web report

eda_web_report() generates various reports with the following arguments.

  • target
    • target variable
  • output_file
    • name of generated file.
  • output_dir
    • name of directory to generate report file.
  • title
    • title of report.
  • subtitle
    • subtitle of report.
  • author
    • author of report.
  • title_color
    • color of title.
  • logo_img
    • name of logo image file on top left.
  • create_date
    • The date on which the report is generated.
  • theme
    • name of theme for report. support “orange” and “blue”.
  • sample_percent
    • Sample percent of data for performing EDA.

The following script creates a EDA report for the data.frame class object, heartfailure.

heartfailure %>%
  eda_web_report(target = "death_event", subtitle = "heartfailure", 
                 output_dir = "./", output_file = "EDA.html", theme = "blue")

Screenshot of dynamic report

  • The dynamic contents of the report is shown in the following figure.:
The part of the report

The part of the report

Create a EDA report using eda_paged_report()

eda_paged_report() create static report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of static paged report

The contents of the report are as follows.:

  • Overview
    • Data Structures
    • Job Informations
  • Univariate Analysis
    • Descriptive Statistics
      • Numerical Variables
      • Categorical Variables
    • Normality Test
  • Bivariate Analysis
    • Compare Numerical Variables
    • Compare Categorical Variables
  • Multivariate Analysis
    • Correlation Analysis
      • Correlation Coefficient Matrix
      • Correlation Plot
  • Target based Analysis
    • Grouped Numerical Variables
    • Grouped Categorical Variables
    • Grouped Correlation

Some arguments for static paged report

eda_paged_report() generates various reports with the following arguments.

  • target
    • target variable
  • output_format
    • report output type. Choose either “pdf” and “html”.
  • output_file
    • name of generated file.
  • output_dir
    • name of directory to generate report file.
  • title
    • title of report.
  • subtitle
    • subtitle of report.
  • abstract_title
    • abstract of report
  • author
    • author of report.
  • title_color
    • color of title.
  • subtitle_color
    • color of subtitle.
  • logo_img
    • name of logo image file on top left.
  • cover_img
    • name of cover image file on center.
  • create_date
    • The date on which the report is generated.
  • theme
    • name of theme for report. support “orange” and “blue”.
  • sample_percent
    • Sample percent of data for performing EDA.

The following script creates a EDA report for the data.frame class object, heartfailure.

heartfailure %>%
  eda_paged_report(target = "death_event", subtitle = "heartfailure", 
                   output_dir = "./", output_file = "EDA.pdf", theme = "blue")

Screenshot of static report

  • The cover of the report is shown in the following figure.:
The part of the report

The part of the report

  • The contents of the report is shown in the following figure.:
The dynamic contents of the report

The dynamic contents of the report

Exploratory data analysis for tables in DBMS

EDA function for table of DBMS supports In-database mode that performs SQL operations on the DBMS side. If the size of the data is large, using In-database mode is faster.

It is difficult to obtain anomaly or to implement the sampling-based algorithm in SQL of DBMS. So some functions do not yet support In-database mode. In this case, it is performed in In-memory mode in which table data is brought to R side and calculated. In this case, if the data size is large, the execution speed may be slow. It supports the collect_size argument, which allows you to import the specified number of samples of data into R.

Preparing table data

Copy the carseats data frame to the SQLite DBMS and create it as a table named TB_CARSEATS. Mysql/MariaDB, PostgreSQL, Oracle DBMS, other DBMS are also available for your environment.

if (!require(DBI)) install.packages('DBI')
if (!require(RSQLite)) install.packages('RSQLite')
if (!require(dplyr)) install.packages('dplyr')
if (!require(dbplyr)) install.packages('dbplyr')

library(dplyr)

carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

# copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

Calculating descriptive statistics of numerical column of table in the DBMS

Use dplyr::tbl() to create a tbl_dbi object, then use it as a data frame object. That is, the data argument of all EDA function is specified as tbl_dbi object instead of data frame object.

