
Package ‘fake’
August 9, 2022

Title Flexible Data Simulation Using the Multivariate Normal
Distribution

Version 1.0.0

Author Barbara Bodinier [aut, cre]

Maintainer Barbara Bodinier <b.bodinier@imperial.ac.uk>

Description
Simulation of data from Gaussian Graphical Models (B Bodinier, S Filippi, TH Nost, J Chi-
quet, M Chadeau-Hyam (2021) <arXiv:2106.02521>). By controlling the conditional indepen-
dence structure between the variables, these multivariate simulation tools can be used to evalu-
ate the performance of regression, dimensionality reduction or graphical models.

License GPL (>= 3)

Language en-GB

Encoding UTF-8

RoxygenNote 7.2.0

Imports huge, igraph, MASS, Rdpack, withr (>= 2.4.0)

Suggests testthat (>= 3.0.0),

Config/testthat/edition 3

RdMacros Rdpack

NeedsCompilation no

Repository CRAN

Date/Publication 2022-08-09 12:40:02 UTC

R topics documented:
BlockDiagonal . 2
BlockMatrix . 3
BlockStructure . 3
Contrast . 4
Heatmap . 5
MakePositiveDefinite . 6
MatchingArguments . 9

1

https://arxiv.org/abs/2106.02521

2 BlockDiagonal

SimulateAdjacency . 10
SimulateComponents . 12
SimulateGraphical . 15
SimulatePrecision . 19
SimulateRegression . 22

Index 28

BlockDiagonal Block diagonal matrix

Description

Generates a binary block diagonal matrix.

Usage

BlockDiagonal(pk)

Arguments

pk vector encoding the grouping structure.

Value

A binary block diagonal matrix.

See Also

Other block matrix functions: BlockMatrix(), BlockStructure()

Examples

Example 1
BlockDiagonal(pk = c(2, 3))

Example 2
BlockDiagonal(pk = c(2, 3, 2))

BlockMatrix 3

BlockMatrix Block matrix

Description

Generates a symmetric block matrix of size (sum(pk) x sum(pk)). The sizes of the submatrices is
defined based on pk. For each submatrix, all entries are equal to the submatrix (block) index.

Usage

BlockMatrix(pk)

Arguments

pk vector encoding the grouping structure.

Value

A symmetric block matrix.

See Also

Other block matrix functions: BlockDiagonal(), BlockStructure()

Examples

Example 1
BlockMatrix(pk = c(2, 3))

Example 2
BlockMatrix(pk = c(2, 3, 2))

BlockStructure Block structure

Description

Generates a symmetric matrix of size (length(pk) x length(pk)) where entries correspond to
block indices. This function can be used to visualise block indices of a matrix generated with
BlockMatrix.

Usage

BlockStructure(pk)

Arguments

pk vector encoding the grouping structure.

4 Contrast

Value

A symmetric matrix of size length(pk)).

See Also

Other block matrix functions: BlockDiagonal(), BlockMatrix()

Examples

Example 1
BlockMatrix(pk = c(2, 3))
BlockStructure(pk = c(2, 3))

Example 2
BlockMatrix(pk = c(2, 3, 2))
BlockStructure(pk = c(2, 3, 2))

Contrast Matrix contrast

Description

Computes matrix contrast, defined as the number of unique truncated entries with a specified num-
ber of digits.

Usage

Contrast(mat, digits = 3)

Arguments

mat input matrix.

digits number of digits to use.

Value

A single number, the contrast of the input matrix.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

Heatmap 5

Examples

Example 1
mat <- matrix(c(0.1, 0.2, 0.2, 0.2), ncol = 2, byrow = TRUE)
Contrast(mat)

Example 2
mat <- matrix(c(0.1, 0.2, 0.2, 0.3), ncol = 2, byrow = TRUE)
Contrast(mat)

Heatmap Heatmap visualisation

Description

Produces a heatmap for visualisation of matrix entries.

Usage

Heatmap(
mat,
col = c("ivory", "navajowhite", "tomato", "darkred"),
resolution = 10000,
bty = "o",
axes = TRUE,
cex.axis = 1,
xlas = 2,
ylas = 2,
text = FALSE,
cex = 1,
legend = TRUE,
legend_length = NULL,
legend_range = NULL,
...

)

Arguments

mat data matrix.

col vector of colours.

resolution number of different colours to use.

bty character string indicating if the box around the plot should be drawn. Possible
values include: "o" (default, the box is drawn), or "n" (no box).

axes logical indicating if the row and column names of mat should be displayed.

cex.axis font size for axes.

