Forest plots are commonly used in the medical research publications, especially in meta-analysis. And it can also be used to report the coefficients and confidence intervals (CIs) of the regression models.
There are lots of packages out there can be used to create draw a forest plot. The most popular one is forestplot. Packages specialised for the meta-analysis, like meta, metafor and rmeta. Some other packages, like ggforestplot, tried to use ggplot2 to draw a forest plot, they are not available on the CRAN yet.
The main differences of the forestploter
from the other
packages are:
The layout of the forest plot is determined by the dataset provided.
The first step is to prepare a data.frame
to be used as
a basic layout of the forest plot. Column names of the data will be
drawn as the header, and contents inside the data will be displayed in
the forest plot. One or multiple blank columns without any content
(blanks) should be provided to draw confidence interval. Width
of the box to draw the CI is determined by the width of this column.
Increase the number of space in the column to give more space to draw
CI.
First we need to get the data ready to plot.
library(grid)
library(forestploter)
# Read provided sample example data
<- read.csv(system.file("extdata", "example_data.csv", package = "forestploter"))
dt
# Keep needed columns
<- dt[,1:6]
dt
# indent the subgroup if there is a number in the placebo column
$Subgroup <- ifelse(is.na(dt$Placebo),
dt$Subgroup,
dtpaste0(" ", dt$Subgroup))
# NA to blank or NA will be transformed to carachter.
$Treatment <- ifelse(is.na(dt$Treatment), "", dt$Treatment)
dt$Placebo <- ifelse(is.na(dt$Placebo), "", dt$Placebo)
dt$se <- (log(dt$hi) - log(dt$est))/1.96
dt
# Add blank column for the forest plot to display CI.
# Adjust the column width with space.
$` ` <- paste(rep(" ", 20), collapse = " ")
dt
# Create confidence interval column to display
$`HR (95% CI)` <- ifelse(is.na(dt$se), "",
dtsprintf("%.2f (%.2f to %.2f)",
$est, dt$low, dt$hi))
dthead(dt)
#> Subgroup Treatment Placebo est low hi se
#> 1 All Patients 781 780 1.869694 0.13245636 3.606932 0.3352463
#> 2 Sex NA NA NA NA
#> 3 Male 535 548 1.449472 0.06834426 2.830600 0.3414741
#> 4 Female 246 232 2.275120 0.50768005 4.042560 0.2932884
#> 5 Age NA NA NA NA
#> 6 <65 yr 297 333 1.509242 0.67029394 2.348190 0.2255292
#> HR (95% CI)
#> 1 1.87 (0.13 to 3.61)
#> 2
#> 3 1.45 (0.07 to 2.83)
#> 4 2.28 (0.51 to 4.04)
#> 5
#> 6 1.51 (0.67 to 2.35)
The data we have above will be used as basic layout of the forest plot. The example below shows how to draw a simple forest plot. A footnote was added as a demonstration.
<- forest(dt[,c(1:3, 8:9)],
p est = dt$est,
lower = dt$low,
upper = dt$hi,
sizes = dt$se,
ci_column = 4,
ref_line = 1,
arrow_lab = c("Placebo Better", "Treatment Better"),
xlim = c(0, 4),
ticks_at = c(0.5, 1, 2, 3),
footnote = "This is the demo data. Please feel free to change\nanything you want.")
# Print plot
plot(p)
Now we will use the same data above, pretending that’s what we have
and add a summary point. We also want to change the graphical parameters
for confidence interval and other parts of the plot. Theme of the forest
plot can be adjusted with forest_theme
function, check out
the manual for more details.
