First, we need to install fastaudio module
.
reticulate::py_install('fastaudio',pip = TRUE)
Grab data:
URLs_SPEAKERS10()
= 'SPEAKERS10' path_dig
See audio extensions:
audio_extensions()[1:6]
#[1] ".aif" ".aifc" ".aiff" ".au" ".m3u" ".mp2"
Read files:
= get_files(path_dig, extensions = audio_extensions())
fnames # (#3842) [Path('SPEAKERS10/f0004_us_f0004_00414.wav')...]
Read audio data and visualize a tensor:
= AudioTensor_create(fnames[0])
at $shape
at; at%>% show() %>% plot(dpi = 200) at
fastaudio has a AudioConfig class which allows us to prepare different settings for our dataset. Currently it has:
Voice module is the most suitable because it contains human voices.
= Voice()
cfg
$f_max; cfg$sample_rate
cfg#[1] 8000 # frequency range
#[1] 16000 # the sampling rate
Turn data into spectrogram and crop signal:
= AudioToSpec_from_cfg(cfg)
aud2spec
= ResizeSignal(1000) crop1s
Create a pipeline and see the result:
= Pipeline(list(AudioTensor_create, crop1s, aud2spec))
pipe pipe(fnames[0]) %>% show() %>% plot(dpi = 200)
As usual, prepare a datalaoder:
= list(ResizeSignal(1000), aud2spec)
item_tfms
= function(x) substring(x$name[1],1,1)
get_y
= DataBlock(blocks = list(AudioBlock(), CategoryBlock()),
aud_digit get_items = get_audio_files,
splitter = RandomSplitter(),
item_tfms = item_tfms,
get_y = get_y)
= aud_digit %>% dataloaders(source = path_dig, bs = 64)
dls
%>% show_batch(figsize = c(15, 8.5), nrows = 3, ncols = 3, max_n = 9, dpi = 180) dls
We will use a pretrained ResNet model. However, the channel number and weight dimension have to be changed:
= torch()
torch = nn()
nn
= Learner(dls, xresnet18(pretrained = FALSE), nn$CrossEntropyLoss(), metrics=accuracy)
learn
# channel from 3 to 1
$model[0][0][['in_channels']] %f% 1L
learn# reshape
<- torch$nn$parameter$Parameter(
new_weight_shape $model[0][0]$weight %>% narrow('[:,1,:,:]'))$unsqueeze(1L))
(learn
# assign with %f%
$model[0][0][['weight']] %f% new_weight_shape learn
Find lr
:
= learn %>% lr_find()
lrs #SuggestedLRs(lr_min=0.03019951581954956, lr_steep=0.0030199517495930195)
And fit
:
%>% fit_one_cycle(10, 1e-3) learn
epoch train_loss valid_loss accuracy time
0 5.494162 3.295561 0.632812 00:06
1 1.962470 0.236809 0.877604 00:06
2 0.801965 0.174774 0.917969 00:06
3 0.391742 0.208425 0.881510 00:06
4 0.243276 0.149436 0.914062 00:06
5 0.174708 0.134832 0.929688 00:07
6 0.142626 0.127814 0.910156 00:06
7 0.131042 0.120308 0.924479 00:07
8 0.121679 0.126913 0.919271 00:06
9 0.118215 0.114659 0.924479 00:06