6 MakePositiveDefinite

xlas orientation of labels on the x-axis, as las in par.

ylas orientation of labels on the y-axis, as las in par.

text logical indicating if numbers should be displayed.

cex font size for numbers. Only used if text=TRUE.

legend logical indicating if the colour bar should be included.

legend_length length of the colour bar.

legend_range range of the colour bar.

... additional arguments passed to formatC for number formatting. Only used if
text=TRUE.

Value

A heatmap.

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = c(3, 3, 1, 5))

Data simulation
set.seed(1)
mat <- matrix(rnorm(200), ncol = 20)
rownames(mat) <- paste0("r", 1:nrow(mat))
colnames(mat) <- paste0("c", 1:ncol(mat))

Generating heatmaps
Heatmap(mat = mat)
Heatmap(

mat = mat,
col = c("lightgrey", "blue", "black"),
legend = FALSE

)

par(oldpar)

MakePositiveDefinite Making positive definite matrix

Description

Determines the diagonal entries of a symmetric matrix to make it is positive definite.

MakePositiveDefinite 7

Usage

MakePositiveDefinite(
omega,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25

)

Arguments

omega input matrix.

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale_ev=TRUE) or covariance (if scale_ev=FALSE) matrix
divided by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u
is chosen by maximising the contrast of the correlation matrix.

scale logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale=TRUE) or covariance (scale=FALSE) matrix.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.

Details

Two strategies are implemented to ensure positive definiteness: by diagonally dominance or using
eigendecomposition.

A diagonally dominant symmetric matrix with positive diagonal entries is positive definite. With
pd_strategy="diagonally_dominant", the diagonal entries of the matrix are defined to be strictly
higher than the sum of entries on the corresponding row in absolute value, which ensures diagonally
dominance. Let Ω∗ denote the input matrix with zeros on the diagonal and Ω be the output positive
definite matrix. We have:

Ωii =
∑p

j=1 |Ωij ∗ |+ u, where u > 0 is a parameter.

A matrix is positive definite if all its eigenvalues are positive. With pd_strategy="diagonally_dominant",
diagonal entries of the matrix are defined to be higher than the absolute value of the smallest eigen-
value of the same matrix with a diagonal of zeros. Let λ1 denote the smallest eigenvvalue of the
input matrix Ω∗ with a diagonal of zeros, and v1 be the corresponding eigenvector. Diagonal entries
in the output matrix Ω are defined as:

8 MakePositiveDefinite

Ωii = |λ1|+ u, where u > 0 is a parameter.

It can be showed that Ω has stricly positive eigenvalues. Let λ and v denote any eigenpair of Ω∗:
Ω ∗ v = λv

Ω ∗ v + (|λ1|+ u)v = λv + (|λ1|+ u)v

(Ω ∗+(|λ1|+ u)I)v = (λ+ |λ1|+ u)v

Ωv = (λ+ |λ1|+ u)v

The eigenvalues of Ω are equal to the eigenvalues of Ω∗ plus |λ1|. The smallest eigenvalue of Ω is
(λ1 + |λ1|+ u) > 0.

Considering the matrix to make positive definite is a precision matrix, its standardised inverse matrix
is the correlation matrix. In both cases, the magnitude of correlations is controlled by the constant
u.

If ev_xx=NULL, the constant u is chosen to maximise the Contrast of the corresponding correlation
matrix.

If ev_xx is provided, the constant u is chosen to generate a correlation matrix with required pro-
portion of explained variance by the first Principal Component, if possible. This proportion of
explained variance is equal to the largest eigenvalue of the correlation matrix divided by the sum of
its eigenvalues. If scale=FALSE, the covariance matrix is used instead of the correlation matrix for
faster computations.

Value

A list with:

omega positive definite matrix.

u value of the constant u.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

Examples

Simulation of a symmetric matrix
p <- 5
set.seed(1)
omega <- matrix(rnorm(p * p), ncol = p)
omega <- omega + t(omega)
diag(omega) <- 0

Diagonal dominance maximising contrast
omega_pd <- MakePositiveDefinite(omega,
pd_strategy = "diagonally_dominant"

)
eigen(omega_pd$omega)$values # positive eigenvalues

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

MatchingArguments 9

Diagonal dominance with specific proportion of explained variance by PC1
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "diagonally_dominant",
ev_xx = 0.55

)
lambda_inv <- eigen(cov2cor(solve(omega_pd$omega)))$values
max(lambda_inv) / sum(lambda_inv) # expected ev

Version not scaled (using eigenvalues from the covariance)
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "diagonally_dominant",
ev_xx = 0.55, scale = FALSE

