library(dynConfiR)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
This vignette shows how to fit the model and use model parameters to
predict and simulate new data. It covers only how to get a quick fit to
a single participant (i.e. only one set of fitted parameters) for a
single model. The wrapper function fitRTConfModels
may be
used to fit several models to several independent participants in
parallel and with one command, which usually takes quite a while (around
several days depending also on the number of trials per
participant).
The dynamic weighted evidence and visibility model (dynWEV) is one possible model. See https://osf.io/9jfqr/ for the theoretical description of this and the other models.
The ConfidenceOrientation
dataset is included in the
package and can be loaded after the package is loaded. We subset to work
only with the data from one participant and pick only the theoretically
relevant columns.
data("ConfidenceOrientation")
<- ConfidenceOrientation %>%
part8 filter(participant == 8) %>%
select(SOA, stimulus, response, rt, disc_rating)
head(part8)
#> # A tibble: 6 x 5
#> SOA stimulus response rt disc_rating
#> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 66.7 senkrecht senkrecht 2.45 5
#> 2 8.3 waagrecht senkrecht 2.63 1
#> 3 8.3 senkrecht senkrecht 3.16 1
#> 4 16.7 senkrecht senkrecht 2.61 1
#> 5 8.3 senkrecht senkrecht 3.83 1
#> 6 133. senkrecht senkrecht 2.68 5
A specific model, in this example the dynWEV model, is fitted With a
simple call to the function fitRTConf
.
The fitting functions either require the columns
condition
, stimulus
, response
(or
correct
), rt
, and rating
to be
present in the data
argument or alternatively arguments
that specify the mapping of column names to the required variables with
e.g. condition="SOA"
. For simplicity we rename the column
names before fitting, to have congruent column names in data and later
predictions.
As the fitting procedure takes some time to deliver reasonable fits, we load previously fitted parameters into the environment (hidden code) and comment the actual function call.
To get a fast (but probably rather inaccurate) fit that is likely to
represent only a locally minimizing maximum likelihood estimation one
may use several strategies: - the argument
grid_search=FALSE
prevents the time consuming grid search
for the best starting values - adjusting the values in the
opts
argument, which is a list, reduces the time of the
actual optimization procedure - "nAttempts"=1
forces only
the best set of initial parameters to be optimized -
"nRestarts"=1
if one does not want to restart the
optimization routine several times - one may also restrict some
parameters that thus not have to be fit. Note, that this has theoretical
implications on what the model may predict. There are several common
restrictions - an unbiased starting point: z=0.5
- no
variation in starting point: sz=0
- symmetric confidence
thresholds for both possible responses: sym_thetas = TRUE
-
no variation in non-decision time: st0=0
Finally, as in this experiment confidence was reported simultaneously
with the discrimination response, we set
restr_tau= "simult_conf"
(see documentation).
<- part8 %>% rename(condition=SOA,
part8 rating = disc_rating)
# parfit <- fitRTConf(part8, "dynWEV",
# restr_tau="simult_conf")
parfit#> v1 v2 v3 v4 v5 sv a
#> 1 0.0372688 0.02975593 0.2286821 0.9073326 1.519281 0.7033667 1.990934
#> z sz t0 st0 thetaLower1 thetaLower2 thetaLower3
#> 1 0.4840425 0.968085 0.01379258 0.5047345 0.9779324 1.400266 1.651361
#> thetaLower4 thetaUpper1 thetaUpper2 thetaUpper3 thetaUpper4 tau w
#> 1 1.826896 0.8949651 1.219724 1.674355 1.858899 1.497835 0.632632
#> svis sigvis fixed negLogLik N k BIC AICc
#> 1 0.00228473 0.06989718 sym_thetas = TRUE 3130.487 1611 23 6430.819 6307.611
#> AIC
#> 1 6306.973
After fitting the parameters to the empirical data, these parameters
are used to compute the response and response time distribution
predicted by the model. One could use the high-level functions
predictConf
and predictRT
here (again for
several participants and/or models there are the wrappers
predictConfModels
and predictRTModels
), but we
use predictWEV_Conf
and predictWEV_Conf
to
specify the precision
argument to speed up the
computations.
