Package ‘doconv’

August 19, 2022

Type Package
Title Document Conversion to 'PDF' or ' PNG'
Version 0.1.4

Description Functions to convert 'Microsoft Word' or 'Microsoft PowerPoint'
documents to 'PDF' format and also for converting them into a thumbnail.
In order to work, 'LibreOffice' must be installed on the machine and
or 'Microsoft Word'. If the latter is available,
it can be used to produce PDF documents identical to the originals,
otherwise, LibreOffice' is used. A function is also provided to update
all fields and table of contents of a Word document using '"Microsoft Word'.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.1

Imports magick, pdftools, locatexec, processx, tools
Depends R (>=4.0.0)

Suggests officer

BugReports https://github.com/ardata-fr/doconv/issues
SystemRequirements LibreOffice, Microsoft Word
NeedsCompilation no

Author David Gohel [aut, cre],
ArData [cph],
David Hajage [ctb] (initial powershell code)

Maintainer David Gohel <david.gohel@ardata.fr>
Repository CRAN
Date/Publication 2022-08-19 09:30:05 UTC

R topics documented:

check_libreoffice_export L
docx2pdf

https://github.com/ardata-fr/doconv/issues

2 check_libreoffice_export

docx_update e e e 4
pPtx2pdf . . L e 5
O MINIATUTE o o e e e e 6
to_pdf . .. e 7
working_directory e e e 9
Index 10

check_libreoffice_export
Check if PDF export is functional

Description

Test if "LibreOffice’ can export to PDF. An attempt to export to PDF is made to confirm that the
PDF export is functional.

Usage

check_libreoffice_export(UserInstallation = NULL)

Arguments
UserInstallation
use this value to set a non-default user profile path for "LibreOffice". If not
provided a temporary dir is created. It makes possibles to use more than a single
session of "LibreOffice."
Value

a single logical value.

Examples

library(locatexec)
if(exec_available("libreoffice")){
check_libreoffice_export()

}

docx2pdf 3

docx2pdf Convert docx to pdf

Description

Convert docx to pdf directly using "Microsoft Word". This function will not work if "Microsoft
Word" is not available on your machine.

The calls to "Microsoft Word" are made differently depending on the operating system:

* On "Windows", a "PowerShell" script using COM technology is used to control "Microsoft
Word". The resulting PDF is containing a browsable TOC.

* On macOS, an "AppleScript" script is used to control "Microsoft Word". The resulting PDF
is not containing a browsable TOC as when on >Windows’.

Usage

docx2pdf (input, output = gsub(”\\.docx$", ".pdf", input))

Arguments

input, output file input and optional file output (default to input with pdf extension).

Value

the name of the produced pdf (the same value as output)

Macos manual authorizations

On macOS the call is happening into a working directory managed with function working_directory().

Manual interventions are necessary to authorize "Word” and "PowerPoint’ applications to write in a
single directory: the working directory. These permissions must be set manually, this is required by
the macOS security policy. We think that this is not a problem because it is unlikely that you will
use a Mac machine as a server.

You must click "allow" two times to:

1. allow R to run ’AppleScript’ scripts that will control Word

2. allow Word to write to the working directory.

This process is a one-time operation.

Examples

library(locatexec)
if (exec_available('word')) {
file <- system.file(package = "doconv",
"doc-examples/example.docx")

4 docx_update

out <- docx2pdf(input = file,
output = tempfile(fileext = ".pdf"))

if (file.exists(out)) {
message (basename (out),
}
}

”n

is existing now.")

docx_update Update docx fields

Description

Update all fields and table of contents of a Word document using "Microsoft Word". This function
will not work if "Microsoft Word" is not available on your machine.

The calls to "Microsoft Word" are made differently depending on the operating system. On "Win-
dows", a "PowerShell" script using COM technology is used to control "Microsoft Word". On
macOS, an "AppleScript" script is used to control "Microsoft Word".

Usage

docx_update(input)

Arguments

input file input

Value

the name of the produced pdf (the same value as output)

Examples
library(locatexec)
if (exec_available('word')) {
file <- system.file(package = "doconv",
"doc-examples/example.docx")
docx_out <- tempfile(fileext = ".docx")

file.copy(file, docx_out)
docx_update(input = docx_out)

if (require("officer”)) {
doc <- read_docx()
doc <- body_add_fpar(doc,
value = fpar(
run_word_field("DOCPROPERTY \"coco\"” * MERGEFORMAT")))
doc <- set_doc_properties(doc, coco = "test")

docx_out <- tempfile(fileext = ".docx")

pptx2pdf 5

file <- print(doc, target = docx_out)
docx_update(docx_out)
}
3

pptx2pdf Convert pptx to pdf

Description

Convert pptx to pdf directly using "Microsoft PowerPoint". This function will not work if "Mi-
crosoft PowerPoint" is not available on your machine.

The calls to "Microsoft PowerPoint" are made differently depending on the operating system. On
"Windows", a "PowerShell" script using COM technology is used to control "Microsoft Power-
Point". On macOS, an "AppleScript" script is used to control "Microsoft PowerPoint".

Usage

pptx2pdf (input, output = gsub(”"\\.pptx$", ".pdf", input))

Arguments

input, output file input and optional file output (default to input with pdf extension).

Value

the name of the produced pdf (the same value as output)

Macos manual authorizations

On macOS the call is happening into a working directory managed with function working_directory().

Manual interventions are necessary to authorize ’PowerPoint’ applications to write in a single direc-
tory: the working directory. These permissions must be set manually, this is required by the macOS
security policy. We think that this is not a problem because it is unlikely that you will use a Mac
machine as a server.