)
lambda_inv <- 1 / eigen(omega_pd$omega)$values
max(lambda_inv) / sum(lambda_inv) # expected ev

Non-negative eigenvalues maximising contrast
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "min_eigenvalue"
)
eigen(omega_pd$omega)$values # positive eigenvalues

Non-negative eigenvalues with specific proportion of explained variance by PC1
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "min_eigenvalue",
ev_xx = 0.7

)
lambda_inv <- eigen(cov2cor(solve(omega_pd$omega)))$values
max(lambda_inv) / sum(lambda_inv)

Version not scaled (using eigenvalues from the covariance)
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "min_eigenvalue",
ev_xx = 0.7, scale = FALSE

)
lambda_inv <- 1 / eigen(omega_pd$omega)$values
max(lambda_inv) / sum(lambda_inv)

MatchingArguments Matching arguments

Description

Returns a vector of overlapping character strings between extra_args and arguments from function
FUN. If FUN is taking ... as input, this function returns extra_args.

Usage

MatchingArguments(extra_args, FUN)

10 SimulateAdjacency

Arguments

extra_args vector of character strings.

FUN function.

Value

A vector of overlapping arguments.

Examples

MatchingArguments(
extra_args = list(Sigma = 1, test = FALSE),
FUN = MASS::mvrnorm

)

SimulateAdjacency Simulation of undirected graph with block structure

Description

Simulates the adjacency matrix of an unweighted, undirected graph with no self-loops. If topology="random",
different densities in diagonal (nu_within) compared to off-diagonal (nu_between) blocks can be
used.

Usage

SimulateAdjacency(
pk = 10,
implementation = HugeAdjacency,
topology = "random",
nu_within = 0.1,
nu_between = 0,
...

)

Arguments

pk vector of the number of variables per group in the simulated data. The number of
nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if sum(pk) is
equal to the number of rows/columns in theta is not provided.

implementation function for simulation of the graph. By default, algorithms implemented in
huge.generator are used. Alternatively, a user-defined function can be used. It
must take pk, topology and nu as arguments and return a (sum(pk)*(sum(pk)))
binary and symmetric matrix for which diagonal entries are all equal to zero.
This function is only applied if theta is not provided.

SimulateAdjacency 11

topology topology of the simulated graph. If using implementation=HugeAdjacency,
possible values are listed for the argument graph of huge.generator. These
are: "random", "hub", "cluster", "band" and "scale-free".

nu_within expected density (number of edges over the number of node pairs) of within-
group blocks in the graph. If length(pk)=1, this is the expected density of
the graph. If implementation=HugeAdjacency, this argument is only used for
topology="random" or topology="cluster" (see argument prob in huge.generator).

nu_between expected density (number of edges over the number of node pairs) of between-
group blocks in the graph. Similar to nu_within. By default, the same density
is used for within and between blocks (nu_within=nu_between). Only used if
length(pk)>1.

... additional arguments passed to the graph simulation function provided in implementation.

Details

Random graphs are simulated using the Erdos-Renyi algorithm. Scale-free graphs are simulated
using a preferential attachment algorithm. More details are provided in huge.generator.

Value

A symmetric adjacency matrix encoding an unweighted, undirected graph with no self-loops, and
with different densities in diagonal compared to off-diagonal blocks.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

Jiang H, Fei X, Liu H, Roeder K, Lafferty J, Wasserman L, Li X, Zhao T (2021). huge: High-
Dimensional Undirected Graph Estimation. R package version 1.3.5, https://CRAN.R-project.
org/package=huge.

See Also

Other simulation functions: SimulateComponents(), SimulateGraphical(), SimulateRegression()

Examples

Simulation of a scale-free graph with 20 nodes
adjacency <- SimulateAdjacency(pk = 20, topology = "scale-free")
plot(adjacency)

Simulation of a random graph with three connected components
adjacency <- SimulateAdjacency(

pk = rep(10, 3),
nu_within = 0.7, nu_between = 0

)
plot(adjacency)

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521
https://CRAN.R-project.org/package=huge
https://CRAN.R-project.org/package=huge

12 SimulateComponents

Simulation of a random graph with block structure
adjacency <- SimulateAdjacency(

pk = rep(10, 3),
nu_within = 0.7, nu_between = 0.03

)
plot(adjacency)

User-defined function for graph simulation
CentralNode <- function(pk, hub = 1) {

theta <- matrix(0, nrow = sum(pk), ncol = sum(pk))
theta[hub,] <- 1
theta[, hub] <- 1
diag(theta) <- 0
return(theta)

}
simul <- SimulateAdjacency(pk = 10, implementation = CentralNode)
plot(simul) # star
simul <- SimulateAdjacency(pk = 10, implementation = CentralNode, hub = 2)
plot(simul) # variable 2 is the central node

SimulateComponents Data simulation for sparse Principal Component Analysis

Description

Simulates data with with independent groups of variables.