<- rbind(dt[-1, ], dt[1, ])
dt_tmp nrow(dt_tmp), 1] <- "Overall"
dt_tmp[
# Define theme
<- forest_theme(base_size = 10,
tm # Confidence interval point shape, line type/color/width
ci_pch = 16,
ci_col = "#762a83",
ci_lty = 1,
ci_lwd = 1.5,
ci_Theight = 0.2, # Set an T end at the end of CI
# Reference line width/type/color
refline_lwd = 1,
refline_lty = "dashed",
refline_col = "grey20",
# Vertical line width/type/color
vertline_lwd = 1,
vertline_lty = "dashed",
vertline_col = "grey20",
# Change summary color for filling and borders
summary_fill = "#4575b4",
summary_col = "#4575b4",
# Footnote font size/face/color
footnote_cex = 0.6,
footnote_fontface = "italic",
footnote_col = "blue")
<- forest(dt_tmp[,c(1:3, 8:9)],
pt est = dt_tmp$est,
lower = dt_tmp$low,
upper = dt_tmp$hi,
sizes = dt_tmp$se,
is_summary = c(rep(FALSE, nrow(dt_tmp)-1), TRUE),
ci_column = 4,
ref_line = 1,
arrow_lab = c("Placebo Better", "Treatment Better"),
xlim = c(0, 4),
ticks_at = c(0.5, 1, 2, 3),
footnote = "This is the demo data. Please feel free to change\nanything you want.",
theme = tm)
# Print plot
plot(pt)
The package has some functionality to modify the forestplot. Below is the functions to edit various aspects of the plot:
edit_plot
function can be used to change the
graphical parameter of text and background. For example the color or
font face of some columns or rows.add_underline
function can be used to add a border
to a specific row.add_text
function can be used to add text to
certain rows/columns.insert_text
function can be used to insert a row
before or after a certain row and add text.# Change text color in row 3
<- edit_plot(p, row = 3, gp = gpar(col = "red", fontface = "italic"))
g
# Bold grouping text
<- edit_plot(g,
g row = c(2, 5, 10, 13, 17, 20),
gp = gpar(fontface = "bold"))
# Edit background of row 5
<- edit_plot(g, row = 5, which = "background",
g gp = gpar(fill = "darkolivegreen1"))
# Insert text at top
<- insert_text(g,
g text = "Treatment group",
col = 2:3,
part = "header",
gp = gpar(fontface = "bold"))
# Add underline at the bottom of the header
<- add_underline(g, part = "header")
g
# Insert text
<- insert_text(g,
g text = "This is a long text. Age and gender summarised above.\nBMI is next",
row = 10,
just = "left",
gp = gpar(cex = 0.6, col = "green", fontface = "italic"))
plot(g)
The add_text
simply put the text in the plot without
adding any rows to the plot. Adding a blank row to the data before
drawing a forest plot and use add_text
function to add text
to the row have the same effect as insert_text
.
By default, all cells are left aligned. But it is possible to justify
any cells in the forest plot by setting parameters in
forest_theme
. Set
core=list(fg_params=list(hjust=0, x=0))
to set the contents
of the table aligned to left, and set
rowhead=list(fg_params=list(hjust=0.5, x=0.5)
to center
header. Set hjust=1
and x=0.9
to right align
text.
Same rule apply to change the background color by setting
core=list(bg_params=list(fill = c("#edf8e9", "#c7e9c0", "#a1d99b")))
.
Change settings in core
if you want to change graphical
parameters for data, colhead
for header. Change settings in
fg_params
to modify the text, see parameters for
textGrob()
in grid
package. Change
bg_params
to modify settings for background graphical
parameters, see gpar()
in grid
package. You
should pass parameters as a list.
Provide a single value if you want cells have the same justification or vector for each cells. As you can notice that the second example justify text by row using the provided vector, and the vector will be recycled. More details can be found here.
<- dt[1:4, ]
dt
# Header center and content right
<- forest_theme(core=list(fg_params=list(hjust = 1, x = 0.9),
tm bg_params=list(fill = c("#edf8e9", "#c7e9c0", "#a1d99b"))),
colhead=list(fg_params=list(hjust=0.5, x=0.5)))
<- forest(dt[,c(1:3, 8:9)],
p est = dt$est,
lower = dt$low,
upper = dt$hi,
sizes = dt$se,
ci_column = 4,
title = "Header center content right",
theme = tm)
# Print plot
plot(p)
# Mixed justification
<- forest_theme(core=list(fg_params=list(hjust=c(1, 0, 0, 0.5),
tm x=c(0.9, 0.1, 0, 0.5)),
bg_params=list(fill = c("#f6eff7", "#d0d1e6", "#a6bddb", "#67a9cf"))),
colhead=list(fg_params=list(hjust=c(1, 0, 0, 0, 0.5),
x=c(0.9, 0.1, 0, 0, 0.5))))
<- forest(dt[,c(1:3, 8:9)],
p est = dt$est,
lower = dt$low,
upper = dt$hi,
sizes = dt$se,
ci_column = 4,
title = "Mixed justification",
theme = tm)
plot(p)
Sometimes one may want to have multiple CI columns, each column may
represent different outcome. If this is the case, one only need to
provide a vector of the position of the columns to be drawn in the data.
If the number of columns provided to draw the CI columns are same as
number of est
, one CI will be drawn into each CI columns.
If the number of columns provided is less than number of
est
, the extra est
will be considered as a
group and will be drawn to the CI columns again. In the latter case,
group number equals is calculated as
length(est)/length(ci_column)
and multiple columns will be
drawn into one cell. As seen in the example below, the CI will be drawn
in the column 3 and 5. The first and second elements in
est
, lower
and upper
will be
drawn in column 3 and column 5.
In a multiple groups example, two or more CI in one cell. The
solution is simple, just provide all the values sequentially to
est
, lower
and upper
. Which
means, the first n
elements in the est
,
lower
and upper
are considered as same group,
same for next n
elements. The n
is determined
by the length of ci_column
. As it is shown in the example
below, est_gp1
and est_gp2
will be drawn in
column 3 and column 5 as normal, considered as group 1.
