footBayes: Fitting Bayesian and MLE Football Models
This is the first package allowing for the estimation,
visualization and prediction of the most well-known
football models: double Poisson, bivariate Poisson,
Skellam, student_t. The package allows Hamiltonian
Monte Carlo (HMC) estimation through the underlying Stan
environment and Maximum Likelihood estimation (MLE, for
'static' models only). The model construction relies on
the most well-known football references, such as
Dixon and Coles (1997) <doi:10.1111/1467-9876.00065>,
Karlis and Ntzoufras (2003) <doi:10.1111/1467-9884.00366> and
Egidi, Pauli and Torelli (2018) <doi:10.1177/1471082X18798414>.
Version: |
0.1.0 |
Depends: |
R (≥ 3.1.0) |
Imports: |
rstan (≥ 2.18.1), arm, reshape2, ggplot2, bayesplot, matrixStats, extraDistr, parallel, metRology, dplyr, numDeriv, tidyverse, magrittr |
Suggests: |
testthat, knitr (≥ 1.37), rmarkdown (≥ 2.10), engsoccerdata, loo |
Published: |
2022-02-21 |
Author: |
Leonardo Egidi[aut, cre] |
Maintainer: |
Leonardo Egidi <legidi at units.it> |
License: |
GPL-2 |
URL: |
https://github.com/leoegidi/footbayes |
NeedsCompilation: |
no |
SystemRequirements: |
pandoc (>= 1.12.3), pandoc-citeproc |
Materials: |
NEWS |
In views: |
SportsAnalytics |
CRAN checks: |
footBayes results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=footBayes
to link to this page.