You must also click "allow" two times to:

1. allow R to run ’AppleScript’ scripts that will control PowerPoint

2. allow PowerPoint to write to the working directory.

This process is a one-time operation.

Examples
library(locatexec)
if (exec_available('powerpoint')) {
file <- system.file(package = "doconv",

"doc-examples/example.pptx")

out <- pptx2pdf(input = file,
output = tempfile(fileext = ".pdf"))

if (file.exists(out)) {
message (basename(out),
}
}

”

is existing now.")

to_miniature

to_miniature Thumbnail of a document

Description

Convert a file into an image (magick image) where the pages are arranged in rows, each row can

contain one to several pages.

The result can be saved as a png file.

Usage

to_miniature(
filename,
row = NULL,
width = NULL,
border_color = "#ccc”,
border_geometry = "2x2",
dpi = 150,
fileout = NULL,
timeout = 120

)

Arguments
filename input filename, a ’Microsoft Word’ or a *"Microsoft Word’ or a ’PDF’ document.
row row index for every pages. O are to be used to drop the page from the final

minature.

* c(1, 1) is to be used to specify that a 2 pages document is to be displayed

in a single row with two columns.

* c(1, 1, 2, 3, 3) is to be used to specify that a 5 pages document is to be
displayed as: first row with pages 1 and 2, second row with page 3, third

row with pages 4 and 5.

to_pdf 7

e c(1,1, 0, 2, 2) is to be used to specify that a 5 pages document is to be
displayed as: first row with pages 1 and 2, second row with pages 4 and 5.

width width of a single image, recommanded values are:
* 650 for docx files
* 750 for pptx files

border_color border color, see image_border ().
border_geometry
border geometry to be added around images, see image_border ().

dpi resolution (dots per inch) to use for images, see pdf_convert().

fileout if not NULL, result is saved in a png file whose filename is defined by this
argument.

timeout timeout in seconds that libreoffice is allowed to use in order to generate the

corresponding pdf file, ignored if 0.

Value

a magick image object as returned by image_read().

Examples
library(locatexec)
docx_file <- system.file(
package = "doconv",

"doc-examples/example.docx”
)
if(exec_available("word"))
to_miniature(docx_file)

pptx_file <- system.file(
package = "doconv”,
"doc-examples/example.pptx”

)

if(exec_available("libreoffice”) && check_libreoffice_export())
to_miniature(pptx_file)

to_pdf Convert documents to pdf

Description

Convert documents to pdf using Libre Office. It supports very well "Microsoft PowerPoint" to PDF.
"Microsoft Word" can also be converted but some Word features are not supported such as sections.

Windows users must be warned the program is slow on your platform. Performances are not excel-
lent but fast enough on other platform.

8 to_pdf

Usage

to_pdf(
input,
output = gsub("\\.[[:alnum:]]+$", ".pdf", input),
timeout = 120,
UserInstallation = NULL

Arguments
input, output file input and optional file output. If output file is not provided, the value will be
the value of input file with extension "pdf".

timeout timeout in seconds, ignored if 0.

UserInstallation
use this value to set a non-default user profile path for "LibreOffice". If not
provided a temporary dir is created. It makes possibles to use more than a single
session of "LibreOffice."

Value

the name of the produced pdf (the same value as output), invisibly.

Ubuntu platforms

On some Ubuntu platforms, ’LibreOffice’ require to add in the environment variable LD_LIBRARY_PATH

the following path: /usr/lib/libreoffice/program (you should see the message "libreglo.so

cannot open shared object file" if it is the case). This can be done with R command Sys. setenv (LD_LIBRARY_PATH
="/usr/lib/libreoffice/program/")

Examples

library(locatexec)
if (exec_available("libreoffice") && check_libreoffice_export()) {

out_pptx <- tempfile(fileext = ".pdf")
file <- system.file(package = "doconv”,
"doc-examples/example.pptx")
to_pdf(input = file, output = out_pptx)
out_docx <- tempfile(fileext = ".pdf")
file <- system.file(package = "doconv”,

"doc-examples/example.docx")

to_pdf(input = file, output = out_docx)

working_directory 9

working_directory manage docx2pdf working directory

Description

Initialize or remove working directory used when docx2pdf create the PDF.

On *'macOS’, the operation require writing rights to the directory by the Word or PowerPoint pro-
gram. Word or PowerPoint program must be authorized to write in the directories, if the authoriza-
tion does not exist, a manual confirmation window is launched, thus preventing automation.

Fortunately, users only have to do this once. The package implementation use only one directory
where results are saved in order to have only one time to click this confirmation.

This directory is managed by R function R_user_dir (). Its value can be read with the working_directory()
function. The directory can be deleted with rm_working_directory() and created with init_working_directory().
Each call will remove that directory when completed.

As a user, you do not have to use these functions because they are called automatically by the
docx2pdf () function. They are provided to meet the requirements of CRAN policy:

"[...] packages may store user-specific data, configuration and cache files in their respective user
directories [...], provided that by default sizes are kept as small as possible and the contents are
actively managed (including removing outdated material)."”

Usage

working_directory()
rm_working_directory()

init_working_directory()

Index

check_libreoffice_export, 2

docx2pdf, 3
docx_update, 4

image_border (), 7

image_read(), 7

init_working_directory
(working_directory), 9

pdf_convert(), 7
pptx2pdf, 5

R_user_dir(), 9
rm_working_directory
(working_directory), 9

to_miniature, 6
to_pdf, 7

working_directory, 9
working_directory(), 3,5

10

	check_libreoffice_export
	docx2pdf
	docx_update
	pptx2pdf
	to_miniature
	to_pdf
	working_directory
	Index