Usage

SimulateComponents(
n = 100,
pk = c(10, 10),
adjacency = NULL,
nu_within = 1,
v_within = c(0.5, 1),
v_sign = -1,
continuous = TRUE,
pd_strategy = "min_eigenvalue",
ev_xx = 0.1,
scale_ev = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25,
scale = TRUE,
output_matrices = FALSE

)

SimulateComponents 13

Arguments

n number of observations in the simulated data.

pk vector of the number of variables per group in the simulated data. The number of
nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if sum(pk) is
equal to the number of rows/columns in theta is not provided.

adjacency optional binary and symmetric adjacency matrix encoding the conditional graph
structure between observations. The clusters encoded in this argument must be
in line with those indicated in pk. Edges in off-diagonal blocks are not allowed
to ensure that the simulated orthogonal components are sparse. Corresponding
entries in the precision matrix will be set to zero.

nu_within expected density (number of edges over the number of node pairs) of within-
group blocks in the graph. If length(pk)=1, this is the expected density of
the graph. If implementation=HugeAdjacency, this argument is only used for
topology="random" or topology="cluster" (see argument prob in huge.generator).

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (continuous=TRUE) or from proposed val-
ues in v_within (diagonal blocks) or v_between (off-diagonal blocks) (continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale_ev=TRUE) or covariance (if scale_ev=FALSE) matrix
divided by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u
is chosen by maximising the contrast of the correlation matrix.

scale_ev logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale_ev=TRUE) or covariance (scale_ev=FALSE)
matrix. If scale_ev=TRUE, the correlation matrix is used as parameter of the
multivariate normal distribution.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

14 SimulateComponents

tol accuracy for the search of parameter u as defined in optimise.

scale logical indicating if the simulated data should be standardised using scale.
output_matrices

logical indicating if the true precision and (partial) correlation matrices should
be included in the output.

Details

The data is simulated from a centered multivariate Normal distribution with a block-diagonal co-
variance matrix. Independence between variables from the different blocks ensures that sparse
orthogonal components can be generated.

The block-diagonal partial correlation matrix is obtained using a graph structure encoding the con-
ditional independence between variables. The orthogonal latent variables are obtained from eigen-
decomposition of the true correlation matrix. The sparse eigenvectors contain the weights of the
linear combination of variables to construct the latent variable (loadings coefficients). The propor-
tion of explained variance by each of the latent variable is computed from eigenvalues.

As latent variables are defined from the true correlation matrix, the number of sparse orthogonal
components is not limited by the number of observations and is equal to sum(pk).

Value

A list with:

data simulated data with n observation and sum(pk) variables.

loadings loadings coefficients of the orthogonal latent variables (principal components).

theta support of the loadings coefficients.

ev proportion of explained variance by each of the orthogonal latent variables.

adjacency adjacency matrix of the simulated graph.

omega simulated (true) precision matrix. Only returned if output_matrices=TRUE.

phi simulated (true) partial correlation matrix. Only returned if output_matrices=TRUE.

C simulated (true) correlation matrix. Only returned if output_matrices=TRUE.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

See Also

MakePositiveDefinite

Other simulation functions: SimulateAdjacency(), SimulateGraphical(), SimulateRegression()

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

SimulateGraphical 15

Examples

Simulation of 3 components with high e.v.
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4), ev_xx = 0.4)
print(simul)
plot(simul)
plot(cumsum(simul$ev), ylim = c(0, 1), las = 1)

Simulation of 3 components with moderate e.v.
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4), ev_xx = 0.25)
print(simul)
plot(simul)
plot(cumsum(simul$ev), ylim = c(0, 1), las = 1)

Simulation of multiple components with low e.v.
pk <- sample(3:10, size = 5, replace = TRUE)
simul <- SimulateComponents(

pk = pk,
nu_within = 0.3, v_within = c(0.8, 0.5), v_sign = -1, ev_xx = 0.1

)
plot(simul)
plot(cumsum(simul$ev), ylim = c(0, 1), las = 1)

SimulateGraphical Data simulation for Gaussian Graphical Modelling

Description

Simulates data from a Gaussian Graphical Model (GGM).