# Positive values select variables
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  describe(Sales, CompPrice, Income)
# A tibble: 3 × 26
  described_variables     n    na   mean    sd se_mean   IQR skewness kurtosis
  <chr>               <int> <int>  <dbl> <dbl>   <dbl> <dbl>    <dbl>    <dbl>
1 Sales                 400     0   7.50  2.82   0.141  3.93   0.186   -0.0809
2 CompPrice             400     0 125.   15.3    0.767 20     -0.0428   0.0417
3 Income                380    20  68.8  28.0    1.44  47.2    0.0641  -1.08  
# … with 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>,
#   p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>,
#   p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>,
#   p100 <dbl>

# Negative values to drop variables, and In-memory mode and collect size is 200
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  describe(-Sales, -CompPrice, -Income, collect_size = 200)
# A tibble: 5 × 26
  described_variables     n    na   mean     sd se_mean   IQR skewness kurtosis
  <chr>               <int> <int>  <dbl>  <dbl>   <dbl> <dbl>    <dbl>    <dbl>
1 Advertising           200     0   5.88   6.07   0.429  11     0.648    -0.667
2 Population            200     0 255.   149.    10.6   251.    0.0241   -1.22 
3 Price                 200     0 114.    23.7    1.68   31.2  -0.107     1.08 
4 Age                   200     0  54.6   15.9    1.13   24    -0.245    -1.01 
# … with 1 more row, and 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>,
#   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
#   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
#   p99 <dbl>, p100 <dbl>

# Find the statistic of all numerical variables by 'ShelveLoc' and 'US',
# and extract only those with 'ShelveLoc' variable level is "Good".
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  group_by(ShelveLoc, US) %>%
  describe() %>%
  filter(ShelveLoc == "Good")
# A tibble: 16 × 28
  described_variables ShelveLoc US        n    na    mean     sd se_mean   IQR
  <chr>               <chr>     <chr> <int> <int>   <dbl>  <dbl>   <dbl> <dbl>
1 Advertising         Good      No       24     0  0.0417  0.204  0.0417     0
2 Advertising         Good      Yes      61     0 10.2     5.91   0.757      7
3 Age                 Good      No       24     0 52.3    17.2    3.52      26
4 Age                 Good      Yes      61     0 52.7    14.8    1.90      22
# … with 12 more rows, and 19 more variables: skewness <dbl>, kurtosis <dbl>,
#   p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>, p20 <dbl>, p25 <dbl>,
#   p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>, p70 <dbl>, p75 <dbl>,
#   p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>, p100 <dbl>

# extract only those with 'Urban' variable level is "Yes",
# and find 'Sales' statistics by 'ShelveLoc' and 'US'
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(Urban == "Yes") %>%
  group_by(ShelveLoc, US) %>%
  describe(Sales)
# A tibble: 6 × 28
  described_variables ShelveLoc US        n    na  mean    sd se_mean   IQR
  <chr>               <chr>     <chr> <int> <int> <dbl> <dbl>   <dbl> <dbl>
1 Sales               Bad       No       23     0  5.36  1.91   0.398  2.32
2 Sales               Bad       Yes      50     0  5.54  2.57   0.364  3.74
3 Sales               Good      No       18     0  9.21  2.97   0.700  3.71
4 Sales               Good      Yes      37     0 10.9   2.37   0.389  3.41
# … with 2 more rows, and 19 more variables: skewness <dbl>, kurtosis <dbl>,
#   p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>, p20 <dbl>, p25 <dbl>,
#   p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>, p70 <dbl>, p75 <dbl>,
#   p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>, p100 <dbl>

Test of normality on numeric columns using in the DBMS

# Test all numerical variables by 'ShelveLoc' and 'US',
# and extract only those with 'ShelveLoc' variable level is "Good".
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
 group_by(ShelveLoc, US) %>%
 normality() %>%
 filter(ShelveLoc == "Good")
# A tibble: 16 × 6
  variable  ShelveLoc US    statistic p_value sample
  <chr>     <chr>     <chr>     <dbl>   <dbl>  <dbl>
1 Sales     Good      No        0.955   0.342     24
2 Sales     Good      Yes       0.983   0.567     61
3 CompPrice Good      No        0.970   0.658     24
4 CompPrice Good      Yes       0.984   0.598     61
# … with 12 more rows

# extract only those with 'Urban' variable level is "Yes",
# and test 'Sales' by 'ShelveLoc' and 'US'
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
 filter(Urban == "Yes") %>%
 group_by(ShelveLoc, US) %>%
 normality(Sales)
# A tibble: 6 × 6
  variable ShelveLoc US    statistic p_value sample
  <chr>    <chr>     <chr>     <dbl>   <dbl>  <dbl>
1 Sales    Bad       No        0.985   0.968     23
2 Sales    Bad       Yes       0.985   0.774     50
3 Sales    Good      No        0.959   0.576     18
4 Sales    Good      Yes       0.969   0.384     37
# … with 2 more rows