<-
predictedResponses predictWEV_Conf(parfit, "dynWEV", simult_conf = TRUE,
precision = 1e-3, maxrt = 5, subdivisions = 50)
<-
predictedRTdist predictWEV_RT(parfit, "dynWEV", simult_conf = TRUE,
maxrt = 5, precision = 1e-3, subdivisions = 50,
scaled=TRUE, DistConf = predictedResponses)
print(head(predictedResponses))
#> # A tibble: 6 x 8
#> condition stimulus response correct rating p info err
#> <int> <dbl> <dbl> <dbl> <int> <dbl> <chr> <dbl>
#> 1 1 1 1 1 1 0.355 OK 0.000000748
#> 2 1 1 1 1 2 0.0487 OK 0.000117
#> 3 1 1 1 1 3 0.0472 OK 0.000107
#> 4 1 1 1 1 4 0.0125 OK 0.000109
#> 5 1 1 1 1 5 0.0293 OK 0.0000616
#> 6 1 1 -1 0 1 0.389 OK 0.000116
print(head(predictedRTdist))
#> # A tibble: 6 x 8
#> condition stimulus response correct rating rt dens densscaled
#> <int> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 1 -1 -1 1 1 0.0138 0 0
#> 2 1 -1 -1 1 1 0.116 0 0
#> 3 1 -1 -1 1 1 0.217 0 0
#> 4 1 -1 -1 1 1 0.319 0 0
#> 5 1 -1 -1 1 1 0.421 0 0
#> 6 1 -1 -1 1 1 0.523 0 0
The predicted distributions may be visually compared to the empirical distributions to check how accurately the model fits the data. Therefore, we transform the condition column in the prediction data sets to fit the one in the empirical data and aggregate the data sets over stimulus and response identity and distinguish only correct and incorrect responses.
<- part8 %>%
part8 mutate(condition = as.factor(condition),
correct = as.numeric(stimulus==response))
<- part8 %>%
empirical_response_dist group_by(condition) %>%
mutate(ntrials = n()) %>%
group_by(correct, condition, rating) %>%
summarise(p = n()/ntrials[1]) %>% ungroup()
#> `summarise()` has grouped output by 'correct', 'condition'. You can override
#> using the `.groups` argument.
<- predictedResponses %>%
predictedResponses mutate(condition = factor(condition, labels=levels(part8$condition))) %>%
group_by(correct, condition, rating) %>%
summarise(p = mean(p)) %>% ungroup()
#> `summarise()` has grouped output by 'correct', 'condition'. You can override
#> using the `.groups` argument.
<- predictedRTdist %>%
predictedRTdist mutate(condition = factor(condition, labels=levels(part8$condition))) %>%
group_by(correct, rating, rt) %>%
summarise(dens = mean(dens),
densscaled = mean(densscaled)) %>% ungroup()
#> `summarise()` has grouped output by 'correct', 'rating'. You can override using
#> the `.groups` argument.
ggplot(empirical_response_dist, aes(x=rating, y=p)) +
geom_bar(aes(fill=as.factor(correct)), stat="identity")+
geom_point(data=predictedResponses) +
scale_fill_discrete(name="Accuracy")+
facet_grid(cols=vars(correct), rows=vars(condition))
ggplot(subset(part8, rt<18), aes(x=rt, color=as.factor(correct))) +
geom_density(aes(linetype="Observed"), size=1.2)+
geom_line(data = predictedRTdist,
aes(y=densscaled, linetype="Prediction"),
size=1.2)+
scale_color_discrete(name="Accuracy")+
scale_linetype_discrete(name="")+
theme(legend.position = "bottom")+
xlim(0, 5)+
facet_grid(rows=vars(rating), cols=vars(correct))
#> Warning: Removed 4 rows containing non-finite values (stat_density).