Usage

SimulateGraphical(
n = 100,
pk = 10,
theta = NULL,
implementation = HugeAdjacency,
topology = "random",
nu_within = 0.1,
nu_between = NULL,
v_within = c(0.5, 1),
v_between = c(0.1, 0.2),
v_sign = c(-1, 1),
continuous = TRUE,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale_ev = TRUE,

16 SimulateGraphical

u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25,
scale = TRUE,
output_matrices = FALSE,
...

)

Arguments

n number of observations in the simulated data.
pk vector of the number of variables per group in the simulated data. The number of

nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if sum(pk) is
equal to the number of rows/columns in theta is not provided.

theta optional binary and symmetric adjacency matrix encoding the conditional inde-
pendence structure.

implementation function for simulation of the graph. By default, algorithms implemented in
huge.generator are used. Alternatively, a user-defined function can be used. It
must take pk, topology and nu as arguments and return a (sum(pk)*(sum(pk)))
binary and symmetric matrix for which diagonal entries are all equal to zero.
This function is only applied if theta is not provided.

topology topology of the simulated graph. If using implementation=HugeAdjacency,
possible values are listed for the argument graph of huge.generator. These
are: "random", "hub", "cluster", "band" and "scale-free".

nu_within expected density (number of edges over the number of node pairs) of within-
group blocks in the graph. If length(pk)=1, this is the expected density of
the graph. If implementation=HugeAdjacency, this argument is only used for
topology="random" or topology="cluster" (see argument prob in huge.generator).

nu_between expected density (number of edges over the number of node pairs) of between-
group blocks in the graph. Similar to nu_within. By default, the same density
is used for within and between blocks (nu_within=nu_between). Only used if
length(pk)>1.

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_between vector defining the (range of) nonzero entries in the off-diagonal blocks of the
precision matrix. This argument is the same as v_within but for off-diagonal
blocks. It is only used if length(pk)>1.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (continuous=TRUE) or from proposed val-
ues in v_within (diagonal blocks) or v_between (off-diagonal blocks) (continuous=FALSE).

SimulateGraphical 17

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale_ev=TRUE) or covariance (if scale_ev=FALSE) matrix
divided by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u
is chosen by maximising the contrast of the correlation matrix.

scale_ev logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale_ev=TRUE) or covariance (scale_ev=FALSE)
matrix. If scale_ev=TRUE, the correlation matrix is used as parameter of the
multivariate normal distribution.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.

scale logical indicating if the simulated data should be standardised using scale.
output_matrices

logical indicating if the true precision and (partial) correlation matrices should
be included in the output.

... additional arguments passed to the graph simulation function provided in implementation.

Details

The simulation is done in two steps with (i) generation of a graph, and (ii) sampling from multivari-
ate Normal distribution for which nonzero entries in the partial correlation matrix correspond to the
edges of the simulated graph. This procedure ensures that the conditional independence structure
between the variables corresponds to the simulated graph.

Step 1 is done using SimulateAdjacency.

In Step 2, the precision matrix (inverse of the covariance matrix) is simulated using SimulatePrecision
so that (i) its nonzero entries correspond to edges in the graph simulated in Step 1, and (ii) it is
positive definite (see MakePositiveDefinite). The inverse of the precision matrix is used as co-
variance matrix to simulate data from a multivariate Normal distribution.

The outputs of this function can be used to evaluate the ability of a graphical model to recover the
conditional independence structure.

Value

A list with:

data simulated data with n observation and sum(pk) variables.

theta adjacency matrix of the simulated graph

omega simulated (true) precision matrix. Only returned if output_matrices=TRUE.

18 SimulateGraphical

phi simulated (true) partial correlation matrix. Only returned if output_matrices=TRUE.

sigma simulated (true) covariance matrix. Only returned if output_matrices=TRUE.

u value of the constant u used for the simulation of omega. Only returned if
output_matrices=TRUE.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

See Also

SimulatePrecision, MakePositiveDefinite, Contrast

Other simulation functions: SimulateAdjacency(), SimulateComponents(), SimulateRegression()

Examples

Simulation of random graph with 50 nodes
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 50, topology = "random", nu_within = 0.05)
print(simul)
plot(simul)

Simulation of scale-free graph with 20 nodes
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, topology = "scale-free")
plot(simul)

Extracting true precision/correlation matrices
set.seed(1)
simul <- SimulateGraphical(

n = 100, pk = 20,
topology = "scale-free", output_matrices = TRUE

)
str(simul)

Simulation of multi-block data
set.seed(1)
pk <- c(20, 30)
simul <- SimulateGraphical(

n = 100, pk = pk,
pd_strategy = "min_eigenvalue"

)
mycor <- cor(simul$data)
Heatmap(mycor,

col = c("darkblue", "white", "firebrick3"),
legend_range = c(-1, 1), legend_length = 50,
legend = FALSE, axes = FALSE