# Test log(Income) variables by 'ShelveLoc' and 'US',
# and extract only p.value greater than 0.01.

# SQLite extension functions for log transformation
RSQLite::initExtension(con_sqlite)

con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
 mutate(log_income = log(Income)) %>%
 group_by(ShelveLoc, US) %>%
 normality(log_income) %>%
 filter(p_value > 0.01)
# A tibble: 1 × 6
  variable   ShelveLoc US    statistic p_value sample
  <chr>      <chr>     <chr>     <dbl>   <dbl>  <dbl>
1 log_income Bad       No        0.946   0.104     34

Normalization visualization of numerical column in the DBMS

# extract only those with 'ShelveLoc' variable level is "Good",
# and plot 'Income' by 'US'
# the result is same as a data.frame, but not display here. reference above in document.
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(ShelveLoc == "Good") %>%
  group_by(US) %>%
  plot_normality(Income)

Compute the correlation coefficient between two columns of table in DBMS

# Correlation coefficient
# that eliminates redundant combination of variables
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  correlate() %>%
  filter(as.integer(var1) > as.integer(var2))
# A tibble: 28 × 3
  var1        var2  coef_corr
  <fct>       <fct>     <dbl>
1 CompPrice   Sales    0.0641
2 Income      Sales    0.141 
3 Advertising Sales    0.270 
4 Population  Sales    0.0505
# … with 24 more rows

con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  correlate(Sales, Price) %>%
  filter(as.integer(var1) > as.integer(var2))
# A tibble: 5 × 3
  var1  var2        coef_corr
  <fct> <fct>           <dbl>
1 Price Sales         -0.445 
2 Price CompPrice      0.585 
3 Price Income        -0.0484
4 Price Advertising    0.0445
# … with 1 more row

# Compute the correlation coefficient of Sales variable by 'ShelveLoc'
# and 'US' variables. And extract only those with absolute
# value of correlation coefficient is greater than 0.5
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  group_by(ShelveLoc, US) %>%
  correlate(Sales) %>%
  filter(abs(coef_corr) >= 0.5)
# A tibble: 6 × 5
  ShelveLoc US    var1  var2  coef_corr
  <chr>     <chr> <fct> <fct>     <dbl>
1 Bad       No    Sales Price    -0.527
2 Bad       Yes   Sales Price    -0.583
3 Good      No    Sales Price    -0.811
4 Good      Yes   Sales Price    -0.603
# … with 2 more rows

# extract only those with 'ShelveLoc' variable level is "Good",
# and compute the correlation coefficient of 'Sales' variable
# by 'Urban' and 'US' variables.
# And the correlation coefficient is negative and smaller than 0.5
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>%
  filter(coef_corr < 0) %>%
  filter(abs(coef_corr) > 0.5)
# A tibble: 10 × 5
  Urban US    var1  var2       coef_corr
  <chr> <chr> <fct> <fct>          <dbl>
1 No    No    Sales Population    -0.530
2 No    No    Sales Price         -0.838
3 No    Yes   Sales Price         -0.644
4 Yes   No    Sales Price         -0.833
# … with 6 more rows

Visualize correlation plot of numerical columns in the DBMS

# Extract only those with 'ShelveLoc' variable level is "Good",
# and visualize correlation plot of 'Sales' variable by 'Urban'
# and 'US' variables.
# the result is same as a data.frame, but not display here. reference above in document.
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(ShelveLoc == "Good") %>%
  group_by(Urban) %>%
  correlate() %>% 
  plot(Sales)

EDA based on target variable

The following is an EDA where the target column is character and the predictor column is a numeric type.