The est_gp3
and est_gp4
will be drawn in
column 3 and column 5 as normal, considered as group
2.
This is an example of multiple CI columns and groups:
<- read.csv(system.file("extdata", "example_data.csv", package = "forestploter"))
dt # indent the subgroup if there is a number in the placebo column
$Subgroup <- ifelse(is.na(dt$Placebo),
dt$Subgroup,
dtpaste0(" ", dt$Subgroup))
# NA to blank or NA will be transformed to carachter.
$n1 <- ifelse(is.na(dt$Treatment), "", dt$Treatment)
dt$n2 <- ifelse(is.na(dt$Placebo), "", dt$Placebo)
dt
# Add two blank column for CI
$`CVD outcome` <- paste(rep(" ", 20), collapse = " ")
dt$`COPD outcome` <- paste(rep(" ", 20), collapse = " ")
dt
# Set-up theme
<- forest_theme(base_size = 10,
tm refline_lty = "solid",
ci_pch = c(15, 18),
ci_col = c("#377eb8", "#4daf4a"),
footnote_col = "blue",
legend_name = "Group",
legend_value = c("Trt 1", "Trt 2"),
vertline_lty = c("dashed", "dotted"),
vertline_col = c("#d6604d", "#bababa"))
<- forest(dt[,c(1, 19, 21, 20, 22)],
p est = list(dt$est_gp1,
$est_gp2,
dt$est_gp3,
dt$est_gp4),
dtlower = list(dt$low_gp1,
$low_gp2,
dt$low_gp3,
dt$low_gp4),
dtupper = list(dt$hi_gp1,
$hi_gp2,
dt$hi_gp3,
dt$hi_gp4),
dtci_column = c(3, 5),
ref_line = 1,
vert_line = c(0.5, 2),
nudge_y = 0.2,
theme = tm)
plot(p)
If the desired forest plot is multiple column, some may want to have
different settings for different columns. For example, different CI
column has different xlim, x-axis ticks, x-axis labels, x_trans,
reference line, vertical line or arrow labels. This can be easily done
by providing a list or vector. Provide a list for xlim
,
vert_line
, arrow_lab
and
ticks_at
, atomic vector for xlab
,
x_trans
and ref_line
. See the example
below.
$`HR (95% CI)` <- ifelse(is.na(dt$est_gp1), "",
dtsprintf("%.2f (%.2f to %.2f)",
$est_gp1, dt$low_gp1, dt$hi_gp1))
dt$`Beta (95% CI)` <- ifelse(is.na(dt$est_gp2), "",
dtsprintf("%.2f (%.2f to %.2f)",
$est_gp2, dt$low_gp2, dt$hi_gp2))
dt
<- forest_theme(arrow_type = "closed",
tm arrow_label_just = "end")
<- forest(dt[,c(1, 21, 23, 22, 24)],
p est = list(dt$est_gp1,
$est_gp2),
dtlower = list(dt$low_gp1,
$low_gp2),
dtupper = list(dt$hi_gp1,
$hi_gp2),
dtci_column = c(2, 4),
ref_line = c(1, 0),
vert_line = list(c(0.3, 1.4), c(0.6, 2)),
x_trans = c("log", "none"),
arrow_lab = list(c("L1", "R1"), c("L2", "R2")),
xlim = list(c(0, 3), c(-1, 3)),
ticks_at = list(c(0.1, 0.5, 1, 2.5), c(-1, 0, 2)),
xlab = c("OR", "Beta"),
nudge_y = 0.2,
theme = tm)
plot(p)
One can use the base method or use ggsave
function to
save plot. For the ggsave
function, please don’t ignore the
plot
parameter. The width and height should be tuned to get
a desired plot. You can also set autofit=TRUE
in the
print
or plot
function to auto fit the plot,
but this may change not be compact as it should be.
# Base method
png('rplot.png', res = 300, width = 7.5, height = 7.5, units = "in")
pdev.off()
# ggsave function
::ggsave(filename = "rplot.png", plot = p,
ggplot2dpi = 300,
width = 7.5, height = 7.5, units = "in")
Or you can get the width and height of the forestplot with
get_wh
, and use this width and height for saving.
# Get width and height
<- get_wh(plot = p, unit = "in")
p_wh png('rplot.png', res = 300, width = p_wh[1], height = p_wh[2], units = "in")
pdev.off()
# Or get scale
<- function(plot,
get_scale
width_wanted,
height_wanted,unit = "in"){
<- convertHeight(sum(plot$heights), unit, TRUE)
h <- convertWidth(sum(plot$widths), unit, TRUE)
w max(c(w/width_wanted, h/height_wanted))
}<- get_scale(plot = p, width_wanted = 6, height_wanted = 4, unit = "in")
p_sc ::ggsave(filename = "rplot.png",
ggplot2plot = p,
dpi = 300,
width = 6,
height = 4,
units = "in",
scale = p_sc)