)

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

SimulatePrecision 19

for (i in 1:2) {
axis(side = i, at = c(0.5, pk[1] - 0.5), labels = NA)
axis(
side = i, at = mean(c(0.5, pk[1] - 0.5)),
labels = ifelse(i == 1, yes = "Group 1", no = "Group 2"),
tick = FALSE, cex.axis = 1.5

)
axis(side = i, at = c(pk[1] + 0.5, sum(pk) - 0.5), labels = NA)
axis(

side = i, at = mean(c(pk[1] + 0.5, sum(pk) - 0.5)),
labels = ifelse(i == 1, yes = "Group 2", no = "Group 1"),
tick = FALSE, cex.axis = 1.5

)
}

User-defined function for graph simulation
CentralNode <- function(pk, hub = 1) {

theta <- matrix(0, nrow = sum(pk), ncol = sum(pk))
theta[hub,] <- 1
theta[, hub] <- 1
diag(theta) <- 0
return(theta)

}
simul <- SimulateGraphical(n = 100, pk = 10, implementation = CentralNode)
plot(simul) # star
simul <- SimulateGraphical(n = 100, pk = 10, implementation = CentralNode, hub = 2)
plot(simul) # variable 2 is the central node

User-defined adjacency matrix
mytheta <- matrix(c(

0, 1, 1, 0,
1, 0, 0, 0,
1, 0, 0, 1,
0, 0, 1, 0

), ncol = 4, byrow = TRUE)
simul <- SimulateGraphical(n = 100, theta = mytheta)
plot(simul)

User-defined adjacency and block structure
simul <- SimulateGraphical(n = 100, theta = mytheta, pk = c(2, 2))
mycor <- cor(simul$data)
Heatmap(mycor,

col = c("darkblue", "white", "firebrick3"),
legend_range = c(-1, 1), legend_length = 50, legend = FALSE

)

SimulatePrecision Simulation of precision matrix

20 SimulatePrecision

Description

Simulates a sparse precision matrix from a binary adjacency matrix theta encoding conditional
independence in a Gaussian Graphical Model.

Usage

SimulatePrecision(
pk = NULL,
theta,
v_within = c(0.5, 1),
v_between = c(0, 0.1),
v_sign = c(-1, 1),
continuous = TRUE,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25

)

Arguments

pk vector of the number of variables per group in the simulated data. The number of
nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if sum(pk) is
equal to the number of rows/columns in theta is not provided.

theta binary and symmetric adjacency matrix encoding the conditional independence
structure.

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_between vector defining the (range of) nonzero entries in the off-diagonal blocks of the
precision matrix. This argument is the same as v_within but for off-diagonal
blocks. It is only used if length(pk)>1.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (continuous=TRUE) or from proposed val-
ues in v_within (diagonal blocks) or v_between (off-diagonal blocks) (continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If

SimulatePrecision 21

pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale_ev=TRUE) or covariance (if scale_ev=FALSE) matrix
divided by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u
is chosen by maximising the contrast of the correlation matrix.

scale logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale=TRUE) or covariance (scale=FALSE) matrix.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.

Details

Entries that are equal to zero in the adjacency matrix theta are also equal to zero in the generated
precision matrix. These zero entries indicate conditional independence between the corresponding
pair of variables (see SimulateGraphical).

Argument pk can be specified to create groups of variables and allow for nonzero precision entries
to be sampled from different distributions between two variables belonging to the same group or to
different groups.

If continuous=FALSE, nonzero off-diagonal entries of the precision matrix are sampled from a dis-
crete uniform distribution taking values in v_within (for entries in the diagonal block) or v_between
(for entries in off-diagonal blocks). If continuous=TRUE, nonzero off-diagonal entries are sampled
from a continuous uniform distribution taking values in the range given by v_within or v_between.

Diagonal entries of the precision matrix are defined to ensure positive definiteness as described in
MakePositiveDefinite.

Value

A list with:

omega true simulated precision matrix.

u value of the constant u used to ensure that omega is positive definite.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

See Also

SimulateGraphical, MakePositiveDefinite

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

22 SimulateRegression

Examples

Simulation of an adjacency matrix
theta <- SimulateAdjacency(pk = c(5, 5), nu_within = 0.7)
print(theta)

Simulation of a precision matrix maximising the contrast
simul <- SimulatePrecision(theta = theta)
print(simul$omega)

Simulation of a precision matrix with specific ev by PC1
simul <- SimulatePrecision(

theta = theta,
pd_strategy = "min_eigenvalue",
ev_xx = 0.3, scale = TRUE

)
print(simul$omega)

SimulateRegression Data simulation for multivariate regression

Description

Simulates data with outcome(s) and predictors, where only a subset of the predictors actually con-
tributes to the definition of the outcome(s).