# If the target variable is a categorical variable
categ <- target_by(con_sqlite %>% tbl("TB_CARSEATS") , US)

# If the variable of interest is a numerical variable
cat_num <- relate(categ, Sales)
cat_num
# A tibble: 3 × 27
  described_varia… US        n    na  mean    sd se_mean   IQR skewness kurtosis
  <chr>            <fct> <int> <int> <dbl> <dbl>   <dbl> <dbl>    <dbl>    <dbl>
1 Sales            No      142     0  6.82  2.60   0.218  3.44   0.323    0.808 
2 Sales            Yes     258     0  7.87  2.88   0.179  4.23   0.0760  -0.326 
3 Sales            total   400     0  7.50  2.82   0.141  3.93   0.186   -0.0809
# … with 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>,
#   p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>,
#   p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>,
#   p100 <dbl>
summary(cat_num)
 described_variables     US          n               na         mean      
 Length:3            No   :1   Min.   :142.0   Min.   :0   Min.   :6.823  
 Class :character    Yes  :1   1st Qu.:200.0   1st Qu.:0   1st Qu.:7.160  
 Mode  :character    total:1   Median :258.0   Median :0   Median :7.496  
                               Mean   :266.7   Mean   :0   Mean   :7.395  
                               3rd Qu.:329.0   3rd Qu.:0   3rd Qu.:7.682  
                               Max.   :400.0   Max.   :0   Max.   :7.867  
       sd           se_mean            IQR           skewness      
 Min.   :2.603   Min.   :0.1412   Min.   :3.442   Min.   :0.07603  
 1st Qu.:2.713   1st Qu.:0.1602   1st Qu.:3.686   1st Qu.:0.13080  
 Median :2.824   Median :0.1791   Median :3.930   Median :0.18556  
 Mean   :2.768   Mean   :0.1796   Mean   :3.866   Mean   :0.19489  
 3rd Qu.:2.851   3rd Qu.:0.1988   3rd Qu.:4.077   3rd Qu.:0.25432  
 Max.   :2.877   Max.   :0.2184   Max.   :4.225   Max.   :0.32308  
    kurtosis             p00              p01              p05       
 Min.   :-0.32638   Min.   :0.0000   Min.   :0.4675   Min.   :3.147  
 1st Qu.:-0.20363   1st Qu.:0.0000   1st Qu.:0.6868   1st Qu.:3.148  
 Median :-0.08088   Median :0.0000   Median :0.9062   Median :3.149  
 Mean   : 0.13350   Mean   :0.1233   Mean   :1.0072   Mean   :3.183  
 3rd Qu.: 0.36344   3rd Qu.:0.1850   3rd Qu.:1.2771   3rd Qu.:3.200  
 Max.   : 0.80776   Max.   :0.3700   Max.   :1.6480   Max.   :3.252  
      p10             p20             p25             p30       
 Min.   :3.917   Min.   :4.754   Min.   :5.080   Min.   :5.306  
 1st Qu.:4.018   1st Qu.:4.910   1st Qu.:5.235   1st Qu.:5.587  
 Median :4.119   Median :5.066   Median :5.390   Median :5.867  
 Mean   :4.073   Mean   :5.051   Mean   :5.411   Mean   :5.775  
 3rd Qu.:4.152   3rd Qu.:5.199   3rd Qu.:5.576   3rd Qu.:6.010  
 Max.   :4.184   Max.   :5.332   Max.   :5.763   Max.   :6.153  
      p40             p50             p60             p70       
 Min.   :5.994   Min.   :6.660   Min.   :7.496   Min.   :7.957  
 1st Qu.:6.301   1st Qu.:7.075   1st Qu.:7.787   1st Qu.:8.386  
 Median :6.608   Median :7.490   Median :8.078   Median :8.815  
 Mean   :6.506   Mean   :7.313   Mean   :8.076   Mean   :8.740  
 3rd Qu.:6.762   3rd Qu.:7.640   3rd Qu.:8.366   3rd Qu.:9.132  
 Max.   :6.916   Max.   :7.790   Max.   :8.654   Max.   :9.449  
      p75             p80              p90              p95       
 Min.   :8.523   Min.   : 8.772   Min.   : 9.349   Min.   :11.28  
 1st Qu.:8.921   1st Qu.: 9.265   1st Qu.:10.325   1st Qu.:11.86  
 Median :9.320   Median : 9.758   Median :11.300   Median :12.44  
 Mean   :9.277   Mean   : 9.665   Mean   :10.795   Mean   :12.08  
 3rd Qu.:9.654   3rd Qu.:10.111   3rd Qu.:11.518   3rd Qu.:12.49  
 Max.   :9.988   Max.   :10.464   Max.   :11.736   Max.   :12.54  
      p99             p100      
 Min.   :13.64   Min.   :14.90  
 1st Qu.:13.78   1st Qu.:15.59  
 Median :13.91   Median :16.27  
 Mean   :13.86   Mean   :15.81  
 3rd Qu.:13.97   3rd Qu.:16.27  
 Max.   :14.03   Max.   :16.27  
# the result is same as a data.frame, but not display here. reference above in document.
plot(cat_num)

Reporting the information of EDA for table of the DBMS

The following shows several examples of creating an EDA report for a DBMS table.

Using the collect_size argument, you can perform EDA with the corresponding number of sample data. If the number of data is very large, use collect_size.

# create web report file. 
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  eda_web_report()
  
# create pdf file. file name is EDA.pdf, and collect size is 350
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  eda_paged_report(collect_size = 350, output_file = "EDA.pdf")