Fitting (hierarchical) hidden Markov models to financial data via maximum likelihood estimation. See Oelschläger, L. and Adam, T. "Detecting bearish and bullish markets in financial time series using hierarchical hidden Markov models" (2021, Statistical Modelling) <doi:10.1177/1471082X211034048> for a reference.
Version: | 1.0.3 |
Depends: | R (≥ 4.0.0) |
Imports: | MASS, Rcpp, progress, foreach |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | parallel, doSNOW, rmarkdown, knitr, testthat (≥ 3.0.0), covr, printr, tseries, spelling |
Published: | 2022-07-07 |
Author: | Lennart Oelschläger [aut, cre], Timo Adam [aut], Rouven Michels [aut] |
Maintainer: | Lennart Oelschläger <oelschlaeger.lennart at gmail.com> |
BugReports: | https://github.com/loelschlaeger/fHMM/issues |
License: | GPL-3 |
URL: | https://loelschlaeger.de/fHMM/ |
NeedsCompilation: | yes |
Language: | en-US |
Materials: | README NEWS |
CRAN checks: | fHMM results |
Reference manual: | fHMM.pdf |
Vignettes: |
Introduction Model definition Controls Data management Model estimation State decoding and prediction Model checking Model selection |
Package source: | fHMM_1.0.3.tar.gz |
Windows binaries: | r-devel: fHMM_1.0.3.zip, r-release: fHMM_1.0.3.zip, r-oldrel: fHMM_1.0.3.zip |
macOS binaries: | r-release (arm64): fHMM_1.0.3.tgz, r-oldrel (arm64): fHMM_1.0.3.tgz, r-release (x86_64): fHMM_1.0.3.tgz, r-oldrel (x86_64): fHMM_1.0.3.tgz |
Old sources: | fHMM archive |
Please use the canonical form https://CRAN.R-project.org/package=fHMM to link to this page.