Usage

SimulateRegression(
n = 100,
pk = 10,
N = 3,
family = "gaussian",
ev_xz = 0.8,
adjacency_x = NULL,
nu_within = 0.1,
theta_xz = NULL,
nu_xz = 0.2,
theta_zy = NULL,
nu_zy = 0.5,
eta = NULL,
eta_set = c(-1, 1),
v_within = c(0.5, 1),
v_sign = c(-1, 1),
continuous = TRUE,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale_ev = TRUE,
u_list = c(1e-10, 1),

SimulateRegression 23

tol = .Machine$double.eps^0.25
)

Arguments

n number of observations in the simulated data.

pk vector with the number of predictors in each independent block of variables
in xdata. The number of independent blocks, which determines the maxi-
mum number of orthogonal latent variables that can be simulated, is given by
length(pk).

N number of classes of the categorical outcome. Only used if family="multinomial".

family type of outcome. If family="gaussian", normally distributed outcomes are
simulated. If family="binomial" or family="multinomial", binary outcome(s)
are simulated from a multinomial distribution where the probability is defined
from a linear combination of normally distributed outcomes.

ev_xz vector of the expected proportions of explained variances for each of the orthog-
onal latent variables. It must contain values in]0,1[, and must be a vector of
length length(pk) or a single value to generate latent variables with the same
expected proportion of explained variance.

adjacency_x optional matrix encoding the conditional independence structure between pre-
dictor variables in xdata. This argument must be a binary symmetric matrix of
size sum(pk) with zeros on the diagonal.

nu_within expected density (number of edges over the number of node pairs) of the condi-
tional independence graph in the within-group blocks for predictors. For inde-
pendent predictors, use nu_within=0. This argument is only used if adjancency_x
is not provided.

theta_xz optional binary matrix encoding the predictor variables from xdata (columns)
contributing to the definition of the orthogonal latent outcomes from zdata
(rows).

nu_xz expected proportion of relevant predictors over the total number of predictors to
be used for the simulation of the orthogonal latent outcomes. This argument is
only used if theta_xz is not provided.

theta_zy optional binary matrix encoding the latent variables from zdata (columns) con-
tributing to the definition of the observed outcomes from ydata (rows). This ar-
gument must be a square matrix of size length(pk). If theta_zy is a diagonal
matrix, each latent variable contributes to the definition of one observed outcome
so that there is a one-to-one relationship between latent and observed outcomes
(i.e. they are collinear). Nonzero off-diagonal elements in theta_zy introduce
some correlation between the observed outcomes by construction from linear
combinations implicating common latent outcomes. This argument is only used
if eta is not provided.

nu_zy probability for each of the off-diagonal elements in theta_zy to be a 1. If
nu_zy=0, theta_zy is a diagonal matrix. This argument is only used if theta_zy
is not provided.

eta optional matrix of coefficients used in the linear combination of latent outcomes
to generate observed outcomes.

24 SimulateRegression

eta_set vector defining the range of values from which eta is sampled. This argument
is only used if eta is not provided.

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (continuous=TRUE) or from proposed val-
ues in v_within (diagonal blocks) or v_between (off-diagonal blocks) (continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale_ev=TRUE) or covariance (if scale_ev=FALSE) matrix
divided by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u
is chosen by maximising the contrast of the correlation matrix.

scale_ev logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale_ev=TRUE) or covariance (scale_ev=FALSE)
matrix. If scale_ev=TRUE, the correlation matrix is used as parameter of the
multivariate normal distribution.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.

Details

For a univariate outcome (length(pk)=1), the simulation is done in four steps where (i) predictors
contributing to outcome definition are randomly sampled (with probability nu_xz for a given pre-
dictor to be picked), (ii) the conditional independence structure between the predictors is simulated
(with probability nu_within for a given pair of predictors to be correlated, conditionally on all
other variables), (iii) generation of a precision matrix (inverse covariance matrix) for all variables,
where nonzero entries correspond to the predictors contributing to outcome definition or conditional
correlation between the predictors, and (iv) data for both predictors and outcome is simulated from
a single multivariate Normal distribution using the inverse precision matrix as covariance matrix.

To ensure that the generated precision matrix Ω is positive definite, the diagonal entries are defined
as described in MakePositiveDefinite. The conditional variance of the outcome ΩY Y is chosen
so that the proportion of variance in the outcome that is explained by the predictors is ev_xz.

SimulateRegression 25

For a multivariate outcome (length(pk)>1), we introduce independent groups of predictors and
orthogonal latent variables (groups are defined in pk). Each latent variable is defined as a function
of variables belonging to one group of predictors. The precision matrix is defined as described
above for univariate outcomes. Subject to the re-ordering of its rows, this precision matrix is block-
diagonal, encoding the independence between sets of variables made of (i) the groups of predictors,
and (ii) their corresponding latent variable. The outcome variables are then constructed from a
linear combination of the latent variables, allowing for contributing predictors belonging to different
groups.

The use of latent variables in the multivariate case ensures that we can control the proportion of
variance in the latent variable explained by the predictors (ev_xz).

Value

A list with:

xdata simulated predictor data.

ydata simulated outcome data.

proba simulated probability of belonging to each outcome class. Only used for family="binomial"
or family="multinomial".

logit_proba logit of the simulated probability of belonging to each outcome class. Only used
for family="binomial" or family="multinomial".

zdata simulated data for orthogonal latent outcomes.

beta matrix of true beta coefficients used to generate outcomes in ydata from predic-
tors in xdata.

theta binary matrix indicating the predictors from xdata contributing to the definition
of each of the outcome variables in ydata.

eta matrix of coefficients used in the linear combination of latent variables from
zdata to define observed outcomes in ydata.

theta_zy binary matrix indicating the latent variables from zdata used in the definition
of observed outcomes in ydata.

xi matrix of true beta coefficients used to generate orthogonal latent outcomes in
zdata from predictors in xdata.

theta_xz binary matrix indicating the predictors from xdata contributing to the definition
of each of the latent outcome variables in zdata.

omega_xz precision matrix for variables in xdata and zdata.

adjacency binary matrix encoding the conditional independence structure between vari-
ables from xdata (var), zdata (latent) and ydata (outcome).

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

26 SimulateRegression

See Also

Other simulation functions: SimulateAdjacency(), SimulateComponents(), SimulateGraphical()

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = c(5, 5, 5, 5))

Continuous outcomes

Univariate outcome
set.seed(1)
simul <- SimulateRegression(pk = 15)
print(simul)
plot(simul)

Multivariate outcome
set.seed(1)
simul <- SimulateRegression(pk = c(5, 7, 3))
print(simul)
plot(simul)

Independent predictors
set.seed(1)
simul <- SimulateRegression(pk = c(5, 3), nu_within = 0)
print(simul)
plot(simul)

Blocks of strongly inter-connected predictors
set.seed(1)
simul <- SimulateRegression(

pk = c(5, 5), nu_within = 0.5,
v_within = c(0.5, 1), v_sign = -1, continuous = TRUE, pd_strategy = "min_eigenvalue"

)
print(simul)
Heatmap(

mat = cor(simul$xdata),
col = c("navy", "white", "red"),
legend_range = c(-1, 1)

)
plot(simul)

Categorical outcomes

Binary outcome
set.seed(1)
simul <- SimulateRegression(pk = 20, family = "binomial")
print(simul)
table(simul$ydata[, 1])

Categorical outcome

SimulateRegression 27

set.seed(1)
simul <- SimulateRegression(pk = 20, family = "multinomial")
print(simul)
apply(simul$ydata, 2, sum)

par(oldpar)

Index

∗ block matrix functions
BlockDiagonal, 2
BlockMatrix, 3
BlockStructure, 3

∗ simulation functions
SimulateAdjacency, 10
SimulateComponents, 12
SimulateGraphical, 15
SimulateRegression, 22

BlockDiagonal, 2, 3, 4
BlockMatrix, 2, 3, 3, 4
BlockStructure, 2, 3, 3

Contrast, 4, 8, 18

formatC, 6

Heatmap, 5
huge.generator, 10, 11, 13, 16

MakePositiveDefinite, 6, 14, 17, 18, 21, 24
MatchingArguments, 9

optimise, 7, 14, 17, 21, 24

par, 6

scale, 14, 17
SimulateAdjacency, 10, 14, 17, 18, 26
SimulateComponents, 11, 12, 18, 26
SimulateGraphical, 11, 14, 15, 21, 26
SimulatePrecision, 17, 18, 19
SimulateRegression, 11, 14, 18, 22

28

	BlockDiagonal
	BlockMatrix
	BlockStructure
	Contrast
	Heatmap
	MakePositiveDefinite
	MatchingArguments
	SimulateAdjacency
	SimulateComponents
	SimulateGraphical
	SimulatePrecision
	SimulateRegression
	Index

